BAB 4 HASIL DAN PEMBAHASAN
4.1. Uji Algoritma Pendeteksian Objek Berdasarkan penelusuran pustaka, didapatkan beberapa algoritma terkait dengan hand detection yang telah diuji, antara lain sebagai berikut:
4.1.1. Convex Hull Convex hull merupakan algoritma dengan konsep geometrical, yaitu memecahkan masalah dalam ruang lingkup geometri komputasi. Geometri komputasi adalah bidang ilmu matematika yang digunakan untuk melakukan perhitungan yang berkaitan dengan objek geometris, seperti titik, garis, poligon, dan sejenisnya.
4.1.1.1. Algoritma Convex hull adalah poligon yang disusun dari subset titik sedemikian sehingga tidak ada titik dari himpunan awal yang berada di luar poligon tersebut (semua titik berada di batas luar atau di dalam area yang dilingkupi oleh poligon tersebut). Algoritma ini, mendeteksi minimum ukuran poligon cembung yang menyertakan set poin. Sebuah poligon cembung jika ada segmen garis yang menghubungkan dua titik dalam poligon terletak sepenuhnya di dalam poligon itu sendiri.
4.1.1.2. Hasil Percobaan Berdasarkan hasil penelusuran pustaka, algoritma ini dapat digunakan dalam mendeteksi permukaan sehingga dalam percobaan ini juga diterapkan penggunaan algoritma ini. Dalam percobaan yang telah dilakukan, ketika sebuah objek terdeteksi maka akan ditandai dengan lingkaran berwarna merah.
Berikut
hasil
percobaan
dengan
menggunakan
algoritma convex hull dalam mendeteksi objek tangan:
77
78 a. Hasil percobaan tanpa menggunakan proyektor
Gambar 4.1.
Gambar hasil percobaan
79 Tabel 4.1. Tabel hasil percobaan Sampel 1 2 3 4 5 6 7 8 9 10
Gambar 4.2.
Benar 0 0 0 0 0 0 0 0 0 0
Salah 1 1 1 1 1 1 1 1 1 1
Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan tanpa menggunakan proyektor menghasilkan sebanyak 0 hasil yang benar atau nilai persentasenya sebesar 0% dan yang salah mendeteksi objek (tangan) yaitu sebesar 10 atau nilai persentasenya sebesar 100%.
80 b. Hasil percobaan dengan menggunakan proyektor
Gambar 4.3.
Gambar hasil percobaan
81 Tabel 4.2. Tabel hasil percobaan Sampel 1 2 3 4 5 6 7 8 9 10
Gambar 4.4.
Benar 0 0 0 0 0 0 0 0 0 0
Salah 1 1 1 1 1 1 1 1 1 1
Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dengan menggunakan proyektor menghasilkan sebanyak 0 hasil yang benar atau nilai persentasenya sebesar 0% dan yang salah mendeteksi objek (tangan) yaitu sebesar 10 atau nilai persentasenya sebesar 100%.
4.1.1.3. Kesimpulan Berdasarkan hasil uji algoritma yang telah dilakukan, dapat disimpulkan bahwa convex hull tidak akurat dalam mendeteksi
82 tangan dengan persentase mendeteksi objek yang benar yaitu 0% dan yang salah sebesar 100%.
4.1.2. Haar-Training dan Cascade Classifier Setiap haar feature terdiri dari gabungan kotak-kotak hitam dan putih. Haar-like feature adalah perbedaan antara jumlah nilai-nilai piksel gray level dalam daerah kotak hitam dengan daerah kotak putih. Cascade classifier adalah sebuah rantai stage classifier, dimana setiap stage classifier digunakan untuk mendeteksi keberadaan objek di dalam image sub window. Untuk mendapatkan nilai cascade, perlu dilakukan training cascade.
4.1.2.1. Algoritma Haar classifier merupakan metode supervised learning, yaitu membutuhkan data training untuk dapat mendeteksi objek-objek tertentu. Untuk itu haar classifier membutuhkan data positif (gambar yang mengandung objek yang akan dideteksi) dan data negatif (gambar yang tidak mengandung objek yang akan dideteksi). Data akan diolah menjadi cascade yang akan dikonversi menjadi XML. Dalam pembuatan XML data hasil training, terdapat beberapa tahapan yang perlu dilakukan yakni: a. Persiapan data Pada tahap ini dilakukan pengumpulan gambar-gambar dan data-data yang akan digunakan untuk training. Gambargambar dan data-data yang dibutuhkan antara lain sebagai berikut:
83
Gambar 4.5.
Flowchart pengolahan data untuk training
1) Gambar positif (tangan) Gambar positif yang dikumpulkan yaitu berupa gambar yang mengandung objek yang akan dideteksi, yakni tangan. Pada tahap training untuk aplikasi ini, gambar positif terdiri dari gambar pola tangan berupa gambar tangan dengan bentuk jari yang menggambarkan angka 1 sampai 5 dengan pola tangan yang telah ditentukan sebagai event dalam aplikasi ini. Selain itu, posisi tangan yang diambil dalam posisi tegak dan miring ±15º ke arah kiri serta kanan. Hal tersebut memungkinkan pendeteksian jika posisi tangan yang akan ditangkap tidak dalam posisi lurus/tegak.
84
Gambar 4.6.
Contoh gambar positif
2) Gambar negatif (latar belakang atau gambar tanpa objek) Gambar negatif yang dikumpulkan yaitu berupa gambar yang tidak mengandung objek yang akan dideteksi. Pada tahap training ini, gambar negatif yang dikumpulkan berupa gambar tampilan layar proyeksi per kelas yang akan menjadi tempat untuk implementasi aplikasi ini.
Gambar 4.7.
Contoh gambar negative
3) Koordinat dari gambar positif Setelah data positif dan negatif diperoleh, untuk penyesuaian data pada aplikasi ini data gambar ini dapat diolah terlebih dahulu melalui proses resize atau perubahan ukuran gambar sesuai dengan kebutuhan
85 disertai dengan crop atau pemotongan besarnya area yang akan di-training. Pengambilan koordinat yaitu tahapan yang dilakukan setelah data positif terkumpul. Gambar positif yang diambil koordinatnya akan dipilih dan diseleksi sesuai dengan tampilan posisi tangan yang menjadi objek. Data koordinat ini akan disimpan dalam sebuah file yang akan di-training menjadi cascade sebelum dikonversi menjadi XML. b. Pembuatan sampel Tahap ini merupakan proses pembuatan sampel dari beberapa gambar yang telah dikumpulkan. c. Training data Pada tahap ini, sampel yang ada akan diproses dalam ukuran A * B piksel, dengan A adalah ukuran lebar gambar dan B adalah ukuran tinggi gambar. d. Generate XML Pada tahap ini, hasil dari training yang telah dilakukan akan dikonversi menjadi file XML.
4.1.2.2. Hasil
Percobaan
dengan
Menggunakan
XML
dari
Penelusuran Website Data XML hasil training cascade dapat diperoleh dengan cara melatih atau training gambar positif dan negatif, selain itu dapat juga diperoleh dari penelusuran pada website sesuai pada penelitian-penelitian sejenis sebelumnya. Dalam percobaan yang telah dilakukan, ketika sebuah objek terdeteksi maka akan ditandai dengan lingkaran berwarna merah muda. Berikut hasil percobaan yang diperoleh dari file XML yang didapat dari proses penelusuran pada website “https://advancedtracker. googlecode.com/files/Hand.Cascade.1.xml”:
86 a. Hasil percobaan tanpa menggunakan proyektor
87
Gambar 4.8.
Gambar hasil percobaan
Tabel 4.3. Tabel hasil percobaan Sampel 1 2 3 4 5 6 7 8 9 10
Gambar 4.9.
Benar 0 0 0 0 0 0 0 0 0 0
Salah 2 0 0 0 0 0 0 1 1 0
Grafik hasil percobaan yang salah dalam mendeteksi objek
88 Pada diagram di atas, terlihat bahwa hasil percobaan tanpa menggunakan proyektor menghasilkan sebanyak 0 hasil yang benar atau nilai persentasenya sebesar 0% dan yang salah mendeteksi objek (tangan) yaitu sebesar 4 atau nilai persentasenya sebesar 100%. b. Hasil percobaan dengan menggunakan proyektor
89
Gambar 4.10.
Gambar hasil percobaan
Tabel 4.4. Tabel hasil percobaan Sampel 1 2 3 4 5 6 7 8 9 10
Benar 0 0 0 0 0 0 0 0 0 0
Salah 2 0 1 0 0 0 0 0 1 0
90
Gambar 4.11.
Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dengan menggunakan proyektor menghasilkan sebanyak 0 hasil yang benar atau nilai persentasenya sebesar 0% dan yang salah mendeteksi objek (tangan) yaitu sebesar 4 atau nilai persentasenya sebesar 100%. c. Kesimpulan Berdasarkan hasil uji algoritma yang telah dilakukan, dapat disimpulkan bahwa XML dari penelusuran website tidak akurat dalam mendeteksi tangan dengan persentase mendeteksi objek dengan benar yaitu 0%. Oleh karena itu, akan dilakukan training untuk pembuatan XML yang akan disesuaikan dengan kebutuhan aplikasi.
4.1.2.3. Hasil Percobaan dengan Menggunakan XML dari Hasil Data Training yang Dilakukan Tahapan berikutnya setelah proses training selesai adalah melakukan percobaan terhadap file XML yang ada. Pada tahap ini dilakukan testing pada dua kondisi antara lain dengan menggunakan proyektor dan tanpa menggunakan proyektor.
91 Dari proses percobaan pembuatan XML hasil data training yang berbeda kondisi tata letak, latar belakang, ukuran, jumlah, jarak, intensitas cahaya sampel positif dan negatif, serta ukuran sampel positif dan negatif pada saat proses training dilakukan, didapatkan 4 file XML yang berbeda. Dalam percobaan yang telah dilakukan, ketika sebuah objek terdeteksi maka akan ditandai dengan lingkaran berwarna merah muda. Berikut hasil percobaan pendeteksian objek tangan dengan menggunakan 4 file tersebut: a. XML hasil training yang pertama Pada file XML hasil training yang pertama, digunakan sebanyak 194 gambar positif dan 64 gambar negatif dengan ukuran gambar berbeda-beda yang kemudian di-resize dan di-crop hingga menjadi ukuran 320 x 240 piksel. Dalam melakukan proses training, gambar positif dan negatif diubah ukurannya menjadi 40 x 40 piksel. Berikut adalah hasil percobaan yang dilakukan pada XML hasil training yang pertama: 1) Hasil percobaan tanpa menggunakan proyektor
92
Gambar 4.12. Gambar hasil percobaan
Tabel 4.5. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 0 0 0 0 0 0 0 0 0 0
Salah 23 27 41 42 22 26 34 35 41 21
93
Gambar 4.13. Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari
XML
hasil
training
yang
pertama
tanpa
menggunakan proyektor menghasilkan sebanyak 0 hasil yang benar atau nilai persentasenya sebesar 0% dan yang salah mendeteksi objek (tangan) yaitu sebesar 312 atau nilai persentasenya sebesar 100%. 2) Hasil percobaan dengan menggunakan proyektor
94
Gambar 4.14. Gambar hasil percobaan
95 Tabel 4.6. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 0 0 0 0 0 0 0 0 1 0
Salah 42 36 37 39 42 46 41 41 41 40
Gambar 4.15. Grafik hasil percobaan yang benar dalam mendeteksi objek
96
Gambar 4.16. Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari
XML
hasil
training
yang
pertama
dengan
menggunakan proyektor menghasilkan sebanyak 1 hasil yang benar atau nilai persentasenya sebesar 0,25% dan yang salah mendeteksi objek (tangan) yaitu sebesar 405 atau nilai persentasenya sebesar 99,75%. 3) Kesimpulan percobaan XML hasil training yang pertama Berdasarkan
percobaan
yang
telah
dilakukan,
penggunaan XML hasil training yang pertama tanpa menggunakan proyektor dan menggunakan proyektor maka diketahui bahwa persentase pendeteksian objek (tangan) yang benar yaitu sebesar 0,125% dan persentase kesalahan dalam mendeteksi objek (tangan) yaitu sebesar 99,875%. b. XML hasil training yang kedua Pada file XML hasil training yang kedua, digunakan sebanyak 22 gambar positif dan 39 gambar negatif dengan ukuran gambar berbeda-beda yang kemudian di-resize dan di-crop hingga menjadi ukuran 960 x 540 piksel. Dalam
97 melakukan proses training, gambar positif dan negatif diubah ukurannya menjadi 50 x 28 piksel. Berikut adalah hasil percobaan yang dilakukan pada XML hasil training yang kedua: 1) Hasil percobaan tanpa menggunakan proyektor
98
Gambar 4.17. Gambar hasil percobaan
Tabel 4.7. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 0 0 1 0 0 0 0 0 0 1
Salah 1 2 2 2 2 1 1 1 3 2
99
Gambar 4.18. Grafik hasil percobaan yang benar dalam mendeteksi objek
Gambar 4.19. Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari XML hasil training yang kedua tanpa menggunakan proyektor menghasilkan sebanyak 2 hasil yang benar atau nilai persentasenya sebesar 10,53% dan yang salah
100 mendeteksi objek (tangan) yaitu sebesar 17 atau nilai persentasenya sebesar 89,47%. 2) Hasil percobaan dengan menggunakan proyektor
101
Gambar 4.20. Gambar hasil percobaan
Tabel 4.8. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 0 0 0 0 0 0 0 0 0 0
Salah 2 1 4 1 1 3 1 1 3 3
Gambar 4.21. Grafik hasil percobaan yang salah dalam mendeteksi objek
102 Pada diagram di atas, terlihat bahwa hasil percobaan dari
XML
hasil
training
yang
kedua
dengan
menggunakan proyektor menghasilkan sebanyak 0 hasil yang benar atau nilai persentasenya sebesar 0% dan yang salah mendeteksi objek (tangan) yaitu sebesar 20 atau nilai persentasenya sebesar 100%. 3) Kesimpulan percobaan XML hasil training yang kedua Berdasarkan
percobaan
yang
telah
dilakukan,
penggunaan XML hasil training yang kedua tanpa menggunakan proyektor dan menggunakan proyektor maka diketahui bahwa persentase pendeteksian objek (tangan) yang benar yaitu sebesar 5,265% dan persentase kesalahan dalam mendeteksi objek (tangan) yaitu sebesar 94,735%. c. XML hasil training yang ketiga Pada file XML hasil training yang ketiga, digunakan sebanyak 150 gambar positif dan 78 gambar negatif dengan ukuran gambar 5168 x 2907 piksel yang kemudian di-resize hingga menjadi ukuran 1366 x 768 piksel. Dalam melakukan proses training, gambar positif dan negatif diubah ukurannya menjadi 50 x 28 piksel. Berikut adalah hasil percobaan yang dilakukan pada XML hasil training yang ketiga: 1) Hasil percobaan tanpa menggunakan proyektor
103
Gambar 4.22. Gambar hasil percobaan
104 Tabel 4.9. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 1 0 0 1 1 0 0 0 1 1
Salah 17 22 23 12 16 18 16 20 15 14
Gambar 4.23. Grafik hasil percobaan yang benar dalam mendeteksi objek
105
Gambar 4.24. Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari XML hasil training yang ketiga tanpa menggunakan proyektor menghasilkan sebanyak 5 hasil yang benar atau nilai persentasenya sebesar 2,81% dan yang salah mendeteksi objek (tangan) yaitu sebesar 173 atau nilai persentasenya sebesar 97,19%. 2) Hasil percobaan dengan menggunakan proyektor
106
Gambar 4.25. Gambar hasil percobaan
107 Tabel 4.10. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 0 1 0 1 1 0 0 2 2 1
Salah 25 15 15 23 22 21 23 18 15 22
Gambar 4.26. Grafik hasil percobaan yang benar dalam mendeteksi objek
108
Gambar 4.27. Grafik hasil percobaan yang salah dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari
XML
hasil
training
yang
ketiga
dengan
menggunakan proyektor menghasilkan sebanyak 8 hasil yang benar atau nilai persentasenya sebesar 3,86% dan yang salah mendeteksi objek (tangan) yaitu sebesar 199 atau nilai persentasenya sebesar 96,14%. 3) Kesimpulan percobaan XML hasil training yang ketiga Berdasarkan
percobaan
yang
telah
dilakukan,
penggunaan XML hasil training yang ketiga tanpa menggunakan proyektor dan menggunakan proyektor maka diketahui bahwa persentase pendeteksian objek (tangan) yang benar yaitu sebesar 3,335% dan persentase kesalahan dalam mendeteksi objek (tangan) yaitu sebesar 96,665%. d. XML hasil training yang keempat Pada file XML hasil training yang keempat, digunakan sebanyak 112 gambar positif dan 80 gambar negatif dengan ukuran gambar 5168 x 2907 piksel yang kemudian di-resize hingga menjadi ukuran 1066 x 600 piksel dan di-crop
109 menjadi ukuran 600 x 600 piksel. Dalam melakukan proses training, gambar positif dan negatif diubah ukurannya menjadi 30 x 30 piksel. Berikut adalah hasil percobaan yang dilakukan pada XML hasil training yang keempat: 1) Hasil percobaan tanpa menggunakan proyektor
110
Gambar 4.28. Gambar hasil percobaan
Tabel 4.11. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 1 1 1 1 1 1 1 1 1 1
Salah 0 0 0 0 0 0 0 0 0 0
111
Gambar 4.29. Grafik hasil percobaan yang benar dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari
XML
hasil
training
yang
keempat
tanpa
menggunakan proyektor menghasilkan sebanyak 10 hasil yang benar atau nilai persentasenya sebesar 100% dan yang salah mendeteksi objek (tangan) yaitu sebesar 0 atau nilai persentasenya sebesar 0%. 2) Hasil percobaan dengan menggunakan proyektor
112
Gambar 4.30. Gambar hasil percobaan
113 Tabel 4.12. Sampel 1 2 3 4 5 6 7 8 9 10
Tabel hasil percobaan Benar 1 1 1 1 1 1 1 1 1 1
Salah 0 0 0 0 0 0 0 0 0 0
Gambar 4.31. Grafik hasil percobaan yang benar dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari XML hasil training yang keempat dengan menggunakan proyektor menghasilkan sebanyak 10 hasil yang benar atau nilai persentasenya sebesar 100% dan yang salah mendeteksi objek (tangan) yaitu sebesar 0 atau nilai persentasenya sebesar 0%.
