II. 2.1
TINJAUAN PUSTAKA
Surfaktan
Surface active agent (surfactant) merupakan senyawa aktif penurun tegangan permukaan (surface active agent) yang bersifat ampifatik, yaitu senyawa yang mempunyai gugus hidrofobik dan hidrofilik, serta molekul yang cenderung terpartisi pada antar permukaan fasa cairan yang berbeda tingkat kepolaran dan ikatan hidrogennya (Cooper dan Zajic, 1980; Desai dan Banat, 1997; Suryani et. al., 2000). Gugus hidrofobik terdiri dari rantai asam lemak yang panjang, sedangkan gugus hidrofilik terdiri dari karbohidrat, asam amino, peptida siklik, fosfat, dan asam karboksil alkohol (Kosaric, 1993). Molekul surfaktan dapat divisualisasikan seperti berudu atau bola raket mini yang terdiri atas bagian kepala dan ekor (Gambar 1). Bagian kepala yang bersifat hidrofilik (suka air) merupakan bagian yang sangat polar, sedangkan bagian ekor bersifat hidrofobik (benci air) merupakan bagian nonpolar. Gugus polar dapat bermuatan negatif, positif, ataupun tidak bermuatan (nonionik) dan memiliki afinitas yang tinggi terhadap pelarut polar. Gugus nonpolar pada surfaktan terdiri atas rantai hidrokarbon, linear ataupun bercabang, serta mengandung lebih dari delapan atom karbon serta memiliki afinitas yang rendah terhadap pelarut polar (Schueller dan Romanousky, 1996; Gervasio, 1996; Tadros, 1992). Swern (1979), menyatakan bahwa kemampuan surfaktan untuk meningkatkan kestabilan emulsi tergantung dari kontribusi gugus polar (hidrofilik) dan gugus nonpolar (lipofilik).
Hidrofobik Hidrofilik Gambar 1. Ilustrasi model surfaktan (Moroi, 1992) Berdasarkan gugus hidrofiliknya, surfaktan dibagi menjadi empat kelompok yaitu surfaktan kationik, amforterik, nonionik, dan anionik (Reiger, 1985; Rosen, 2004). Surfaktan kationik merupakan surfaktan yang memiliki muatan positif pada gugus antar muka hidrofobik (hydrophobic surface active). Sifat hidrofilik umumnya disebabkan karena keberadaan garam ammonium, seperti Quaternary Ammonium Salt (QUAT). Surfaktan ini biasanya digunakan sebagai bahan untuk deodorant, pelembut pakaian, penyegar mulut, lotion, shampo dan lainnya. Surfaktan amforterik, seperti alkilbetain, alkildimetilamin dan turunan imidazolinium, memiliki fungsi asam dan basa yang muatannya bergantung pada pH, sehingga bersifat kationik pada pH rendah. Menurut Matheson (1996), muatan surfaktan amforterik bergantung pada pH, pada pH rendah surfaktan akan bermuatan positif, sedangkan surfaktan akan bermuatan negatif pada pH tinggi. Surfaktan ini juga memiliki sifat iritasi yang rendah dan mampu menurunkan sifat iritasi dari surfaktan anionik. Surfaktan jenis amforterik ini masih terbatas penggunaannya dikarenakan harganya yang mahal, sehingga surfaktan jenis ini kalah bersaing dengan surfaktan jenis lain. Surfaktan nonionik merupakan surfaktan yang tidak bermuatan atau tidak terjadi ionisasi pada molekulnya. Beberapa surfaktan jenis ini dapat digunakan pada berbagai nilai pH dan toleran pada konsentrasi elektrolit. Surfaktan ini dibagi menjadi dua kelompok, yaitu jenis ester asam lemak
3
