IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Lokasi penelitian tentang risiko harga sayuran di Indonesia mencakup komoditas kentang, kubis, dan tomat dilakukan di Pasar Induk Kramat Jati, yang beralamat di Jalan Raya Bogor km. 17, Jakarta Timur. Pasar Induk Kramat Jati merupakan salah satu pusat perdagangan sayuran terbesar di Indonesia yang biasanya digunakan sebagai barometer harga dalam pembentukan harga di pasarpasar lainnya serta sebagai sumber informasi bagi Kementrian Pertanian terkait dengan harga sayuran dan buah. Kegiatan penelitian ini dilakukan pada bulan Mei hingga Juni 2011. 4.2 Jenis dan Sumber Data Penelitian ini menggunakan data yang terdiri dari data primer dan sekunder baik yang bersifat kuantitatif maupun kualitatif. Data primer diperoleh melalui wawancara dengan petani kentang di Pangalengan, Bandung, petani tomat dan kubis di Cisarua, Bogor, pedagang kentang, kubis, dan tomat, karyawan di Kantor Unit Pasar Besar (UPB) Pasar Induk Kramat Jati, DKI Jakarta serta Kementrian Pertanian. Data sekunder diperoleh dari Kantor Pasar Induk Kramat Jati Jakarta berupa data time series harga harian (rupiah per kilogram), pasokan harian (satuan dalam ton) kentang, kubis, dan tomat serta permintaan harian (satuan dalam ton) khusus untuk komoditas kentang dari bulan Januari 2006 sampai Februari 2011. Jumlah data historis yang digunakan dalam kurun waktu lima tahun untuk penelitian ini adalah sebanyak 1872 data. Data tersebut dijadikan input untuk meramalkan model dan mengukur besarnya tingkat risiko harga kentang, kubis dan tomat. Untuk informasi pendukung lainnya diperoleh dari catatan yang terdapat di berbagai instansi yang terkait dengan masalah penelitian seperti Kementrian Pertanian, Direktorat Jendral Hortikultura, Perpustakaan LSI, Perpustakaan Fakultas Ekonomi dan Manajemen, Perpustakaan Pusat Analisis Sosial Ekonomi dan Kebijakan Pertanian (PSEKP), dan berbagai literatur seperti buku, skripsi, artikel-artikel dari internet, majalah pertanian, jurnal, dan sebagainya.
45
4.3 Metode Pengolahan dan Analisis Data Penelitian ini menggunakan data primer dan data sekunder yang diolah dan dianalisis melalui beberapa metode analisis yang digunakan. Metode analisis yang digunakan dalam penelitian ini meliputi analisis kuantitatif dan kualitatif. Analisis kuantitatif yang dilakukan dalam penelitian ini adalah analisis risiko dengan menggunakan model ARCH-GARCH yang digunakan untuk meramalkan volatilitas periode selanjutnya dan perhitungan VaR yang digunakan untuk menjawab tujuan penelitian yang pertama, yaitu menganalisis besarnya tingkat risiko harga kentang, kubis dan tomat. Data yang digunakan adalah data harga harian (rupiah per kilogram), pasokan harian (satuan dalam ton) kentang, kubis dan tomat serta permintaan (satuan dalam ton) khusus untuk komoditas kentang. Analisis data diolah dengan bantuan program Microsoft Excel dan Eviews 6. Analisis kualitatif dilakukan dengan pendekatan deskriptif yang digunakan untuk menjawab tujuan penelitian yang kedua, yaitu menganalisis alternatif solusi yang dilakukan petani selaku produsen untuk mengurangi risiko harga dari komoditas kentang, kubis dan tomat. Analisis ini menggunakan data kualitatif yang diperoleh melalui hasil wawancara dan diskusi langsung dengan pihak-pihak yang berkepentingan seperti petani kentang, kubis dan tomat, pedagang grosir kentang, kubis dan tomat dan karyawan Kantor di Pasar Induk Kramat Jati, Jakarta serta Kementrian Pertanian.