114 3) Kesimpulan percobaan XML hasil training yang keempat Berdasarkan
percobaan
yang
telah
dilakukan,
penggunaan XML hasil training yang keempat tanpa menggunakan proyektor dan menggunakan proyektor maka diketahui bahwa persentase pendeteksian objek (tangan) dengan tepat yaitu sebesar 100% dan persentase kesalahan dalam mendeteksi objek (tangan) yaitu sebesar 0%. e. Kesimpulan hasil percobaan keempat XML yang telah ditraining
Gambar 4.32.
Grafik perbandingan percobaan XML hasil training yang benar mendeteksi
Gambar 4.33.
Grafik perbandingan percobaan XML hasil training yang salah mendeteksi
115 Dari hasil percobaan di atas, dapat disimpulkan bahwa XML hasil training keempat lebih akurat dalam mendeteksi objek daripada XML hasil training lainnya karena dari segi sampel data yang digunakan, ukuran sampel telah diubah menjadi 600x600 pixel melalui proses resize dan crop untuk menyesuaikan dengan gambar yang ditangkap kamera dalam aplikasi ini. Hal ini telah menjawab hipotesis pada subbab 1.3 bagian c, yakni: ukuran data sampel yang ditraining mempengaruhi hasil pendeteksian objek. Selain itu, perbandingan sampel positif dan negatif yang digunakan adalah sekitar 1,4 : 1 yang menjawab hipotesis pada subbab 1.3 bagian a yaitu jumlah sampel data yang akan di-training sesuai dengan kebutuhan, akan sangat berpengaruh pada hasil pendeteksian tangan. Selain faktor jumlah sampel, faktor
lain
yang
juga
mempengaruhi
keakuratan
pendeteksian objek yaitu pengambilan sampel negatif yang akan digunakan harus mengandung objek-objek latar belakang pada saat aplikasi digunakan, sedangkan bentuk objek yang digunakan untuk pengambilan sampel positif harus terlihat jelas, jarak kamera terhadap objek yang ditangkap pada saat pengambilan sampel disesuaikan dengan jarak kamera ketika penggunaan aplikasi, dan intensitas cahaya sangat berpengaruh terhadap tingkat keakuratan pendeteksian. Oleh karena itu, XML yang akan digunakan pada aplikasi ini yaitu XML hasil training yang keempat tetapi dengan jumlah gambar positif dan negatif yang lebih banyak yaitu 360 gambar positif dan 174 gambar negatif.
4.1.2.4. Hasil Percobaan XML yang akan Digunakan pada Aplikasi Linda Pada file XML yang akan digunakan pada aplikasi Linda, digunakan sebanyak 360 gambar positif dan 174 gambar negatif dengan ukuran gambar 5168 x 2907 piksel yang
116 kemudian di-resize hingga menjadi ukuran 1066 x 600 piksel dan di-crop menjadi ukuran 600 x 600 piksel. Dalam melakukan proses training, gambar positif dan negatif diubah ukurannya menjadi 30 x 30 piksel. a. Hasil percobaan tanpa menggunakan proyektor
117
Gambar 4.34.
Gambar hasil percobaan
Tabel 4.13. Tabel hasil percobaan Sampel 1 2 3 4 5 6 7 8 9 10
Benar 1 1 1 1 1 1 1 1 1 1
Salah 0 0 0 0 0 0 0 0 0 0
118
Gambar 4.35.
Grafik hasil percobaan yang benar dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan tanpa menggunakan proyektor menghasilkan sebanyak 10 hasil yang benar atau nilai persentasenya sebesar 100% dan yang salah mendeteksi objek (tangan) yaitu sebesar 0 atau nilai persentasenya sebesar 0%. b. Hasil percobaan dengan menggunakan proyektor
119
Gambar 4.36.
Gambar hasil percobaan
120 Tabel 4.14. Tabel hasil percobaan Sampel 1 2 3 4 5 6 7 8 9 10
Gambar 4.37.
Benar 1 1 1 1 1 1 1 1 1 1
Salah 0 0 0 0 0 0 0 0 0 0
Grafik hasil percobaan yang benar dalam mendeteksi objek
Pada diagram di atas, terlihat bahwa hasil percobaan dengan menggunakan proyektor menghasilkan sebanyak 10 hasil yang benar atau nilai persentasenya sebesar 100% dan yang salah mendeteksi objek (tangan) yaitu sebesar 0 atau nilai persentasenya sebesar 0%.
121 c. Kesimpulan
Gambar 4.38.
Grafik perbandingan percobaan XML dari penelusuran website dengan XML hasil training yang dilakukan
Dari hasil percobaan diatas, dapat disimpulkan bahwa XML hasil training lebih akurat dibandingkan dengan XML dari penelusuran website dalam mendeteksi objek (tangan) sehingga, XML yang akan digunakan pada aplikasi ini yaitu XML dari hasil training yang telah dilakukan.
4.1.3. Kesimpulan
Gambar 4.39. Grafik perbandingan percobaan Haar-Training dan Cascade Classifier dengan Convex Hull
122 Dari hasil percobaan di atas, dapat disimpulkan bahwa penggunaan algoritma haar-training dan cascade classifier yang menggunakan XML hasil training lebih akurat dibandingkan dengan algoritma convex hull. Oleh karena itu, algoritma yang akan digunakan untuk pendeteksian objek pada aplikasi ini adalah algoritma haar-training dan cascade classifier dengan menggunakan XML yang berasal dari data hasil training yang telah dilakukan.
4.2. Uji Algoritma Pengenalan Objek Tahapan yang dilakukan setelah pengkodean aplikasi adalah Implementation and Unit Testing. Pada penelitian ini algoritma yang digunakan dalam pengkodean merupakan penggabungan algoritma Haar-Training dengan Convex Hull. Penggabungan algoritma tersebut berdasarkan dari hasil penelusuran dan percobaan pendeteksian objek pada percobaan sebelumnya. Pada percobaan untuk pendeteksian tangan didapatkan algoritma HaarTraining mendeteksi tangan dengan tepat, dan berdasarkan penelusuran dan referensi dari berbagai pada bahasan sebelumnya. Berikut merupakan hasil penggabungan algoritma dalam mendeteksi serta mengenali pola tangan: a. Hasil percobaan penggabungan algoritma Haar-Training dan Convex Hull
123
Gambar 4.40.
Gambar hasil percobaan
Tabel 4.15. Tabel hasil percobaan Sampel 1 2 3 4 5 6 7 8 9 10
Benar mendeteksi 1 1 1 1 1 1 1 1 1 1
Salah mendeteksi 0 0 0 0 0 0 0 0 0 0
Jumlah Jari 5 2 4 3 4 2 4 2 3 5
Jumlah jari yang terdeteksi 5 2 4 3 4 2 4 2 3 5
124
Gambar 4.41.
Grafik hasil percobaan yang benar dalam mendeteksi dan mengenali objek
Pada diagram di atas, terlihat bahwa hasil percobaan dari penggabungan algoritma Convex Hull dan Haar-Training menghasilkan sebanyak 10 hasil yang benar atau nilai persentasenya sebesar 100% dan yang salah mendeteksi dan mengenali objek (tangan) yaitu sebesar 0 atau nilai persentasenya sebesar 0%.
b. Hasil percobaan pengaruh kerenggangan jari pada pengenalan pola algoritma Haar-Training dan Convex Hull 1) Hasil percobaan pertama Pada
percobaan
ini,
pengguna
memperagakan
menampilkan 5 jari yang jarak setiap jarinya renggang.
tangan
dengan
125
Gambar 4.42.
