9
4 HASIL DAN PEMBAHASAN Deskripsi Mahasiswa Pascasarjana IPB 2005-2010 Berhenti Studi Pada Tabel 1 terlihat bahwa persentase mahasiswa pascasarjana IPB yang berhenti studi tahun 2005-2010 menurun tetapi besaran persentasenya berada di atas 2% yang berarti setiap tahun ada mahasiswa pascasarjana IPB berhenti studi. Persentase terbesar mahasiswa pascasarjana IPB yang berhenti studi berada di tahun 2005 yaitu 19,95%. Tabel 1. Persentase mahasiswa pascasarjana IPB yang berhenti studi Tahun Jumlah Mahasiswa Jumlah Berhenti Studi Persentase Berhenti Studi 2005 401 80 19,95 2006 631 51 8,08 2007 721 18 2,50 2008 692 19 2,75 2009 724 19 2,62 2010 783 21 2,68 Gambar 3 menunjukkan persentase kategori berhenti studi mahasiswa pascasarjana IPB yaitu mengundurkan diri, habis masa studi, dan IPK kurang dari 3,00. Untuk mahasiswa mengundurkan diri dan habis masa studi persentasenya mengalami penurunan di tahun 2006-2010, sedangkan mahasiswa yang IPK kurang dari 3,00 mengalami penurunan di tahun 2006 tetapi perlahan meningkat kembali di tahun 2008 hingga 2010. Dilihat dari total mahasiswa berhenti studi, persentase mahasiswa yang IPK kurang dari 3,00 sebesar 52,88% sedangkan mahasiswa mengundurkan diri sebesar 24,52% dan mahasiswa yang habis masa studi 22,60%. Hal ini membuktikan bahwa sebagian besar mahasiswa pascasarjana IPB berhenti studi disebabkan karena IPK yang kurang dari 3,00 sehingga dalam penelitian ini yang akan dikaji lebih lanjut adalah mahasiswa pascasarjana IPB yang berhenti studi karena IPK kurang dari 3,00.
Gambar 3. Persentase kategori berhenti studi mahasiswa pascasarjana IPB tahun 2005-2010. (mengundurkan diri , habis masa studi , IPK<3,00 )
10
Gambar 4 terlihat bahwa rata-rata usia mahasiswa pascasarjana IPB tiap tahun mengalami penurunan yang artinya usia mahasiswa yang masuk sekolah pascasarjana IPB relatif lebih muda. Hal ini berdampak positif karena mahasiswa yang usianya relatif lanjut diduga mengalami age-related intellectual deficits sehingga mengalami penurunan dalam hal basic skills yang diperlukan untuk belajar efektif pada tingkat pendidikan tinggi (Richardson 1994).
Tahun
Gambar 4. Sebaran usia mahasiswa pascasarjana IPB tahun 2005-2010 Usia mahasiswa pada penelitian ini dikelompokkan ke dalam tiga kelompok, yaitu usia < 33 tahun, 33-49 tahun, dan > 49 tahun berdasarkan teori Lavinson dkk dalam Thoha (2003) yang menyebutkan bahwa usia < 33 tahun adalah masa pencarian jati diri dan berusaha untuk membentuk struktur kehidupan yang stabil. Usia 33-49 tahun adalah masa dengan keyakinan yang mantap menemukan tempatnya dalam masyarakat. Usia > 49 tahun adalah permulaan masa dewasa madya yang mulai menata kembali hidupnya. Tabel 2. Persentase mahasiswa berhenti studi berdasarkan jenis kelamin dan usia Status Mahasiswa Jenis Usia Tidak Berhenti Berhenti Total Kelamin Studi Studi Perempuan 471 10 481 % (97,9) (2,1) (100) < 33 Laki-laki 277 10 287 % (96,5) (3,5) (100) Perempuan 1394 28 1422 % (98,0) (2,0) (100) 33-49 Laki-laki 1508 57 1565 % (96,4) (3,6) (100) Perempuan 39 2 41 % (95,1) (4,9) (100) > 49 Laki-laki 55 3 58 % (94,8) (5,2) (100)