pada polihidrik alkohol (gliseril stearat, propilen glikol ester, sorbitan ester dan gula ester) dan turunan polialkoksilat (Reiger, 1985). Surfaktan anionik adalah bahan aktif permukaan yang pada bagian hidrofobiknya berhubungan dengan gugus anion (ion negatif). Surfaktan ini memiliki gugus ionik yang biasanya berupa golongan sulfat dan sulfonat, sehingga memiliki karakteristik hidrofilik, dengan kation yang biasanya digunakan Na+, NH4+, dan triethanolamonium. Sebagian besar surfaktan jenis ini digunakan sebagai emulsifier, pembersih dan pembentuk busa sabun. Menurut Matheson (1996), kelompok surfaktan ini merupakan kelompok surfaktan terbesar yang diproduksi. Data jumlah konsumsi surfaktan dunia menunjukkan bahwa surfaktan anionik merupakan surfaktan yang paling banyak digunakan yaitu sebesar 50%, kemudian disusul non-ionik 45%, kationik 4%, dan amfoterik 1% (Watkins, 2001). Dalam media cair, molekul surfaktan anionik terdisosiasi menjadi gugus kation yang bermuatan postif dan gugus anion yang bermuatan negatif. Gugus anion merupakan pembawa sifat aktif permukaan pada surfaktan anionik. Contoh khas surfaktan anionik adalah alkohol sulfat dan ester sulfonat, selain itu surfaktan Metil Ester Sulfonat (MES) termasuk ke dalam golongan surfaktan anionik. Setiap tahunnya jutaan ton surfaktan digunakan untuk beragam aplikasi yang berbeda (Flider, 2001). Menurut Hui (1996), surfaktan digunakan untuk pencucian dan pembersihan (washing and cleaning), serta untuk pertambangan, cat dan pelapis, kertas, tekstil, bahan pembusaan dan emulsifier pada industri kosmetik dan farmasi, industri cat, serta sanitasi pada industri pangan. Surfaktan sebagai bahan aktif dalam deterjen memiliki fungsi tertentu dalam proses pencucian. Surfaktan berfungsi untuk menurunkan tegangan permukaan, berperan dalam peristiwa adsoprsi, pembentukan micelle dan deterjensi. 1.
Penurunan Tegangan Permukaan Surfaktan mampu menurunkan tegangan permukaan diantara dua fasa. Sifat kepolaran yang berbeda diantara kedua fasa mengakibatkannya tidak dapat saling terlarut, dengan adanuya molekul surfaktan yang memiliki kecenderungan terhadap kedua fasa tersebut keduanya dapat saling bercampur. Molekul-molekul cairan yang ada dipermukaan mengalami resultan gaya ke arah dalam badan cairan. Hal ini mengakibatkan molekul-molekul tersebut cenderung menekan atau berdesakan ke dalam (menghindari permukaan, dimana molekul-molekul di dalam cairan mengalami resultan gaya yang seimbang. adanya kecenderungan ke dalam badan cairan menghasilkan gaya, besar daya yang diperlukan untuk memecah permukaan cairan sehingga terbentuk satu luasan baru pada permukaan disebut dengan tegangan permukaan (Hargreaves, 2003). Molekul-molekul non polar tidak mampu menyeimbangkan gaya molekul pada permukaan cairan polar sehingga terdapat batas antara cairan polar dan non polar. Pada gugus polarnya surfaktan menyeimbangkan gaya molekul permukaan cairan dan rantai nonpolarnya mengarah pada molekul-molekul hidrofobik.Setiap molekul dalam cairan mengalami gaya dalam tiga dimensi (arah) dari molekul tetangga. Molekul yang berada di permukaan cairan mengalami defisiensi di posisi atas, tetapi kuat di tiga arah gaya lainnya. Gambar 2 menyajikan interaksi antar molekul air pada permukaan yang menyebabkan terjadinya tegangan permukaan.