Gambar 4.43.
Hasil percobaan pertama
Hasil threshold percobaan pertama
2) Hasil percobaan kedua Pada
percobaan
ini,
pengguna
memperagakan
tangan
dengan
menampilkan 5 jari yang tiap jarinya ada jarak yang renggang dan ada yang jaraknya rapat.
126
Gambar 4.44.
Gambar 4.45.
Hasil percobaan kedua
Hasil threshold percobaan kedua
3) Hasil percobaan ketiga Pada
percobaan
ini,
pengguna
memperagakan
menampilkan 3 jari yang jarak setiap jarinya renggang
tangan
dengan
127
Gambar 4.46.
Gambar 4.47.
Hasil percobaan ketiga
Hasil threshold percobaan ketiga
Kesimpulan Berdasarkan percobaan yang telah dilakukan, dapat disimpulkan pengenalan pola dengan menggunakan algoritma convex hull mengenali pola tangan berdasarkan jumlah jari yang ada. Keakuratan pengenalan pola pada algoritma ini tergantung pada tingkat nilai threshold yang harus sesuai dengan tinggi intensitas cahaya pada sekitar objek (tangan) yang akan dikenali serta jarak dari tiap jari dari tangan yang akan dikenali. Dari gambar percobaan diatas, terlihat bahwa tangan yang jarinya renggang satu sama lain dikenali dengan akurat, yaitu pada gambar 4.42 dan gambar 4.46 yang masing-masing bernilai 5 dan 3 sesuai dengan jumlah jari yang diperagakan oleh pengguna, sedangkan untuk gambar 4.44 jumlah jari yang terdeteksi bernilai 3 berbeda dengan jumlah jari yang di tampilkan oleh pengguna yaitu 5.
128 c. Hasil percobaan toleransi jarak minimum antar jari dalam pendeteksian dan pengenalan pola pada algortima Haar-Training dan Convex Hull Pada
percobaan
ini,
pengguna
memperagakan
tangan
dengan
menampilkan 5 jari dengan minimum jarak antar jari yaitu 0,5 cm dan 0,3 cm.
Gambar 4.48.
Gambar hasil percobaan dengan jarak antar minimal 0,5 cm (gambar atas) dan jarak minimal 0,3 cm (gambar bawah) antar jari
Pada gambar di atas, terlihat bahwa hasil percobaan yang telah dilakukan, jarak minimum antar jari yaitu sebesar 0,5 cm.
129 4.3. Uji Coba Event Handler Setelah proses pengenalan pola tangan, selanjutnya akan digunakan menjadi event untuk mengendalikan slide (next slide, previous slide, start slide show, end slide show) maupun sebagai pengendali gerakan mouse (click, double click, movement) sesuai dengan pengaturan penguna. a. Hasil percobaan event mouse movement Pada percobaan ini, event mouse movement dapat jalan jika tangan yang menunjukkan jari 5. Berikut hasil percobaannya:
Posisi awal cursor Gambar 4.49.
Sebelum melakukan event mouse movement
Posisi akhir cursor
Gambar 4.50.
Setelah melakukan event mouse movement
130 b. Hasil percobaan event mouse double click Pada percobaan ini, event mouse double click dapat jalan jika tangan yang menunjukkan jari 1. Berikut hasil percobaannya:
Gambar 4.51.
Sebelum melakukan event mouse double click
Gambar 4.52.
Setelah melakukan event mouse double click
c. Hasil percobaan event start slide show Pada percobaan ini, event start slide show dapat jalan jika tangan yang menunjukkan jari 3. Berikut hasil percobaannya:
131
Gambar 4.53.
Sebelum melakukan event start slide show
Gambar 4.54.
Setelah melakukan event start slide show
d. Hasil percobaan event mouse click/next slide Pada percobaan ini, event mouse click/next slide dapat jalan jika tangan yang menunjukkan jari 2. Berikut hasil percobaannya:
132
Gambar 4.55.
Sebelum melakukan event mouse click/next slide
Gambar 4.56.
Setelah melakukan event mouse click/next slide
e. Hasil percobaan event previous slide Pada percobaan ini, event previous slide dapat jalan jika tangan yang menunjukkan jari 4. Berikut hasil percobaannya:
133
Gambar 4.57.
Sebelum melakukan event previous slide
Gambar 4.58.
Setelah melakukan event previous slide
f. Hasil percobaan event end slide show Pada percobaan ini, event end slide show dapat jalan jika tangan yang menunjukkan jari 5. Berikut hasil percobaannya:
134
Gambar 4.59.
Sebelum melakukan event end slide show
Gambar 4.60.
Setelah melakukan event end slide show
g. Kesimpulan Berdasarkan percobaan mengenai event ini, dapat disimpulkan pada pola tangan yang renggang (pada pengenalan pola) dapat dengan akurat menjalankan event sesuai dengan pengaturan pengguna (dapat disesuaikan pada menu Options Basic).
4.4. Spesifikasi Aplikasi Spesifikasi aplikasi Linda terbagi menjadi dua bagian, yaitu spesifikasi hardware dan spesifikasi software.
135 4.4.1. Spesifikasi Hardware Spesifikasi hardware yang disarankan dalam menjalankan aplikasi Linda adalah sebagai berikut: a. Spesifikasi minimum untuk komputer: OS
: Microsoft Windows XP Professional Version 2002 SP3
Processor
: Pentium® Dual-Core CPU E5400 @2.70GHz 2.69 GHz
RAM
: 1.87 GB
System type : 32-bit b. Spesifikasi minimum untuk web camera: Video
: VGA
Interface
: USB – 4 pin USB Typw A
Hardware
: Sound card, USB port, speakers, CD-ROM drive, USB
Frame rate : 30 fps c. Spesifikasi yang disarankan untuk komputer: OS
: Windows 7 Professional SP1
Processor
: Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz 2.50 GHz
RAM
: 3.07 GB
System type : 32-bit d. Spesifikasi yang disarankan untuk web camera: Video
: 720 p
Interface
: USB 2.0
Hardware
: Build-in mic, RAM, processor
Frame rate : 30 fps
4.4.2. Spesifikasi Software Spesifikasi software yang disarankan sebagai pendukung dalam menjalankan aplikasi Linda adalah Microsoft Visual Studio 2010.
136 4.5. Prosedur Penggunaan Aplikasi Prosedur penggunaan aplikasi Linda akan dijelaskan melalui beberapa prosedur penggunaan menu yang akan membantu pengguna
dalam
menyesuaikan kebutuhan, antara lain: menu trial, calibration, options, help, dan about.
Gambar 4.61. Tampilan awal aplikasi
Tampilan layar ini merupakan tampilan awal saat pertama kali aplikasi ini dijalankan. Aplikasi akan menampilkan gambar sesuai dengan yang ditangkap oleh web camera.
4.5.1. Menu Trial Berikut merupakan tampilan menu trial.
137
Gambar 4.62. Tampilan menu trial
Menu ini digunakan untuk mengecek hasil dari pendeteksian tangan dengan pengaturan default ataupun pengaturan sesuai dengan kebutuhan saat digunakan. Pada tampilan menu trial ini penggguna dapat melihat gambar lingkaran berwarna merah muda sebagai parameter pedeteksian objek tangan.
Gambar 4.63. Tampilan saat objek terdeteksi
138 4.5.2. Menu Calibration Berikut merupakan tampilan menu calibration.
Gambar 4.64. Tampilan menu calibration
Menu ini digunakan untuk mengatur ruang lingkup yang akan digunakan untuk merepresentasikan posisi kursor pada layar monitor dengan tampilan aplikasi ini.
Gambar 4.65. Tampilan saat melakukan proses kalibrasi
139 Saat proses kalibrasi berlangsung, untuk mengatur ruang lingkup dalam penggunaan aplikasi, pengguna harus menentukan letak titik koordinat dengan melakukan klik pada tampilan yang ditangkap oleh web camera sebagai acuan daerah ruang lingkup. Pada titik koordinat yang telah dipilih oleh pengguna, akan muncul titik berwarna hijau pada tampilan yang ditangkap oleh web camera seperti pada gambar 4.65 di atas.