11
Pada Tabel 2 menunjukkan bahwa mahasiswa laki-laki dengan usia berapapun persentase berhenti studinya lebih besar dibandingkan mahasiswa perempuan. Penjelasan teoritis mengenai hal ini antara lain karena perempuan dikenal cenderung lebih tekun dalam belajar dan rajin terlibat dalam kegiatan kampus yang menunjang proses belajar, sedangkan laki-laki lebih menyukai kegiatan kampus yang bersifat refreshing dan olahraga. (Chee et al. 2005). Perempuan juga mempunyai sifat alami berupa kecenderungan untuk terlibat dan terpengaruh dalam hubungan sosial sehingga dalam hal belajar mereka merasa mempunyai kewajiban dan tanggung jawab meningkatkan prestasinya untuk memenuhi harapan keluarga, guru, dan teman-teman di sekitarnya sedangkan lakilaki cenderung merasa termotivasi untuk meningkatkan prestasi hanya untuk kepentingannya sendiri sehingga usaha yang dilakukan oleh perempuan biasanya lebih bersungguh-sungguh. Tabel 3. Persentase mahasiswa berhenti studi berdasarkan status perkawinan Status Mahasiswa Status Tidak Berhenti Total Perkawinan Berhenti Studi Studi Lajang
Menikah
1837
61
1898
(96,8)
(3,2)
(100)
1907
49
1956
(97,1)
(2,9)
(100)
Pada Tabel 3 menunjukkan persentase berhenti studi mahasiswa lajang lebih besar dibandingkan yang menikah. Hal ini dikarenakan apabila seseorang telah menikah memiliki tanggungjawab dan disiplin yang tinggi karena dituntut oleh kewajiban menghidupi keluarganya (Siagian 1989). Tabel 4. Persentase mahasiswa berhenti studi berdasarkan daerah PT asal dan status PT asal Status Mahasiswa Daerah PT Status PT Total Tidak Berhenti Berhenti Asal Asal Studi Studi 410 32 442 Pulau Swasta (92,8) (7,2) (100) Jawa 1959 37 1996 Negeri (98,1) (1,9) (100) Luar 180 7 287 Swasta Pulau (96,3) (3,7) (100) Jawa 1195 34 1229 Negeri (97,2) (2,8) (100)
12
Tabel 4 menunjukkan mahasiswa yang berasal dari perguruan tinggi swasta memiliki persentase berhenti studi yang lebih besar dibandingkan mahasiswa perguruan tinggi negeri baik yang universitas asal nya di pulau Jawa maupun luar pulau Jawa. Hal ini dikarenakan terdapat perbedaan lingkungan sosial antara perguruan tinggi swasta dan negeri yaitu kualitas dan kuantitas akses mahasiswa terhadap pihak pengajar serta latar belakang budaya antar mahasiswa. Nilai IPK S1 digunakan untuk mengukur prestasi akademis mahasiswa pascasarjana pada jenjang pendidikan sebelumnya karena merupakan output kumulatif dari sistem pendidikan jenjang sarjana. Variabel IPK S1 diduga berpengaruh positif terhadap prestasi belajar mahasiswa pascasarjana, semakin tinggi nilai IPK S1 maka prestasi belajarnya pada jenjang pendidikan pascasarjana juga akan tinggi. Untuk IPK S1 mahasiswa, pada penelitian ini dikelompokkan ke dalam dua kelompok, yaitu < 2,75 dan ≥ 2,75 berdasarkan status mahasiswa percobaan dan biasa di sekolah pascasarjana IPB. Berdasarkan Tabel 5 didapat bahwa mahasiswa yang memiliki IPK < 2,75 persentase berhenti studinya lebih besar dibandingkan mahasiswa yang memiliki IPK≥ 2,75. Tabel 5. Jumlah mahasiswa berhenti studi berdasarkan IPK S1 Status Mahasiswa IPK S1 Total Tidak Berhenti Studi Berhenti Studi < 2,75 ≥ 2,75
