IV HASIL DAN PEMBAHASAN
4.1 Jumlah Bakteri Anaerob pada Proses Pembentukan Biogas dari Feses Sapi Potong dalam Tabung Hungate. Data pertumbuhan populasi bakteri anaerob pada proses pembentukan biogas dari feses sapi potong dalam tabung hungate ditampilkan pada Tabel 2. Tabel 2. Rata-rata Jumlah Bakteri Anaerob Pengamatan Hari 2 5 10 14
Media NA
Media RGCA (Cfu/ml) 103
178,33 ± 137,39 56,67 ± 30,59 75,00 ± 8,01 50,00 ± 36,71
225,00 ± 138,59 58,33 ± 53,19 53,33 ± 20,56 70,00 ± 26,27
Populasi bakteri anaerob yang dihasilkan dari feses sapi potong pada media NA paling tinggi pada hari ke 10. sedangkan pada media RGCA paling tinggi pada hari ke 14. Hal ini dikarenakan pola pertumbuhan bakteri anaerob yang berbeda-beda. Bakteri anaerob kelompok metanogenik selama 14 hari pengamatan terus mengalami peningkatan populasi sedangkan bakteri anaerob selain metanogenik mengalami penurunan. Pada hari ke-2 diperkirakan bakteri anaerob yang banyak tumbuh merupakan bakteri non-metanogenik, kemudian pada hari berikutnya mulai tumbuh bakteri metanogenik. Pernyataan ini dijelaskan pada hasil penelitian Cristy et al (2014) yang ditampilkan pada Ilustrasi 3. Pertumbuhan populasi bakteri selama hari pengamatan terus meningkat dan belum mengalami penurunan. Maka fase pertumbuhan bakteri anaerob yang terjadi pada hari ke-2 sampai dengan hari ke-14 yaitu berada pada fase lag dan fase log. Pada fase pertama yaitu 1 sampai 2 jam setelah pemindahan, bakteri
30 belum mengalami pembiakkan, fase ini disebut fase adaptasi. Pada fase adaptasi (lag phase) tidak ada pertambahan populasi. Sel mengalami perubahan dalam komposisi kimiawi dan bertambah ukurannya, substansi interaseluler bertambah (Pelczar, 2005). Fase ini disusul dengan fase kedua dimana jumlah bakteri mulai bertambah sedikit demi sedikit, pada fase perbanyakan (logaritma atau eksponensial) pembiakkan bakteri berlangsung paling cepat. Bakteri dalam fase ini baik sekali untuk dijadikan inokolum (Dwidjoseputro, 1994). Jenis bakteri anaerob yang tumbuh pada hari ke-2 sampai dengan hari ke14 terdiri dari kelompok bakteri fermentatif dan kelompok bakteri asetogenik. Sedangkan bakteri yang diharapkan tumbuh yaitu bakteri metanogenik belum tumbuh optimal. Menurut Lyberatos dan Skiadas (1999) menyatakan bahwa : a) bakteri pembentuk asam, yang tumbuh cepat dan fermentasi glukosa untuk menghasilkan campuran asetat, propionat dan butirat, b) bakteri asetogenik mengkonversi propionat dan butirat untuk asetat, c) bakteri metana acetoclastic mengkonversi asetat menjadi CO2 dan CH4 d) bakteri metana hidrogen-utilizing mengurangi CO2 ke CH4. Sesuai dengan hasil penelitian Cristy et al (2014) yang ditampilkan pada Ilustrasi 3 :
Ilustrasi 3. Dinamika Mikroba Selama Produksi Biogas (sumber : Cristy et al, 2014)