Gambar 4.66. Tampilan ketika klik kanan (context menu)
Apabila terdapat kesalahan dalam memilih titik koordinat maka pengguna dapat membatalkan atau mengembalikan ke kondisi sebelum titik yang dipilih terakhir muncul (undo) dengan melakukan klik kanan dan memilih menu undo. Apabila pengguna ingin keluar dari proses kalibrasi tanpa melakukan kalibrasi (cancel) maka pengguna dapat memilih menu cancel yang terdapat pada menu yang muncul pada saat pengguna melakukan klik kanan atau pada saat pengguna belum memilih posisi titik koordinat maka pengguna dapat memilih menu undo untuk keluar dari proses kalibrasi. Tampilan menu tersebut dapat dilihat pada gambar 4.66 di atas.
140
Gambar 4.67. Tampilan saat konfirmasi calibration
Ketika pengguna telah selesai menentukan keempat posisi titik koordinat untuk ruang lingkup maka akan muncul konfirmasi seperti gambar 4.64 di atas. Jika pengguna ingin menggunakan titik koordinat yang telah ditentukan maka pengguna harus menekan tombol Save dan data koordinat tersebut akan tersimpan pada sebuah file. Format penyimpanan data koordinat tersebut di dalam file adalah sebagai berikut: data koordinat 1 (meliputi x,y) data koordinat 2 (meliputi x,y) data koordinat 3 (meliputi x,y) data koordinat 4 (meliputi x,y)
Gambar 4.68. Tampilan urutan koordinat saat kalibrasi
141 Data-data koordinat tersebut disusun secara berurutan ke dalam file sesuai dengan gambar 4.53 di atas. Setelah selesai disimpan, tampilan yang ditangkap oleh web camera adalah sebagai berikut:
Gambar 4.69. Tampilan layar setelah proses calibration
4.5.3. Menu Options Berikut adalah tampilan menu options yang merupakan halaman untuk mengatur aplikasi sesuai dengan kebutuhan pengguna.
Gambar 4.70. Tampilan menu options
142
Gambar 4.71. Tampilan menu options tab basic
Pada tampilan menu options ini terdapat 2 tab, yakni Basic dan Advanced. Pada tab Basic, pengguna dapat memilih bentuk tangan yang dapat disesuaikan dengan kebutuhan pengguna. Pengguna dapat memilih pola tangan yang menggambarkan angka tertentu dengan mengubah nilai dari combo box yang telah disediakan. Pada pengaturan ini, 1 event hanya dapat diterapkan pada 1 pola tangan yang menggambarkan angka tertentu saja.
Gambar 4.72. Tampilan ketika pilihan digunakan pada lebih dari 1 event
143 Apabila pengguna tidak sengaja memilih 1 event digunakan untuk dua atau lebih pola tangan yang menggambarkan angka tertentu seperti pada gambar 4.72 di atas maka akan muncul pesan error seperti pada gambar dibawah ini:
Gambar 4.73. Pesan error yang muncul
Ketika pengguna selesai dan ingin menyimpan pengaturan yang telah dilakukan maka pengguna harus mengklik tombol save. Pengaturan tersebut akan disimpan ke dalam file dengan format sebagai berikut: Data kode pola tangan yang menggambarkan angka 1 Data kode pola tangan yang menggambarkan angka 2 Data kode pola tangan yang menggambarkan angka 3 Data kode pola tangan yang menggambarkan angka 4 Data kode pola tangan yang menggambarkan angka 5
Untuk data kode yang disimpan berupa: Tabel 4.16.
Tabel data kode yang disimpan
Event Click-Next Slide Double Click Mouse Movement Slide Show Previous Slide End Show
Kode 1 2 3 4 5 11
144
Gambar 4.74. Tampilan menu Options tab Advanced
Tab kedua pada menu Options yaitu Advanced, pengguna dapat menyesuaikan pengaturan dengan kondisi yang ada pada ruangan tempat akan dijalankannya aplikasi ini. Pada pengaturan ini, pengguna dapat mengatur nilai Threshold, Brightness (alpha dan beta), serta file XML yang akan digunakan sesuai dengan ruangan pada saat penggunaan aplikasi.
Gambar 4.75. Tampilan pengaturan Brightness
Pada saat pengguna mengatur nilai Brightness maka akan keluar tampilan seperti gambar 4.72 di atas. Pada awalnya, tampilan akan seperti gambar sebelah kiri yang berjudul “sebelum” dan setelah diubah
145 nilai brightness-nya maka tampilan akan menjadi seperti gambar “setelah” yang akan berubah berdasarkan nilai yang diatur.
Gambar 4.76. Tampilan pengaturan Threshold
Pada saat pengguna mengatur nilai Threshold maka akan keluar tampilan seperti gambar 4.73 di atas. Pada awalnya, tampilan akan seperti gambar sebelah kiri yang berjudul “sebelum” dan setelah diubah nilai threshold-nya maka tampilan akan menjadi seperti gambar “setelah” yang akan berubah berdasarkan nilai yang diatur. Apabila pengguna telah selesai dan ingin menyimpan pengaturan yang telah dilakukan maka pengguna harus mengklik tombol save. Pengaturan tersebut akan disimpan ke dalam file dengan format sebagai berikut: Data nilai threshold Data nilai brightness-alpha Data nilai brightness-beta Data kode nilai xml yang digunakan
Untuk data kode yang disimpan berupa: Tabel 4.17.
Tabel data kode yang disimpan
Event 601-610 621-631;711A; 21-731 706-710 Old Building Class Room New Building Class Room
Kode 6 7 8 9 10
146 4.5.4. Menu Help Berikut tampilan menu help yang merupakan halaman untuk membantu pengguna mengerti dan memahami penggunaan aplikasi.
Gambar 4.77. Tampilan menu help
Halaman help ini akan dibuat dengan berbasiskan web. Ketika pengguna melakukan klik pada menu view help maka halaman help akan langsung terbuka pada default browser yang digunakan oleh pengguna. Pada halaman ini akan dibabarkan cara penggunaan dari menu-menu yang tersedia pada aplikasi ini. Pada halaman help yang telah terbuka, terdapat beberapa menu yang berkaitan dengan menumenu yang terdapat di dalam aplikasi. Menu-menu tersebut berupa About, Calibration, Options-Basic, dan Options-Advanced, tampilan menu Help ini didesain seperti alat musik akordion yang apabila diklik oleh pengguna akan muncul penjelasan yang berkaitan dengan menu tersebut seperti pada gambar di bawah ini:
Gambar 4.78. Tampilan help (options-basic)
147 4.5.5. Menu About Berikut tampilan menu about yang merupakan halaman yang digunakan
pengguna
untuk
mendapatkan
informasi
mengenai
pengembang aplikasi, pihak pendukung, dan versi aplikasi.
Gambar 4.79. Tampilan menu about
4.6. Evaluasi 4.6.1. Evaluasi User dari Hasil Kuesioner Analisis ini dilakukan dengan menyebarkan kuesioner yang berisi 5 pertanyaan kepada dosen/pengajar dan karyawan dalam lingkupan Universitas Bina Nusantara. Beberapa pertanyaan yang mengandung tanda * wajib diisi oleh responden. Hasilnya, sebanyak 25 responden yang berhasil didapatkan. Berikut rincian hasil dari kuesioner yang telah disebarkan: 1. Apakah aplikasi ini mudah untuk digunakan?* Tabel 4.18. Tabel jawaban pertanyaan 1 Jawaban Sangat mudah Mudah Cukup mudah Sangat sulit
Responden 10 14 1 0
Persentase 40% 56% 4% 0%
148
Gambar 4.80.
Pertanyaan
tersebut
Grafik jawaban pertanyaan 1
bertujuan
untuk
mengetahui
tingkat
kemudahan penggunaan aplikasi yang dilakukan responden. Seperti yang diperlihatkan pada gambar 4.80, terlihat bahwa sebanyak 14 responden merasa mudah dalam meggunakan aplikasi dengan persentase sebesar 56%, sebanyak 10 responden merasa sangat mudah dalam menggunakan aplikasi dengan persentase sebesar 40%, dan sebanyak 1 responden yang merasa cukup mudah dalam menjalankan aplikasi dengan persentase sebesar 4% serta tidak ada responden yang merasa sangat sulit menggunakan aplikasi dengan persentase 0%.
2. Bagaimana keakuratan aplikasi ini dalam menangkap instruksi yang diberikan?* Tabel 4.19. Tabel jawaban pertanyaan 2 Jawaban Sangat akurat Akurat Cukup akurat Sangat tidak akurat
Responden 9 11 5 0
Persentase 36% 44% 20% 0%
149
Gambar 4.81.