397
17
414
(95,9)
(4,1)
(100)
3347
93
3440
(97,3)
(2,7)
(100)
Linearitas program S2 dengan latar belakang pendidikan S1 menunjukkan bahwa seorang mahasiswa telah memiliki pengalaman akademis yang terkait dengan pendidikan S2 yang sedang ditempuhnya. Berdasarkan Tabel 6 didapat bahwa mahasiswa yang tidak linear S1 nya memiliki persentase berhenti studi lebih besar dibandingkan mahasiswa yang linear S1 nya. Tabel 6. Jumlah mahasiswa berhenti studi berdasarkan linearitas S1 Status Mahasiswa Linearitas S1 Total Tidak Berhenti Studi Berhenti Studi Tidak Linear
Linear
891
47
938
(95,0)
(5,0)
(100)
2853
63
2916
(97,8)
(2,2)
(100)
Berdasarkan Tabel 7 didapat bahwa mahasiswa dengan sumber biaya pendidikannya mandiri memiliki persentase berhenti studi lebih besar dibandingkan mahasiswa penerima beasiswa. Hal ini dikarenakan beasiswa
13
mendorong dan mempertahankan semangat belajar mahasiswa agar mereka dapat menyelesaikan pendidikan tepat waktu. Tabel 7. Persentase mahasiswa berhenti studi berdasarkan sumber biaya pendidikan S2 Status Mahasiswa Sumber Biaya Total Pendidikan S2 Tidak Berhenti Studi Berhenti Studi Mandiri
1625
89
1714
%
(94,8)
(5,2)
(100)
Beasiswa
2119
21
2140
%
(99,0)
(1,0)
(100)
Berhenti Studi Mahasiswa Berdasarkan Status Mahasiswa Untuk mengidentifikasi faktor yang mempengaruhi mahasiswa pascasarjana IPB berhenti studi berdasarkan status mahasiswa yang berhenti studi dapat menggunakan analisis regresi logistik. Peubah penjelas yang diduga mempengaruhi peubah respon yaitu jenis kelamin, usia, status perkawinan, status pekerjaan, status PT asal, IPK S1, sumber biaya pendidikan, daerah PT asal, dan linearitas S1. Tabel 8. Analisis regresi logistik Peubah Dugaan Uji Wald Intersep 2,122 22,65 Jenis Kelamin -0,506 5,95 Usia 1 -0,480 2,80 Usia 2 -0,685 1,41 Status Perkawinan 0,035 0,02 Status Pekerjaan 0,317 2,24 Status PT Asal 0,999 21,70 IPK S1 0,130 0,20 Sumber Biaya Pendidikan S2 1,715 41,03 Daerah PT Asal -0,265 1,58 Linearitas Rumpun Ilmu 0,737 13,29
Nilai-p 0,000 0,015 0,094 0,235 0,881 0,134 0,000 0,653 0,000 0,209 0,000
Odds Ratio 0,60 0,62 0,50 1,04 1,37 2,72 1,14 5,56 0,77 2,09
Model logit untuk faktor-faktor berhenti studi mahasiswa pascasarjana IPB angkatan 2005-2010 sebagai berikut: g� (x)=2,122+0,506X1 -0,480X2 (1) − 0,685X2 (2)+0,035X3 +0,317X4 +0,999X5 +0,130X6 +1,715X7 -0,265X8 +0,737X9 Uji nisbah kemungkinan bernilai 116,49 dengan nilai p-value sebesar 0,000<α (0,05) maka paling tidak ada satu peubah penjelas yang berpengaruh nyata terhadap respon. Pada uji Wald didapat bahwa ada empat peubah penjelas yang berpengaruh nyata terhadap respon yaitu jenis kelamin, status PT asal, sumber biaya pendidikan, dan linearitas S1 yang berarti bahwa mahasiswa