4
Molekul air dipermukaan ditarik oleh molekul air lain dari tiga arah
Gambar 2. Ilustrasi molekul air pada permukaan (Hargreaves, 2003) Penurunan tegangan permukaan dapat dijadikan sebagai salah satu faktor penentu banyaknya konsnetrasi surfaktan yang terdapat dalam suatau cairan. Apabila surfaktan ditambahkan ke suatu cairan pada konsentrasi rendah, maka dapat menurunkan tegangan permukaan cairan tersebut. Jika surfaktan dalam konsentrasi 0.1% ditambahkan ke dalam suatu cairan, maka akan menurunkan tegangan permukaan air dari 72 menjadi 32 mN m-1 (dyne cm-1). Hal ini terjadi karena molekul-molekul dalam sebagian besar cairan saling tertarik satu sama lain oleh gaya van der Walls yang menggantikan ikatan hidrogen air (Hargreaves, 2003). 2.
Adsorpsi Surfaktan memiliki gugus hidrofilik dan hidrofobik, sehingga akan berdifusi dan teradsorpsi pada antar muka air dan udara atau pada antar muka air dan minyak. Ketika molekul surfaktan berada di dalam air, gugus hidrofilik surfaktan ditarik menuju molekul air (molekul polar ditarik molekul polar yang lain), sedangkan molekul lipofilik surfaktan berada pada permukaan cairan. Efek molekul surfaktan pada permukaan dikenal sebagai adsorpsi, yang berakibat terhadap penurunan tegangan permukaan (Hargreaves, 2003). Adsorbsi surfaktan mempunyai perananan penting pada aplikasi agen pembersih seperti pada proses pembusaan dan emulsifikasi. Hal ini tergantung dari kefektifitasan difusi surfaktan. Proses adsorbsi dipengaruhi oleh elastisitas dan viskositas dari surfaktan untuk kestabilan dari busa dan emulsi yang dihasilkan. 3.
Pembentukan Micelle Pada konsentrasi yang cukup tinggi, gugus lipofilik surfaktan akan beragregat membentuk sebuah struktur melingkar yang disebut micelle, dimana ekor lipofilik berada pada pusat agregatdan kepala hidrofilik akan kontak dengan air, sehingga berorientasi keluar micelle. Struktur ini didorong oleh adanya gaya van der Walls yang terjadi sepanjang ekor lipofilik dan gaya tolak ionik dari gugus hidrofilik. Ilustrasi pembentukan micelle dapat dilihat pada Gambar 3.
Gambar 3. Ilustrasi pembentukan micelle (Hargreaves, 2003)
5
Gambar 4 menjelaskan tentang pengaruh konsentrasi surfaktan yang disebut dengan critical micelle concentration (CMC). Pada konsentrasi surfaktan dibawah CMC, tegangan permukaan dan antar muka turun dengan meningkatnya konsentrasi, namun pada saat konsentrasi mencapai taraf CMC atau lebih tinggi dari itu, tidak terjadi penurunan tegangan permukaan dan antar muka atau penurunannya sangat rendah (Schueller dan Romanousky, 1998).
Gambar 4. Grafik Hubungan antara Konsentrasi Surfaktan dengan Tegangan Permukaan dan Antarmuka Cairan (Tadros, 1992) 4.