4.4 Analisis Data Harga Sayuran Pengukuran risiko harga kentang, kubis, dan tomat dalam penelitian ini dilakukan dengan menggunakan model ARCH-GARCH. Model ARCH (Autoregressive Conditional Heteroscedasticity) dikembangkan untuk menjawab persoalan adanya volatilitas atau fluktuasi pada data ekonomi dan bisnis, khususnya dalam bidang keuangan. Volatilitas ini tercermin dalam varians residual yang tidak memenuhi asumsi homoskedastisitas (varians residual konstan sepanjang waktu). Bollerslev pada tahun 1986 kemudian mengembangkan model ini menjadi GARCH, yaitu singkatan dari Generalized Autoregressive Conditional Heteroscedasticity. GARCH mengasumsikan data yang dimodelkan memiliki standar deviasi yang selalu berubah terhadap waktu. GARCH yang
46
cukup baik untuk memodelkan data yang berubah standar deviasinya, tetapi tidak untuk data yang benar-benar acak. Kondisi volatilitas data mengindikasikan bahwa perilaku data time series memiliki varian residual yang tidak konstan dari waktu ke waktu atau mengandung gejala heteroskedastisitas karena terdapat varians error yang besarnya tergantung dengan pada volatilitas error masa lalu. Akan tetapi ada kalanya varian error tidak tergantung pada variablel bebasnya saja melainkan varian tersebut berubah-ubah seiring dengan perubahan waktu. Karena itu, perlu dibuat suatu model pendekatan untuk memasukkan masalah volatilitas data dalam model penelitian. Dalam mengaplikasikan model ARCH-GARCH, dilakukan tahap-tahap sebagai berikut : 1. Identifikasi efek ARCH Dalam permodelan ARCH-GARCH didahului dengan identifikasi apakah suatu data atau model persaman rataan yang diamati mengandung heteroskedastisitas atau tidak. Ini dilakukan antara lain dengan mengamati beberapa ringkasan statistik dari persamaan rataan tersebut. Sebagai contoh bila data atau model persamaan rataan memiliki nilai kurtosis lebih dari tiga menunjukkan
gejala awal adanya
heteroskedastisitas.
(Davidson dan
MacKinnon, 2004 dalam Firdaus, 2006). Skewness merupakan ukuran kemiringan, pengukuran tingkat ketidaksimetrisan (kecondongan) sebaran data di sekitar rata-ratanya. Distribusi normal merupakan distribusi yang simetris dan nilai skewness adalah nol. Skewness yang bernilai positif menunjukkan ujung dari kecondongan menjulur ke arah nilai positif (ekor kurva sebelah kanan lebih panjang). Untuk skewness yang bernilai negatif menunjukkan ujung dari kecondongan menjulur ke arah nilai negatif (ekor kurva sebelah kiri lebih panjang). Jika data skewness tersebut tidak sama dengan nol maka mengandung heteroskedastisitas (Widarjono, 2005). 2. Estimasi model Pada tahapan ini dilakukan simulasi beberapa model ragam dengan menggunakan model rataan yang telah didapatkan. Kemudian dilanjutkan dengan pendugaan parameter model. Pendugaan parameter dimaksudkan untuk
47
mencari koefisien model yang paling sesuai dengan data. Penentuan dugaan parameter
ARCH-GARCH
dilakukan
dengan
menggunakan
metode
kemungkinan maksimum secara iteratif. Dengan menggunakan Software Eviews 6, estimasi nilai-nilai parameter dapat dilakukan. Selanjutnya dilakukan pemilihan model terbaik. Kriteria model terbaik adalah memiliki ukuran kebaikan model yang besar dan koefisien yang nyata. Terdapat dua bentuk pendekatan yang dapat digunakan sebagai ukuran kebaikan model yaitu : a.
Akaike Information Criterion (AIC) = Ln (MSE) + 2*K/N
b.