14
pascasarjana IPB berhenti studi dipengaruhi oleh jenis kelamin, status PT asal, sumber biaya pendidikan, dan linearitas S1 dari si mahasiswa tersebut. Nilai rasio odds untuk peubah jenis kelamin sebesar 0,60 yang berarti adanya peningkatan mahasiswa pascasarjana IPB yang berjenis kelamin laki-laki akan menyebabkan kemungkinan mahasiswa pascasarjana IPB berhenti studi meningkat sebesar 0,60 kali, meningkatnya mahasiswa yang S1 nya berasal dari perguruan tinggi swasta akan menyebabkan mahasiswa berhenti studi meningkat sebesar 2,72 kali, meningkatnya mahasiswa yang sumber biaya pendidikan S2 nya mandiri akan menyebabkan mahasiswa berhenti studi meningkat sebesar 5,56 kali, dan meningkatnya mahasiswa yang tidak linear S1 dengan pendidikan S2 nya akan menyebabkan mahasiswa berhenti studi meningkat sebesar 2,09 kali. Untuk kebaikan model dari regresi logistik, didapat nilai Akaike Information Criterion (AIC) sebesar 904,75 dan Schwarz Criterion (SC) sebesar 973,574. Nilai dari AIC dan SC yang besar mengindikasikan model kurang baik dikarenakan banyaknya data peubah respon yang bernilai nol lebih dominan yaitu sebanyak 97,15%, sedangkan data peubah respon yang bernilai 1 hanya 2,85%. Berhenti Studi Mahasiswa Berdasarkan Jumlah Berhenti Studi Tiap Prodi Data yang digunakan untuk mengidentifikasi faktor yang mempengaruhi mahasiswa pascasarjana IPB berhenti studi berdasarkan jumlah mahasiswa berhenti studi tiap program studi mulai dari tahun 2007 hingga 2010. Peubah penjelas yang diduga mempengaruhi peubah respon adalah persentase mahasiswa laki-laki, rata-rata usia mahasiswa, persentase mahasiswa yang sudah menikah, persentase mahasiswa yang bekerja, persentase mahasiswa yang berasal dari perguruan tinggi negeri, rata-rata IPK S1 mahasiswa, persentase mahasiswa penerima beasiswa, persentase daerah perguruan tinggi asal mahasiswa yang berada di luar pulau Jawa, dan persentase mahasiswa linear. Persentase mahasiswa berhenti studi terbanyak terjadi di program studi Statistika tahun 2010 sebesar 37,50%. Usia mahasiswa di tiap program studi di pascasarjana IPB rata-rata 33,97 tahun dengan rata-rata usia termuda terdapat di program studi Silvikultur Tropika yaitu 25,5 tahun dan usia tertua di program studi Sistem dan Pemodelan Perikanan Tangkap yaitu 46,7 tahun. Mahasiswa pascasarjana IPB tahun 2005-2010 memiliki rata-rata IPK S1 sebesar 3,13 dengan rata-rata IPK S1 terendah terdapat di program studi Ilmu Biomedis Hewan yaitu 2,82 dan rata-rata IPK S1 tertinggi sebesar 3,71 di program studi Ilmu dan Teknologi Hasil Hutan. Untuk mengidentifikasi peubah penjelas apa saja yang berpengaruh nyata terhadap peubah respon dapat menggunakan analisis regresi Poisson dengan asumsi tidak ada hubungan atau saling bebas antar tahun. Berdasarkan Tabel 10, peubah penjelas yang berpengaruh nyata terhadap peubah respon hanya ada satu yaitu persentase status perguruan tinggi negeri asal mahasiswa.