Pertanyaan keakuratan
tersebut
aplikasi
Grafik jawaban pertanyaan 2
bertujuan
berdasarkan
untuk
mengetahui
percobaan
yang
tingkat
dilakukan
responden. Seperti yang diperlihatkan pada gambar 4.81, terlihat bahwa sebanyak 11 responden merasa aplikasi sudah mendeteksi dengan akurat dengan persentase sebesar 44%, sebanyak 9 responden merasa aplikasi sudah mendeteksi dengan sangat akurat dengan persentase sebesar 36%, sebanyak 5 responden yang merasa aplikasi sudah cukup akurat dengan persentase sebesar 20%, dan tidak ada responden yang merasa aplikasi sangat tidak akurat dengan persentase sebesar 0%.
3. Apakah aplikasi ini membantu anda dalam proses presentasi?* Tabel 4.20. Tabel jawaban pertanyaan 3 Jawaban Sangat membantu Membantu Cukup membantu Sangat tidak membantu
Responden 18 7 0 0
Persentase 72% 28% 0% 0%
150
Gambar 4.82.
Pertanyaan
tersebut
Grafik jawaban pertanyaan 3
bertujuan
untuk
mengetahui
tingkat
fungsionalitas aplikasi berdasarkan percobaan yang dilakukan responden. Seperti yang diperlihatkan pada gambar 4.82, terlihat bahwa sebanyak 18 responden merasa aplikasi sudah sangat membantu proses presentasi dengan persentase sebesar 72%, sebanyak 7 responden merasa aplikasi sudah membantu proses presentasi dengan persentase sebesar 28%, dan tidak ada responden yang merasa aplikasi sudah cukup membantu dan sangat tidak membantu proses presentasi dengan persentase sebesar 0%.
4. Apakah help yang ada dapat membantu anda dalam menggunakan aplikasi ini?* Tabel 4.21. Tabel jawaban pertanyaan 4 Jawaban Sangat membantu Membantu Cukup membantu Sangat tidak membantu
Responden 18 7 0 0
Persentase 72% 28% 0% 0%
151
Gambar 4.83.
Pertanyaan
tersebut
Grafik jawaban pertanyaan 4
bertujuan
untuk
mengetahui
tingkat
fungsionalitas help aplikasi berdasarkan percobaan yang dilakukan responden. Seperti yang diperlihatkan pada gambar 4.83, terlihat bahwa sebanyak 18 responden merasa help aplikasi sudah sangat membantu proses presentasi dengan persentase sebesar 72%, sebanyak 7 responden merasa help aplikasi sudah membantu proses presentasi dengan persentase sebesar 28%, dan tidak ada responden yang merasa help aplikasi sudah cukup membantu dan sangat tidak membantu proses presentasi dengan persentase sebesar 0%.
5. Apakah ada kritik dan saran untuk aplikasi ini? Pertanyaan tersebut bertujuan untuk mengetahui kritik serta saran dari responden yang telah melakukan uji coba pada aplikasi. Berdasarkan hasil yang didapatkan, berikut jawaban yang paling banyak diisi oleh responden yang relevan dengan pertanyaan ini: 1. Inputan masih belum cukup akurat 2. Pengaturan options (Threshold dan Brightness) otomatis
Berdasarkan kritik dan saran yang diberikan oleh responden, kritik dan saran tersebut terdapat hubungan yang saling berkaitan. Oleh
karena
itu,
untuk
meningkatkan
tingkat
keakuratan
152 pendeteksian tangan diperlukan pengaturan nilai threshold dan nilai alpha serta nilai beta brightness yang tepat saat ini dilakukan dengan manual dengan melihat bentuk objek. Pengaturan options otomatis akan dimasukkan sebagai saran untuk penelitian ini.
Kesimpulan Berdasarkan hasil kuesioner yang telah diedarkan, dapat disimpulkan bahwa responden yang telah mencoba menggunakan aplikasi ini dapat dengan mudah mengoperasikan aplikasi, aplikasi sudah mendeteksi objek dengan akurat (20/25 responden), dan aplikasi sangat membantu proses presentasi responden serta help aplikasi juga sangat membantu responden dalam menggunakan aplikasi. Selain itu, responden juga memberikan kritik serta saran untuk aplikasi ini, kritik dan saran yang paling banyak diberikan yaitu mengenai inputan yang masih belum akurat, dan pengaturan options (threshold dan brightness) otomatis. Kritik dan saran yang telah diberikan oleh responden akan dimasukkan sebagai saran untuk penelitian ini.
4.6.2. Evaluasi User dari Hasil Wawancara Analisis ini didapatkan dari hasil wawancara dengan staff pada unit Software Laboratory Center. Wawancara ini dilakukan dengan memberikan tiga pertanyaan seputar aplikasi Linda dari sisi user maupun sebagai implementator. Berikut hasil wawancara dengan narasumber Bapak Indra Dwi Rianto, S.Si, S.Kom, M.TI sebagai Operational Support Section Head di Software Laboratory Center Universitas Bina Nusantara dan Ibu Lusiana Citra Dewi, S.Kom, M.M sebagai Manager Software Laboratory Center kampus Alam Sutra Universitas Bina Nusantara:
1. Apakah aplikasi Linda mudah dalam digunakan? Berikan pendapat
Anda
sebagai
user/dosen
maupun
sebagai
implementator? Bapak Indra: Jika dilihat dari sisi dosen maka aplikasi ini mudah digunakan sebab tidak memerlukan alat seperti mouse dan keyboard
153 untuk mengganti-ganti slide, cukup dengan menggunakan tangan serta web camera. Jika dilihat dari sisi implementator, menurut saya akan ada gangguan namun seandainya gangguan konfigurasi awal tersebut dapat diatasi semisal dengan mendistibusikan secara umum cara pemakaiannya sehingga dapat mempermudah pengguna. Ibu Lusiana: Jika dilihat dari sisi dosen, yang berlatar belakang TI dengan mengetahui posisi yang tepat dalam penggunaan masih tergolong gampang dalam pemakaian, namun perlu diperbanyak sampel data agar posisi tersebut dapat juga disesuaikan dengan dosen-dosen yang sudah lanjut usia. Sependapat dengan Indra, jika menggunakan aplikasi ini tidak perlu menggunakan alat bantu lainnya jadi cukup menggunakan tangan saja sudah dapat membantu proses mengajar. Jika dari sisi implementator, jika dikembangkan lebih lagi dapat mempunyai prospek yang baik sehingga dapat digunakan pada ruang teori maupun praktikum. Dapat juga menggantikan peran wireless pointer yang sekarang ini relatif mahal harganya, cukup menggunakan kamera yang resolusi minimal VGA tanpa harus beresolusi tinggi. Sehingga dari sisi investasi dan operasional harusnya baik. Saran saja untuk implementasinya harus dipermudah lagi untuk pengaturannya.
2. Saran dan kritik anda mengenai aplikasi ini secara mendetail dari sisi user ataupun implementator-nya? Bapak Indra: Secara umum implementasi siap namun masih ada kendala, dari segi biaya proyek ini merupakan investasi awal yang mudah dan murah jika diimplementasikan. Namun kendala terbesarnya, aplikasi yang belum terlalu umum pengaturannya ini hanya sebatas developer yang mengerti cara pengaturannya. Jadi kekurangan
yang
perlu
diiatasi
agar
dapat
mudah
dalam
implementasinya bagi pengguna maupun pengelola fasilitasnya. Dari fungsi, jika diperluas lagi dapat digunakan juga untuk merekam proses yang sedang berjalan/ajar-mengajar, gesture tertentu dapat digunakan juga sebagai pengendali komputer (stop merekam)
154 sehingga saat distribusi tidak hanya punya 1 fungi untuk control slide namun banyak fasilitas lainnya seperti video pengajaran. Ibu Lusiana: Dilihat dari segi interface-nya tidak ada masalah, simpel dan fitur kalibrasinya mudah. Namun saat pengaturan di Option-advance bagian threshold-nya tidak ada penjelasan dan kalibrasinya pun kurang penjelasan. Saat testing, pendeteksian objek tangan sudah optimal namun perlu diperhatikan mengenai cahaya proyektor saat menyala, karena pengaturannya akan berbeda lagi. Sarannya mungkin dapat dibantu dari suara sebagai pengontrol jadi tidak hanya menggunakan pola tangan(gambaran saja). Jika dari sisi user, user memang mempunyai banyak kemauan secara ide memang menarik.
3. Menurut anda apakah prospek kedepannya dapat dipakai? Bapak Indra: Bisa saja digunakan, ide yang menarik untuk diimplementasikan, hanya saja kekurangan pada pengaturan awal. Ibu Lusiana: Bisa digunakan, bukan hanya itu namun juga dapat dijual. Kantor, hotel yang punya kegiatan seminar mereka juga membutuhkan aplikasi semacam itu dibandingkan membeli laser pointer yang dapat hilang alatnya (baik connector ataupun remote), hal yang kecil namun butuh dana besar.