31 Populasi bakteri Methanosarcina dan Methanobacterium sangat rendah sampai dengan hari ke-10 dan populasi mereka stabil di hari ke-20 dan tinggi di hari ke-30. Bakteri metanogenik sedang berada pada tahap penyesuaian awal dalam populasi mikroba dari aerobik menjadi kondisi anaerobik karena metana dihasilkan sebagai produk sampingan metabolisme (Cristy et al, 2014). Berkaitan juga dengan waktu retensi dari bakteri metanogenik, menurut Gerardi (2003) : terdapat dua waktu retensi pada saat pencernaan anaerobik, SRT (Solid Retension Time) dan HRT (Hydraulic Retention Time). SRT adalah waktu rata-rata bakteri (padatan) berada pada saat pencernaan anaerobik sedangkan HRT adalah waktu limbah atau lumpur (sludge) berada pada saat pencernaan anaerobik. Waktu generasi yang dibutuhkan oleh bakteri pembentuk metana relatif lebih panjang dibandingkan dengan bakteri aerob dan bakteri anaerob fakultatif. Waktu SRT pada saat pencernaan anerobik yaitu lebih dari 12 hari. Waktu SRT kurang dari 10 hari tidak dianjurkan karena bakteri pembentuk metana belum signifikan berkembang. Jumlah bakteri anaerob pada media NA hari ke-14 yaitu 50 cfu/ml sedangkan pada media RGCA yaitu 70 cfu/ml. Berdasarkan hasil pengamatan dapat diketahui bahwa bakteri anaerob dapat tumbuh pada media NA maupun media RGCA sedangkan, bakteri metanogenik yang menghasilkan gas metana tumbuh lebih tinggi pada media NA dibandingan pada media RGCA karena menghasilkan gas metana lebih tinggi, kandungan gas metana yang dihasilkan dapat dilihat pada Tabel 3.
32 4.2 Kualitas Gas Metana pada Proses Pembentukan Biogas dari Feses Sapi Potong dalam Tabung Hungate. Data jumlah gas metana, karbon dioksida dan nitrogen oksida yang terbentuk pada proses pembentukan biogas dari feses sapi potong dalam tabung hungate dapat dilihat pada Tabel 3. Tabel 3. Rata-rata Produksi Biogas CH4 NA RGCA …….. 0,012 ± 0,010 0
3,07 ± 2,51
0
5
0,007 ± 0,006
0,021 ± 0,017
4,74 ± 3,29
1,24 ± 0,68
0,000066 ± 0,000054
0,000013 ± 0,000010
10
0,017 ± 0,001
0,007 ± 0,005
6,47 ± 2,91
0,08 ± 0,07
0,000262 ± 0,000041
0,000042 ± 0,000034
14
0,023 ± 0,011
0,009 ± 0,007
5,70 ± 2,09
0,39 ± 0,20
0,000522 ± 0,000166
0,000052 ± 0,000042
Pengamatan Hari 2
CO2 NA
N2O RGCA
(%)
RGCA
NA ……. 0,000034 ± 0,000028
0
Produksi gas metana yang dihasilkan dari feses sapi potong pada media NA hari ke-2, 10 dan 14 lebih tinggi dibandingan dengan pada media RGCA. Menurut Widarto dan Sudarto (1997) : Kandungan biogas dapat dilihat dalam jumlah persentase (%) yaitu : metana 54-70 %, karbon dioksida 27-45%, nitrogen 3-5%, hidrogen 1-2%, karbon monoksida, oksigen 0,1% dan hidrogen sulfida rendah. Produksi gas metana yang dihasilkan pada penelitian ini tidak dapat mencapai persentase ideal kandungan biogas tersebut. Maka kualitas gas metana ditentukan dengan cara membandingkan jumlah gas metana yang dihasilkan oleh feses sapi sapi potong pada media NA dengan produksi gas metana yang dihasilkan oleh feses sapi sapi potong pada media RGCA. Kualitas gas metana