Deterjensi Deterjensi merupakan proses penghilangan kotoran dari suatu permukaan (Anonima, 2009). Faktor yang mempengaruhi deterjensi, antara lain sifat alamiah kotoran, substrat atau permukaan dimana kotoran menempel, proses yang dilibatkan dalam penghilangan kotoran, jenis air yang digunakan dan suhu. Proses pencucian yang efektif dipengaruhi oleh kondisi selama proses penghilangan kotoran, antara lain netralisasi komponen-komponen kotoran yang bersifat asam, emulsifikasi minyak dan lemak, deflokulasi partikel kotoran, pengendapan kotoran dan pencegahan proses redeposisi (Anonima, 2009). Bagaimana deterjen bekerja merupakan kajian yang kompleks karena melibatkan banyak fungsi bahan yang berbeda, variasi substrat dan campuran berbagai jenis pengotor (soiling). Efektifitas dalam menurunkan tegangan antarmuka antara air, partikel pengotor (soil) dan subtrat (permukaan bahan yang dicuci) merupakan faktor penting agar proses wetting dapat berlangsung dengan baik (Hargreaves, 2003). Molekul yang diadsorpsi pada tegangan antarmuka air-udara tidak secara langsung berpengaruh terhadap deterjensi, tetapi membentuk busa yang berperan sebagai indikator yang menunjukkan telah terjadi proses pembersihan. Surfaktan dengan konsentrasi tinggi (nilai CMC yang tinggi) akan efektif dalam proses deterjensi (Hargreaves, 2003). Proses penghilangan kotoran minyak oleh surfaktan dapat dilihat pada Gambar 5. Gambar 5 mengilustrasikan oily soil dihilangkan dari substrat (permukaan bahan yang dicuci) yang melibatkan surfaktan di dalam air. Pada gambar, ekor lipofilik ditarik menuju oily soil dan teradsorpsi ke dalamnya dengan kepala hidrofilik mengarah ke luar menuju air. Oily soil terdispersi ke dalam air dengan cara yang hampir sama dengan formasi emulsi oil-in-water (O/W). Secara simultan, molekul surfaktan teradsorbsi menuju permukaan subtrat dengan gugus hidrofilik mengarah ke air, mencegah oily soil teredeposisi kembali. Ketika konsentrasi surfaktan dalam jumlah tinggi membentuk misela, sebagian oily soil dapat dihilangkan dengan cara solubilisasi membentuk busa mikro-emulsi (Hargreaves, 2003).
6
Gambar 5. Mekanisme pembersihan oleh surfaktan (Hargreaves, 2003).
2.2
Metil Ester
Metil ester merupakan salah satu bahan oleokimia dasar, turunan dari minyak atau lemak selain asam lemak yang dihasilkan melalui reaksi kimia esterifikasi ataupun transesterifikasi (Lynn, 2005). Esterifikasi adalah reaksi asam lemak dengan alkohol menggunakan katalis asam menghasilkan ester. Katalis yang biasa digunakan adalah asam sulfat. Persamaan reaksinya seperti yang terlihat pada Gambar 6.
Asam
RCOOH + R’OH Asam
Alkohol
RCOOR’ + H2O Katalis
Ester
Air
Gambar 6. Reaksi esterifikasi asam lemak (Lynn, 2005) Adapun bahan baku yang dipakai untuk pembuatan MES ini adalah olein minyak sawit menggunakan proses transesterifikasi. Transesterifikasi berfungsi untuk menggantikan gugus alkohol pada gliserol dengan senyawa alkohol sederhana seperti metanol atau etanol. Pada reaksi transesterifikasi, terjadi pemindahan alkohol dari suatu ester menjadi alkohol lain dalam proses yang sama melalui hidrolisis. Umumnya metil ester diproduksi melalui proses transesterifikasi menggunakan metanol atau biasa disebut metanolisis. Diantara alkohol yang mungkin digunakan, penggunaan methanol lebih disukai karena berharga lebih murah (Meher et al., 2004). Menurut Sontag (1982), proses metanolisis (hidrolisis menggunakan metanol) terhadap minyak atau lemak akan menghasilkan metil ester dan gliserol melalui pemecahan molekul trigliserida. Persamaan transesterifikasi antara minyak dengan metanol secara umum disajikan pada Gambar 7.