Schwarz Criterion (SC)
= Ln (MSE) + [K*log (N)]/N
dimana, MSE = Mean Square Error K = Banyaknya parameter N = Banyaknya data pengamatan SC dan AIC merupakan dua standar informasi yang menyediakan ukuran informasi yang dapat menemukan keseimbangan antara ukuran kebaikan model dan spesifikasi model yang terlalu hemat. Nilai ini dapat membantu untuk mendapatkan seleksi model yang terbaik. Model yang baik dipilih berdasarkan nilai AIC dan SC yang terkecil dengan melihat juga signifikansi koefisien model. 3. Evaluasi model Pemeriksaan kecukupan model dilakukan untuk menguji asumsi, sehingga model yang diperoleh cukup memadai. Jika model tidak memadai, maka harus kembali ke tahap identifikasi untuk mendapatkan model yang lebih baik. Evaluasi model dilakukan dengan memperhatikan beberapa indikator, yaitu pengujian efek ARCH-GARCH dari residual dan memeriksa kenormalan galat baku model dengan uji Jarque-Bera. 4. Peramalan Setelah memperoleh model yang memadai, model tersebut digunakan untuk memperkirakan nilai volatilitas masa yang akan datang. Peramalan dilakukan dengan memasukkan parameter ke dalam persamaan yang diperoleh. Hasil peramalan digunakan untuk pembahasan lebih lanjut seperti perhitungan VaR pada analisis risiko. Tingkat risiko memiliki hubungan yang erat dengan metode GARCH yang sering digunakan jika terjadi ketidakhomogenan ragam
48
atau varians dari data return dan menduga nilai volatilitas yang akan datang. Hal tersebut merupakan kelebihan metode GARCH dibandingkan dengan penduga ragam atau varians biasa yang tidak mampu melakukan pendugaan ragam (varians) jika terjadi ketidakhomogenan data tidak terpenuhi. Terkait dengan adanya risiko harga pada sayuran dapat diketahui dengan adanya fluktuasi harga. Kondisi ini disebabkan oleh beberapa faktor yang mempengaruhi harga sayuran komoditas kentang, kubis, dan tomat diantaranya harga sebelumnya (Pt-1) dan penawaran (Qt). Penawaran yang digunakan adalah jumlah pasokan yang masuk ke pasar dari beberapa daerah sentra yang menghasilkan komoditas kentang, kubis, dan tomat. Khusus untuk komoditas kentang dengan menambah permintaan (Dt) dimana pada umumnya sisa dalam waktu satu hari sebesar 20 persen dan selebihnya adalah permintaan akan komoditas kentang pada hari itu yang dapat dituliskan sebagai berikut: Pt = f (Pt-1, Qt, Dt) Sehingga diperoleh persamaan model harga sayuran komoditas kentang, kubis, dan tomat sebagai berikut: Ln (Pt) = b0 + b1 Ln (Pt-1) + b2 Ln (Qt) + b3 Ln (Dt) + εt Peramalan ragam untuk periode yang akan datang diramalkan dengan menggunakan rumus GARCH (1,1) sebagai berikut: ht = C + α ε2t-1 + β ht-1 dimana: Pt Pt-1 Qt Dt b0, b1, b2, b3, α, β ht ε2t-1 ht-1 C εt
: Harga sayuran periode ke t (Rupiah/kilogram) : Harga sayuran periode sebelumnya (Rupiah/kilogram) : Jumlah penawaran sayuran (ton) : Jumlah permintaan sayuran (ton) : Besaran parameter dugaan : Ragam pada periode ke t : Volatilitas periode sebelumnya : Varian periode sebelumnya : Konstanta : Error
Setelah diperoleh model yang sesuai maka dilakukan perhitungan Var adalah sebagai berikut (Jorion, 2001):
49
VaR = (σt+1 x √b ) x Zα x W dimana: VaR b Zα W σt+1
= = = = =
Besarnya risiko yang diterima pedagang Periode penjualan sayuran Titik kritik dalam tabel Z dengan alfa 5% Besarnya modal yang dikeluarkan pedagang Volatilitas yang akan datang dimana σt = √ht
Untuk melakukan perhitungan VaR, besarnya penerimaan diperoleh dari modal investasi yang digunakan pedagang kentang, kubis, dan tomat. Berdasarkan modal yang dikeluarkan pedagang kentang, kubis dan tomat dalam satu hari adalah untuk kentang sebesar Rp. 9.000.000,00, kubis sebesar Rp. 2.400.000,00 dan tomat sebesar Rp. 2.500.000,00. Periode penjualan untuk mengetahui besarnya risiko yang ditanggung pedagang adalah satu, tujuh, dan 14 hari. Perhitungan VaR komoditas kentang, kubis, dan tomat disajikan pada Tabel 8, 9, 10. Tabel 8. Perhitungan VaR Komoditas Kentang Komoditas Kentang Periode ke Indikator 1 7 W σt+1 Z VaR Tabel 9. Perhitungan VaR Komoditas Kubis Komoditas Kubis Periode ke Indikator 1 7 W σt+1 Z VaR Tabel 10. Perhitungan VaR Komoditas Tomat Komoditas Tomat Periode ke Indikator 1 7 W σt+1 Z VaR
14
14
14
50