15
Tabel 9. Analisis regresi Poisson Peubah Dugaan Intersep -1,0795 % Mahasiswa Laki-Laki -0,0093 Rata-Rata Usia Mahasiswa -0,0491 % Mahasiswa Menikah 0,0016 % Mahasiswa Bekerja -0,0015 % Status PTN Asal -0,0194 Rata-Rata IPK S1 1,3676 % Mahasiswa Beasiswa -0,0095 % Daerah PT Asal Luar P Jawa -0,0047 % Linearitas Rumpun Ilmu -0,0035
Nilai-p 0,818 0,084 0,468 0,836 0,700 0,010 0,215 0,109 0,409 0,524
Model regresi Poisson sebagai berikut: 𝜇𝜇𝑖𝑖 =exp(-1,0795-0,0093X1 -0,0491X2 + 0,0016X3 -0,0015X4 -0,0194X5 +1,3676X6 -0,0095X7 -0,0047X8 -0,0035X9 ) Nilai dugaan dispersi pada model regresi Poisson sebesar 1,3271 atau lebih dari 1 sehingga dapat disimpulkan bahwa data pada penelitian ini terdapat overdispersi yang jika tetap menggunakan model pada regresi poisson akan menyebabkan nilai dugaannya lebih besar dari yang sebenarnya dan peubah penjelasnya banyak yang tidak signifikan sehingga model diganti menggunakan model regresi zero inflated Poisson. Tabel 10. Analisis regresi zero inflated Poisson Parameter Dugaan G hitung Model Logit Intersep 17,2326 4,30 % Mahasiswa Laki-Laki -0,0292 11,67 Rata-Rata Usia Mahasiswa -0,1148 1,10 % Mahasiswa Menikah -0,0257 4,04 % Mahasiswa Bekerja -0,0083 2,22 % Status PTN Asal -0,0385 12,43 Rata-Rata IPK S1 -2,7587 1,59 % Mahasiswa Beasiswa 0,0240 5,57 % Daerah PT Asal Luar P Jawa -0,0143 3,39 % Linearitas Rumpun Ilmu 0,0039 0,24
Nilai-p 0,038 0,001 0,294 0,044 0,137 0,000 0,208 0,018 0,065 0,626
Model Log Intersep % Mahasiswa Laki-Laki Rata-Rata Usia Mahasiswa % Mahasiswa Menikah % Mahasiswa Bekerja % Status PTN Asal Rata-Rata IPK S1 % Mahasiswa Beasiswa % Daerah PT Asal Luar P Jawa % Linearitas Rumpun Ilmu
74,5252 -0,0754 -0,3653 -0,0948 -0,0133 -0,0626 -17,8986 0,1183 -0,0326 0,0279
4,57 2,71 0,66 5,96 0,99 3,00 6,25 3,93 1,96 1,17
0,032 0,100 0,417 0,015 0,319 0,083 0,012 0,047 0,161 0,279
16
Model regresi zero inflated Poisson adalah sebagai berikut: log(μi ) =74,5252-0,0754X1 -0,3653X2 -0,0948X3 -0,0133X4 -0,0626X5 -17,8986X6 +0,1183X7 -0,0326X8 +0,0279X9 logit(ωi)=17,2326-0,0292X1 -0,1148X2 -0,0257X3 -0,0083X4 -0,0385X5 -2,7587X6 +0,0240X7 -0,0143X8 +0,0039X9 Uji nisbah kemungkinan bernilai 239,13 > χ2tabel (3,84) maka paling tidak ada satu peubah penjelas yang berpengaruh nyata terhadap respon. Nilai-p yang berbeda nyata untuk model log ada tiga dari sembilan peubah penjelas yaitu persentase mahasiswa menikah, rata-rata IPK S1 dan persentase mahasiswa penerima beasiswa yang artinya semakin kecil persentase mahasiswa menikah dan rata-rata IPK S1 serta semakin besar persentase mahasiswa penerima beasiswa akan meningkatkan jumlah mahasiswa pascasarjana IPB yang berhenti studi. Nilai-p yang signifikan untuk model logit ada lima dari sembilan peubah penjelas yaitu persentase mahasiswa laki-laki, persentase mahasiswa menikah, persentase status perguruan tinggi asal negeri, dan persentase mahasiswa penerima beasiswa yang artinya peluang mahasiswa pascasarjana IPB berhenti studi dipengaruhi oleh persentase mahasiswa laki-laki, persentase mahasiswa menikah, persentase status perguruan tinggi asal negeri, dan persentase mahasiswa penerima beasiswa.