7
Gambar 7. Reaksi transesterifikasi antara lemak atau minyak dengan metanol (Hui, 1996). Menurut Meher et al. (2004), proses transensterifikasi dipengaruhi oleh berbagai faktor tergantung kondisi reaksinya. Variabel yang mempengaruhi proses transesterifikasi adalah rasio alkohol terhadap jumlah asam lemak, jenis dan konsentrasi katalis, suhu dan kecepatan pengadukan. Menurut Noureddini dan Zhu (1997), reaksi transesterifikasi menggunakan katalis asam fosfat mengakibatkan reaksi bersifat reversible (dua arah), dimana proses pembentukan turunan minyak (metil ester dan asam lemak bebas) serta pembentukan trigliserida berlangsung secara bersamaan sampai pada titik kesetimbangan. Selain asam fosfat, menurut Hui (1996), katalis yang dapat digunakan dalam proses transesterifikasi adalah NaOCH3, KOH dan NaOH. Menurut Boocock et al. (1998), basa mengkatalisis metanolisis minyak nabati lebih lambat dari pada butanolisis karena dua fase cair berada pada awal reaksi pembentukan.
2.3
Metil Ester Sulfonat (MES)
Metil ester sulfonat (MES) bermuatan negatif pada gugus hidrofiliknya atau bagian aktif permukaan (surface-active) yang termasuk golongan surfaktan anionik. Struktur kimia metil ester sulfonat (MES) dapat dilihat pada Gambar 8.
Gambar 8. Struktur kimia Metil Ester Sulfonat (MES) (Watkins, 2001). Menurut MacArthur et al. (2002), MES dapat disintesis dari tanaman kelapa, kelapa sawit (CPO dan PKO), lemak sapi dan kedelai. MES termasuk golongan ester yang dibuat dengan mereaksikan asam karboksilat dan alkohol. Sebagian besar MES diproduksi dari oleokimia melalui proses transesterifikasi asam lemak dengan methanol. Matheson (1996) menyatakan bahwa Metil Ester Sulfonat (MES) dapat dikelompokkan sebagai surfaktan anionic. Surfaktan ini dapat diperoleh melalui reaksi sulfonasi Metil Ester yang dilakukan dengan menggunakan reaksi esterifikasi terhadap asam lemak atau transesterifikasi langsung terhadap minyak/ lemak nabati dengan alkohol (Gervasio, 1996). Pemanfaatan MES sebagai bahan aktif pada deterjen telah banyak dikembangkan karena produksinya mudah, memperlihatkan karakteristik wetting agent, menurunkan tegangan permukaan,
8
pendispersi yang baik, dan memiliki daya deterjensi yang tinggi walaupun pada air dengan tingkat kesadahan yang tinggi (hard water), tidak mengandung fosfat, memiliki toleransi terhadap ion Ca2+ yang lebih baik, memiliki tingkat pembusaan yang rendah dan memiliki stabilitas yang baik terhadap pH, serta mudah didegradasi (Matheson, 1996). Menurut hasil pengujian Watkins (2001), memperlihatkan bahwa laju biodegradasi MES serupa dengan sabun, namun lebih cepat dibandingkan dengan petroleum sulfonate. Hal tersebut menyebabkan Metil Ester Sulfonat diindikasikan akan menjadi surfaktan anionik yang paling penting. Dibandingkan dengan petroleum sulfonat, MES menunjukkan beberapa kelebihan, diantaranya pada konsentrasi lebih rendah MES memiliki daya deterjensi sama dengan petroleum sulfonate dan memiliki kandungan garam (disalt) yang lebih rendah. Selain itu, pada formulasi produk pembersih yang menggunakan enzim, MES mampu mempertahankan kerja enzim lebih baik dibandingkan dengan LAS (Watkins, 2001). Disalt merupakan produk samping yang dihasilkan pada proses sulfonasi. Terbentuknya disalt dapat menghasilkan karakteristik surfaktan yang kurang baik, seperti sensitif terhadap air sadah, menurunkan daya kelarutan surfaktan dalam air, daya deterjensi 50% menjadi lebih rendah, dan umur simpan produk menjadi lebih singkat. Selain itu keberadaan disalt dapat menyebabkan sifat aktif pada permukaan surfaktan menjadi lebih rendah (Swern, 1979).