Kesimpulan Berdasarkan hasil dari wawancara dengan kedua narasumber, dapat disimpulkan bahwa aplikasi Linda secara konsep dan penggunaan dapat membantu pengguna dalam melakukan proses presentasi maupun mengajar (dalam mengontrol slide) namun, dalam sisi implementasi masih agak sulit jika diterapkan sebab pengaturan aplikasi ini masih bersifat manual, tidak otomatis.
155 4.6.3. Evaluasi Sistem Berdasarkan percobaan yang telah dilakukan pada aplikasi Linda dengan beberapa alat pendukung (camera) dan kondisi ruangan yang berbeda-beda maka didapatkan hasil seperti sebagai berikut:
4.6.3.1. Percobaan Aplikasi dengan Menggunakan Berbagai Jenis Web Camera Percobaan aplikasi ini menggunakan 3 jenis web camera, yaitu: a. WebCam Logitech C200 Percobaan ini dilakukan dengan menggunakan WebCam Logitech C200 dengan spesifikasi sebagai berikut:
Gambar 4.84.
WebCam Logitech C200
(Sumber: webcams.findthebest.com, 2014, 11 Januari)
Video
: VGA
Interface
: USB – 4 pin USB Typw A
Hardware
: Sound card, USB port, speakers, CD-ROM drive, USB
Frame rate : 30 fps
Gambar 4.85.
Hasil percobaan dengan web camera Logitech C200
156 Pada gambar di atas, terlihat bahwa pada web camera dengan spesifikasi tersebut dapat digunakan dalam aplikasi ini. Hasil pendeteksian berdasarkan gambar yang ditangkap yaitu mendeteksi dengan baik atau akurat. b. Microsoft LifeCam HD-3000 Percobaan ini dilakukan dengan menggunakan Microsoft LifeCam HD-3000 dengan spesifikasi sebagai berikut:
Gambar 4.86.
Microsoft LifeCam HD-3000
( Sumber: webcams.findthebest.com, 2014, 11 January)
Video
: 720 p
Interface
: USB 2.0
Hardware
: Build-in mic, RAM, processor
Frame rate : 30 fps
Gambar 4.87.
Hasil percobaan dengan Microsoft LifeCam HD-3000
Pada gambar di atas, terlihat bahwa pada web camera dengan spesifikasi tersebut dapat digunakan dalam aplikasi ini. Hasil pendeteksian berdasarkan gambar yang ditangkap yaitu mendeteksi dengan baik atau akurat.
157 c. HD Pro Webcam Logitech C920 Percobaan ini dilakukan dengan menggunakan HD Pro Webcam Logitech C920 dengan spesifikasi sebagai berikut:
Gambar 4.88.
HD Pro Webcam Logitech C920
( Sumber: webcams.findthebest.com, 2014, 11 January)
Video
: 1080 p
Interface
: USB 2.0 and 3.0
Hardware
: RAM hard drive USB 2.0 port (USN 3.0) Stereo Mic
Frame rate : 30 fps
Gambar 4.89.
Hasil percobaan dengan HD Pro Webcam Logitech C920
Pada gambar di atas, terlihat bahwa pada web camera dengan spesifikasi tersebut dapat digunakan dalam aplikasi ini. Hasil pendeteksian berdasarkan gambar yang ditangkap yaitu mendeteksi dengan baik atau akurat. d. Kesimpulan Berdasarkan hasil percobaan yang telah dilakukan, dapat disimpulkan bahwa penggunaan web camera dari kualitas
158 yang rendah hingga tinggi, dapat digunakan pada aplikasi ini karena hasil pendeteksian yang akurat.
4.6.3.2. Percobaan Aplikasi pada Ketinggian Web Camera yang Berbeda dari Permukaan Tanah Percobaan aplikasi ini dilakukan pada jarak 2.85 meter dari web camera ke layar proyeksi dengan 3 jenis ketinggian yang berbeda dari permukaan tanah, yaitu: a. Ketinggian web camera 2.17 meter dari permukaan tanah Percobaan aplikasi ini dilakukan pada ketinggian 2.17 meter dari permukaan tanah.
Gambar 4.90.
Hasil percobaan pada ketinggian web camera 2.17 meter dari permukaan tanah
Pada gambar di atas, terlihat bahwa hasil pendeteksian pada ketinggian web camera 2.17 meter dari permukaan tanah akurat. b. Ketinggian web camera 1.27 meter dari permukaan tanah Percobaan aplikasi ini dilakukan pada ketinggian 1.27 meter dari permukaan tanah.
159
Gambar 4.91.
Hasil percobaan pada ketinggian web camera 1.27 meter dari permukaan tanah
Pada gambar di atas, terlihat bahwa hasil pendeteksian pada ketinggian webcam 1.27 meter dari permukaan tanah akurat. c. Ketinggian web camera 0.55 meter dari permukaan tanah Percobaan aplikasi ini dilakukan pada ketinggian 0.55 meter dari permukaan tanah.
Gambar 4.92.
Hasil percobaan pada ketinggian web camera 0.55 meter dari permukaan tanah
Pada gambar di atas, terlihat bahwa hasil pendeteksian pada ketinggian web camera 0.55 meter dari permukaan tanah akurat.
160 d. Kesimpulan Berdasarkan percobaan yang telah dilakukan, dapat disimpulkan bahwa pada jarak 2.85 meter dari layar proyeksi dengan ketinggian web camera 2.17 meter, 1.27 meter, dan 0.55 meter dari permukaan tanah dapat mendeteksi objek (tangan) dengan akurat.
4.6.3.3. Percobaan Aplikasi pada Jarak yang Berbeda antara Web Camera dengan Layar Proyeksi Percobaan aplikasi ini dilakukan pada 3 jenis jarak yang berbeda antara webcam dengan layar proyeksi, yaitu: a. Jarak antara webcam dengan layar proyeksi sebesar 1.70 meter Percobaan aplikasi ini dilakukan pada jarak 1.70 meter antara webcam dengan layar proyeksi.
Gambar 4.93.
Hasil percobaan pada jarak 1.70 meter antara webcam dengan layar proyeksi
Pada gambar di atas, terlihat bahwa hasil pendeteksian pada jarak 1.70 meter antara webcam dengan layar proyeksi akurat. b. Jarak antara webcam dengan layar proyeksi sebesar 2.85 meter Percobaan aplikasi ini dilakukan pada jarak 2.85 meter antara webcam dengan layar proyeksi.
161
Gambar 4.94.
Hasil percobaan pada jarak 2.85 meter antara webcam dengan layar proyeksi
Pada gambar di atas, terlihat bahwa hasil pendeteksian pada jarak 2.85 meter antara webcam dengan layar proyeksi akurat. c. Jarak antara webcam dengan layar proyeksi sebesar 5.92 meter Percobaan aplikasi ini dilakukan pada jarak 5.92 meter antara webcam dengan layar proyeksi.
Gambar 4.95.
Hasil percobaan pada jarak 5.92 meter antara webcam dengan layar proyeksi
Pada gambar di atas, terlihat bahwa hasil pendeteksian pada jarak 5.92 meter antara webcam dengan layar proyeksi tidak akurat.
162 d. Kesimpulan Berdasarkan percobaan yang telah dilakukan, dapat disimpulkan bahwa pada jarak 5.92 meter antara webcam dengan layar proyeksi menghasilkan pendeteksian yang tidak akurat sedangkan, pada jarak 2.85 meter dan 1.70 meter menghasilkan pendeteksian yang akurat. Jadi, hal ini telah menjawab hipotesis pada subbab 1.3 bagian e, yakni: jarak antara objek dengan web camera dan latar belakang harus sesuai (tidak terlalu jauh ataupun dekat) pada saat pendeteksian agar objek dapat dikenali dengan baik.
4.6.3.4. Percobaan Aplikasi dengan Intensitas Cahaya yang Berbeda Percobaan aplikasi ini dilakukan dengan 3 jenis intensitas cahaya ruangan yang berbeda, yaitu: a. Intensitas cahaya menggunakan nilai default settings Percobaan aplikasi ini dilakukan dengan intensitas cahaya ruangan yang menggunakan nilai default settings.
Gambar 4.96.
Tampilan menu options tab advanced dengan nilai default settings
163
Gambar 4.97.
Hasil percobaan dengan intensitas cahaya ruangan menggunakan nilai default settings
Pada gambar di atas, terlihat bahwa hasil pendeteksian dengan intensitas cahaya ruangan menggunakan nilai default settings akurat. b. Intensitas cahaya dengan perubahan nilai brightness-alpha sebesar 5 Percobaan aplikasi ini dilakukan dengan intensitas cahaya ruangan yang nilai brightness-alpha diubah menjadi 5.
Gambar 4.98.