33 yang dihasilkan pada media NA lebih tinggi (0,023%) dibandingkan dengan pada media RGCA (0,009%) Proporsi gas yang terkandung pada biogas yang terdeteksi yaitu gas metana, karbon dioksida dan nitrogen oksida. Kandungan metana yang dihasilkan masih rendah, kandungan karbon dioksida tinggi dan kandungan nitrogen sangat rendah. Karbon dioksida dipersiapkan untuk energi bagi bakteri metanogenik membentuk gas metana pada fase metanogenesis sedangkan kandungan nitrogen oksida yang sangat kecil karena tidak dimanfaatkan. Menurut Schink, B (1997) menyatakan bahwa : dalam tahapan methanogenesis asetat dan H2 / CO2 dikonversi menjadi CH4 dan CO2 oleh Archaea Metanogen. Bakteri ini dapat tumbuh langsung pada H2 / CO2, asetat dan senyawa satu-karbon lainnya, seperti format dan metanol. Sesuai dengan yang dinyatakan oleh Zeikus (1977) bahwa ; Bakteri metanogenik memanfaatkan H2 dan CO2 untuk energi dan karbon sel sintesis. metanogen tidak menggunakan asam amino atau N2 sebagai sumber nitrogen dan tidak ada senyawa nitrogen lainnya selain NH4 untuk pertumbuhannya. Sejalan dengan pernyataan Bryant et al. dalam Jarrel dan Kalmokoff, (1987) menemukan bahwa : beberapa strain Methanobacterium tidak memiliki kemampuan menggabungkan atau memanfaatkan sumber organik nitrogen (asam amino atau peptida) dan diperlukan amonia sebagai sumber nitrogen. Proses pembentukan biogas yang sedang terjadi pada hari ke-2 sampai dengan hari ke-14 yaitu proses hidrolisis dan asetogenesis. Menurut Haryati (2006) : (a) Hidrolisis, pada tahap ini terjadi penguraian bahan-bahan organik mudah larut dan pencernaan bahan organik yang komplek menjadi sederhana, perubahan struktur bentuk polimer menjadi bentuk monomer; (b) Pengasaman,
34 pada tahap pengasaman komponen monomer (gula sederhana) yang terbentuk pada tahap hidrolisis akan menjadi bahan makanan bagi bakteri pembentuk asam. Produk akhir dari perombakan gula-gula sederhana ini yaitu asam asetat, propionat, format, laktat, alkohol, dan sedikit butirat, gas karbondioksida, hidrogen dan amonia. Gas metana dibentuk oleh bakteri metanogenik. Menurut Zeikus (1977) : kebutuhan nutrisi yang menunjang pertumbuhan bakteri metanogenik yaitu : NH4+ (sumber nitrogen), H2S atau cystein (sumber sulfur), Asetat, 2-metilbutirat, asam amino (tambahan karbon) dan asam asetat (stimulus pertumbuhan). Kayhanian dan Cresson dalam Vijay (2013) menyatakan bahwa : biodegradasi yang efisien membutuhkan nutrisi dan gizi yang cukup karena itu penting untuk pertumbuhan sel mikroba. nutrisi makro seperti karbon, nitrogen, kalium fosfor, sulfur dan mikro-nutrisi seperti Fe, Ni, Zn dan Co dalam jumlah kecil yang diperlukan untuk pertumbuhan mikroba anaerob yang optimal. Media NA yang digunakan pada penelitian ini ditambahkan dengan Lactose Broth (LB) serta cairan isi rumen. Komposisi media NA terdiri dari : Bubuk ‘Lab-Lemco’, ekstrak yeast (sumber stimulan organik), pepton (sumber nitrogen), sodium klorida (sumber sodium), agar, pH 7,4 ± 0,2 (kisaran pH optimal untuk biogas) serta komposisi LB terdiri dari : Bubuk ‘Lab-Lemco’, pepton (sumber nitrogen), laktosa (sumber energi) pH 6,9 ± 0,2 (kisaran pH optimal untuk biogas). (Bridson, 1998) sedangkan kandungan cairan isi rumen terdiri dari NH3, asetat, propionat, butirat serta terdapat beberapa mikrooganisme seperti protozoa, jamur dan bakteri. (Purbowati dkk, 2014) Cairan isi rumen berfungsi sebagai sumber stimulan organik dan stimulan pertumbuhan (Jarrel and Karmokoff, 1987).