2.4
Methyl Ester Sulfonate Acid (MESA) Off Grade
MSA off grade merupakan hasil samping dari proses pembuatan MES. MES dibuat melalui tahapan sulfonasi, aging dan netralisasi. Jenis minyak yang biasanya disulfonasi adalah minyak yang mengandung ikatan rangkap atau gugus hidroksil pada molekulnya. Bahan baku minyak yang digunakan pada industri adalah minyak berwujud cair yang kaya akan ikatan rangkap (Bernardini,1983). Menurut Bernardini (1983) dan Pore (1976), pereaksi yang digunakan pada proses sulfonasi diantaranya adalah asam sulfat (H2SO4), oleum (larutan SO3 didalam H2SO4), sulfur trioksida (SO3), asam sulfamat (NH2SO3H) dan asam klorodulfonal (CISO3H). Perlakuan penting pada proses sulfonasi yang harus dipertimbangkan untuk menghasilkan kualitas produksi yang terbaik antara lain adalah rasio mol, konsentrasi gugus sulfat yang ditambahkan, waktu netralisasi, jenis, dan konsentrasi katalis, serta pH dan suhu netralisasi (Foster, 1996). Reaksi sulfonasi molekul asam lemak dapat terjadi pada tiga sisi, yaitu (1) gugus karboksil; (2) bagian α-atom karbon; (3) rantai tidak jenuh (ikatan rangkap). Reaksi ini dapat dilihat seperti pada Gambar 9.
H
H
H
O 1
H
C
C
H
H
CH = CH
C
CH2
H 3
C OH
2
Gambar 9. Kemungkinan posisi pengikatan gugus sulfonat dalam proses sulfonasi (Jungermann, 1979). Menurut Roberts et al. (2008), jika rasio mol SO3 dengan metil ester lebih rendah dari 1,2, maka konversi metil ester menjadi metil estser sulfonat secara sempurna tidak tercapai. Hal ini
9
biasanya terjadi pada saat reaktor baru dinyalakan sampai dengan waktu tertentu. Keadaan stabil akan tercapai sampai waktu aging yang tepat tergantung pada suhu proses, rasio mol SO 3 dengan metil ester, tingkat konversi yang diperlukan dan karakteristik reaktor yang digunakan. Methyl Ester Sulfonate Acid (MESA) off grade dihasilkan saat aging belum mencapai waktu yang tepat. Proses pembuatan MES yang menghasilkan hasil samping MESA off grade dapat dilihat pada Lampiran 1. Pada penelitian, MESA off grade yang dihasilkan akan dijadikan agen pembersih. MESA off grade akan ditambahkan dengan Natrium Hidroksida (NaOH) dengan konsentrasi tertentu. Penambahan ini dilakukan pada proses netralisasi, untuk menetralisir sifat keasaman yang ditimbulkan oleh MESA off grade. NaOH merupakan basa kuat yang memiliki derajat disosiasi, berwarna putih serrta sangat kuat dalam menyerap kelembaban dan karbon dioksida dari udara. NaOH disebut juga kaustik soda karena sifatnya yang korosif terhadap kulit. NaOH sering digunakan pada bidang tekstil, pembuatan sabun, penghilang lemak pada baja yang tahan karat dan peralatan gelas, seta pada penggolahan minyak bumi. Senyawa ini sangat mudah terionisasi membentuk ion natrium dan hidroksida (Keenan et al., 1989 dalam Tanty, 2009). NaOH berfungsi untuk meningkatkan daya bersih, sebagai pengemulsi yang baik dan dipakai untuk proses netralisasi surfaktan. Umumnya industri menggunakan NaOH yang sudah berbentuk larutan dengan konsentrasi 48%.