Tampilan menu options tab advanced dengan nilai brightness-alpha sebesar 5
164
Gambar 4.99.
Perbedaan intensitas cahaya akibat perubahan nilai brightness-alpha sebesar 5 dari default settings
Gambar 4.100. Hasil percobaan dengan intensitas cahaya ruangan yang nilai brightnessalpha diubah menjadi 5
Pada gambar di atas, terlihat bahwa hasil pendeteksian dengan intensitas cahaya ruangan yang nilai brightnessalpha diubah menjadi 5 tidak akurat. c. Intensitas cahaya dengan perubahan nilai brightness-beta sebesar 50 Percobaan aplikasi ini dilakukan dengan intensitas cahaya ruangan yang nilai brightness-beta diubah menjadi 50.
165
Gambar 4.101. Tampilan menu options tab advanced dengan nilai brightness-beta sebesar 50
Gambar 4.102. Perbedaan intensitas cahaya akibat perubahan nilai brightness-beta sebesar 50 dari default settings
166
Gambar 4.103. Hasil percobaan dengan intensitas cahaya ruangan yang nilai brightnessbeta diubah menjadi 50
Pada gambar di atas, terlihat bahwa hasil pendeteksian dengan intensitas cahaya ruangan yang nilai brightness-beta diubah menjadi 50 akurat. d. Kesimpulan Berdasarkan percobaan yang telah dilakukan, dapat disimpulkan bahwa dengan intensitas cahaya ruangan yang menggunakan nilai default dan nilai brightness-beta yang diubah menjadi 50 menghasilkan pendeteksian yang akurat. Sedangkan dengan adanya perubahan nilai brightness-alpha menjadi 5 menghasilkan pendeteksian yang tidak akurat. Jadi, hal ini telah menjawab hipotesis pada subbab 1.3 bagian b, yakni: jumlah cahaya (intensitas cahaya) pada saat pendeteksian objek tangan sangat mempengaruhi hasil pendeteksian.
4.6.3.5. Percobaan Aplikasi dengan Nilai Threshold yang Berbeda Percobaan aplikasi ini dilakukan dengan 2 jenis nilai threshold yang berbeda, yaitu: a. Nilai threshold berdasarkan default settings Percobaan aplikasi ini dilakukan dengan nilai threshold berdasarkan default settings.
167
Gambar 4.104. Tampilan menu options tab advanced dengan nilai default settings
Gambar 4.105. Hasil percobaan dengan nilai threshold berdasarkan default settings
Gambar 4.106. Hasil threshold objek yang berhasil dideteksi dan di-threshold menggunakan nilai threshold berdasarkan default settings
168 Pada gambar di atas, terlihat bahwa hasil pendeteksian dengan nilai threshold berdasarkan default settings akurat dan untuk pengenalan objek juga akurat karena finger yang dikenali yaitu finger bernilai 5. b. Nilai Threshold sebesar 76 Percobaan aplikasi ini dilakukan dengan nilai threshold sebesar 76.
Gambar 4.107. Tampilan menu options tab advanced dengan nilai threshold sebesar 76
Gambar 4.108. Hasil percobaan dengan threshold menggunakan nilai default settings
169
Gambar 4.109. Hasil threshold objek yang berhasil dideteksi dan di-threshold menggunakan nilai threshold sebesar 76
Pada gambar di atas, terlihat bahwa hasil pendeteksian dengan nilai threshold sebesar 76 akurat tetapi untuk pengenalan objek tidak akurat karena finger yang dikenali yaitu finger bernilai 1. c. Kesimpulan Berdasarkan percobaan yang telah dilakukan, dapat disimpulkan bahwa pada percobaan pertama pengenalan objek menghasilkan hasil yang akurat yaitu finger bernilai 5. Sedangkan untuk percobaan kedua, pengenalan pola objek menghasilkan hasil yang tidak akurat yaitu finger bernilai 1.
4.6.3.6. Percobaan Aplikasi Terhadap Hubungan Brightness dan Threshold Hasil percobaan pada percobaan 4.6.3.4 a yaitu intensitas cahaya menggunakan nilai default settings.
Gambar 4.110. Tampilan hasil percobaan nilai default
170 Hasil percobaan pada percobaan 4.6.3.4 c yaitu intensitas cahaya dengan perubahan nilai brightness-beta sebesar 50.
Gambar 4.111. Tampilan hasil percobaan dengan perubahan nilai brightness-beta sebesar 50
Hasil percobaan dengan perubahan nilai brightness-beta sebesar 50 dan nilai threshold menjadi 150.
Gambar 4.112. Tampilan hasil percobaan dengan perubahan nilai brightness-beta sebesar 50 dan threshold menjadi 150
Pada percobaan pertama dengan menggunakan nilai default, pendeteksian objek (tangan) menghasilkan pendeteksian yang akurat dan pengenalan pola objek yang juga akurat. Sedangkan pada
percobaan
menghasilkan
kedua,
pendeteksian
pendeteksian yang
akurat
objek
(tangan)
namun
pada
pengenalan pola objek menghasilkan hasil yang tidak akurat. Lalu pada percobaan terakhir, pendeteksian objek (tangan)
171 menghasilkan pendeteksian yang akurat dan pengenalan pola objek menghasilkan hasil yang juga akurat.
4.6.3.7. Percobaan Kecepatan Pendeteksian Objek (tangan) Percobaan
kecepatan
pendeteksian
objek
(tangan)
menggunakan 2 jenis komputer yang berbeda, yaitu: a. Percobaan pada komputer pertama Percobaan
ini
dilakukan
pada
komputer
dengan
spesifikasi sebagai berikut: OS
: Windows 7 Professional SP1
Processor
: Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz 2.50 GHz
RAM
: 3.07 GB
System type : 32-bit
Tabel 4.22. Tabel hasil percobaan Pendeteksian ke 1 2 3 4 5 6 7 8
Interval Waktu (ms) 55 57 66 56 54 56 54 71
Gambar 4.113. Grafik hasil percobaan untuk interval waktu pendeteksian objek pertama
172 Berdasarkan
percobaan
diatas,
diketahui
rata-rata
interval waktu yang dibutuhkan dalam mendeteksi objek (tangan) pertama yaitu sebesar 58,625 ms. b. Percobaan pada komputer kedua Percobaan
ini
dilakukan
pada
komputer
dengan
spesifikasi sebagai berikut: OS
: Microsoft
Windows
XP
Professional
Version 2002 SP3 Processor
: Pentium®
Dual-Core
CPU
@2.70GHz 2.69 GHz RAM
: 1.87 GB
System type : 32-bit Tabel 4.23. Tabel hasil percobaan Pendeteksian ke 1 2 2 3 4 5 6 7 8 9 9 10 11 12 13 13 14 15 16 16
Interval Waktu (ms) 91 88 108 91 92 91 89 90 88 92 102 89 89 90 87 97 92 90 91 100
E5400
173
Gambar 4.114. Grafik hasil percobaan untuk interval waktu pendeteksian objek pertama
Gambar 4.115. Grafik hasil percobaan untuk interval waktu pendeteksian objek kedua
Berdasarkan
percobaan
diatas,
diketahui
rata-rata
interval waktu yang dibutuhkan dalam mendeteksi objek (tangan) pertama yaitu sebesar 90,411 ms dan rata-rata interval waktu yang dibutuhkan dalam mendeteksi objek (tangan) kedua yaitu sebesar 103,333 ms.
174 4.6.3.8. Kesimpulan Bedasarkan
hasil
percobaan
yang
telah
dilakukan,
didapatkan bahwa penggunaan berbagai jenis web camera dan perbedaan tingkat ketinggian kamera dari permukaan tanah tidak mempengaruhi hasil keakuratan pendeteksian tangan sedangkan perbedaan jarak kamera, perbedaan intensitas cahaya,
dan
keakuratan
perbedaan
pendeteksian
nilai
threshold
dan
pengenalan
mempengaruhi pola
tangan.
Perbedaan intensitas cahaya mempengaruhi nilai threshold dalam penggunaan aplikasi. Intensitas cahaya dan nilai threshold berbanding lurus sehingga semakin tinggi intensitas cahaya maka semakin tinggi pula nilai threshold pada aplikasi. Kecepatan yang dibutuhkan untuk mendeteksi objek (tangan) pertama pada spesifikasi komputer yang di-recommended (percobaan 4.4.1 c) yaitu sebesar 58,625 ms dan kecepatan yang dibutuhkan untuk mendeteksi objek (tangan) pertama pada spesifikasi komputer yang minimum (percobaan 4.4.1 a) yaitu sebesar 90,411 ms lalu kecepatan yang dibutuhkan untuk mendeteksi objek (tangan) kedua yaitu sebesar 103,333 ms.