2.5
Agen Pembersih
Agen pembersih berfungsi untuk menghilangkan kotoran, termasuk debu, noda, lemak, dan lainnya. Umumnya pembersih berbentuk bubuk, cair, padat, dan pasta. Menurut Firman (2011), pembersih yang baik umumnya harus memenuhi persyaratan sebagai berikut: a. Biodegradable yaitu dapat diuraikan oleh mikroorganisme, sehingga tidak membahayakan lingkungan atau tidak mencemari lingkungan. b. Solubility yaitu dapat larut dalam air dan mudah dihilangkan dari permukaan benda yang dibersihkan. c. Wetting yaitu sifat pembasahan yang kuat, untuk mendapatkan sifat ini diperlukan adanya zat aktif permukaan (surfaktan) untuk menurunkan tegangan permukaan air, sehingga pembasahan pada permukaan benda yang dibersihkan dapat berlangsung dengan cepat. d. Emulsification yaitu sifat pembersih yang bekerja memecah kotoran menjadi partikelpartikel kecil. e. Soil Suspension yaitu kotoran yang sudah diemulsikan harus dibuat tersuspensi dalam larutan untuk mencegah melekatnya kembali pada permukaan benda yang telah dibersihkan. f. Rinsability yaitu sisa-sisa zat pembersih dan kotoran harus mudah dihilangkan dari permukaan benda yang sudah dibersihkan. g. Desinfectan yaitu kemampuan yang dapat membunuh bakteri pembawa penyakit. h. pH : pembersih harus memiliki sifat keasaman dan kebasaan tertentu (agen pembersih dapat bersifat asam, basa atau netral), tetapi sebagian besar dari kotoran organik bersifat asam, sehingga diperlukan pembersih yang bersifat basa. Agen pembersih akan bersifat asam bila pH < 7, sedangkan bersifat basa bila pH > 7.
10
Hanson (1992) dalam Adiandri (2006), menyatakan bahwa deterjen dapat digunakan sebagai bahan untuk meningkatkan daya pembersihan oleh air. Ilustrasi deterjen dalam membersihkan kotoran disajikan pada Gambar 10.
Kotoran
(A)
Kotoran
(B)
(C)
(D)
Gambar 10. Ilustrasi pengikatan kotoran oleh deterjen (www.chemistry.co.nz dalam Adiandri, 2006) Gambar 10 memperlihatkan adanya 4 tahapan dalam proses pengikatan kotoran pada permukaan suatu benda oleh surfaktan sebagai komponen utama dalam formulasi deterjen. Pada kondisi A, kotoran menempel pada permukaan suatu benda, pada B kotoran diikat oleh molekulmolekul surfaktan, kondisi C permukaan suatu benda telah bersih dari kotoran, dan pada kondisi D, molekul-molekul surfaktan menjaga agar kotoran yang telah diikat tidak menempel kembali pada permukaan suatu benda. Agen pembersih merupakan larutan surfaktan yang ditambahkan dengan bahan lain untuk menyesuaikan viskositas serta mempertahankan karakteristik aslinya selama masa penyimpanan hingga penggunaan (Woolat,1985). Deterjen termasuk kedalam kelompok emulsi, dikarenakan deterjen terdiri dari beberapa bahan yang memiliki sifat kepolaran yang berbeda dan bila dicampur dapat membentuk produk yang homogen. Emulsi adalah sistem heterogen yang terdapat sedikitnya satu jenis cairan yang terdispersi didalam cairan lainnya dalam bentuk doplet-doplet kecil (Romanowsky, 1998 dalam adiandri, 2006). Sistem emulsi mampu mencampurkan berbagai macam bahan yang memiliki perbedaan kepolaran dalam satu campuran yang homogen. Menurut Suryani et al. (2000), emulsi dapat distabilkan oleh molekul-molekul surfaktan yang membentuk agregat melalui pembentukkan lapisan pelindung antara fase terdispersi dan pendispersi. Karakterisitik yang harus dimiliki oleh deterjen antara lain memiliki busa yang stabil, daya pembersihan yang efektif, tidak toksik, tidak merusak perlengkapan yang dicuci (korosif), stabil selama penyimpanan, serta mudah digunakan (Parker, 2007).
11