Lampiran 1. Spesifikasi dan gambar alat yang digunakan pada penelitian 1. Kapal Riset Baruna Jaya VIII
2. CTD (Conductivity, Temperature and Depth) SBE 911 plus
http://www.seabird.com
3. ADCP (Acoustic Doppler Current Profiler) ADCP yang digunakan memiliki jumlah bin (depth cell) sebanyak 80 dengan jarak ketebalan setiap bin 5 meter.
Sumber: TELEDYNE RD INSTRUMENTS http://www.rdinstruments.com
Lampiran 2. Penentuan lapisan kolom air berdasarkan suhu, salinitas dan densitas
Penentuan batas lapisan dilakukan dengan menentukan garis kemiringan (asimtot) dari grafik vertikal suhu tiap stasiun. Penentuan garis kemiringan dilakukan secra visual. Lapisan teraduk merupakan lapisan yang paling dekat dengan permukaan laut dan memiliki sudut kemiringan yang hampir 90o. Lapisan termoklin merupakan lapisan yang memiliki sudut kemiringan grafik terkecil. Lapisan termoklin bawah memiliki kemiringan yang lebih kecil daripada termoklin atas. Batas kedalaman antar lapisan merupakan perpotonga dari garisgaris kemiringan tersebut.
Lampiran 3. List program untuk mendapatkan nilai kapasitas bahang (Cp) function cp = sw_cp(S,T,P) % SW_CP Heat Capacity (Cp) of sea water %================================================================= ======== % SW_CP $Revision: 1.3 $ $Date: 1994/10/10 04:38:05 $ % Copyright (C) CSIRO, Phil Morgan 1993. % % USAGE: cp = sw_cp(S,T,P) % % DESCRIPTION: % Heat Capacity of Sea Water using UNESCO 1983 polynomial. % % INPUT: (all must have same dimensions) % S = salinity [psu (PSS-78)] % T = temperature [degree C (IPTS-68)] % P = pressure [db] % (P may have dims 1x1, mx1, 1xn or mxn for S(mxn) ) % % OUTPUT: % cp = Specific Heat Capacity [J kg^-1 C^-1] % % AUTHOR: Phil Morgan 93-04-20 (
[email protected]) % % DISCLAIMER: % This software is provided "as is" without warranty of any kind. % See the file sw_copy.m for conditions of use and licence. % % REFERENCES: % Fofonff, P. and Millard, R.C. Jr % Unesco 1983. Algorithms for computation of fundamental properties of % seawater, 1983. _Unesco Tech. Pap. in Mar. Sci._, No. 44, 53 pp. %================================================================= ======== % CALLER: general purpose % CALLEE: none %---------------------% CHECK INPUT ARGUMENTS %---------------------if nargin ~=3 error('sw_cp.m: Must pass 3 parameters') end %if % CHECK [ms,ns] [mt,nt] [mp,np]
S,T,P dimensions and verify consistent = size(S); = size(T); = size(P);
% CHECK THAT S & T HAVE SAME SHAPE
if (ms~=mt) | (ns~=nt) error('check_stp: S & T must have same dimensions') end %if % CHECK OPTIONAL SHAPES FOR P if mp==1 & np==1 % P is a scalar. Fill to size of S P = P(1)*ones(ms,ns); elseif np==ns & mp==1 % P is row vector with same cols as S P = P( ones(1,ms), : ); % Copy down each column. elseif mp==ms & np==1 % P is column vector P = P( :, ones(1,ns) ); % Copy across each row elseif mp==ms & np==ns % PR is a matrix size(S) % shape ok else error('check_stp: P has wrong dimensions') end %if [mp,np] = size(P);
% IF ALL ROW VECTORS ARE PASSED THEN LET US PRESERVE SHAPE ON RETURN. Transpose = 0; if mp == 1 % row vector P = P(:); T = T(:); S = S(:); Transpose = 1; end %if %***check_stp %-----% BEGIN %-----P = P/10; % to convert db to Bar as used in Unesco routines %-----------% eqn 26 p.32 %-----------c0 = 4217.4; c1 = -3.720283; c2 = 0.1412855; c3 = -2.654387e-3; c4 = 2.093236e-5; a0 = -7.64357; a1 = 0.1072763; a2 = -1.38385e-3; b0 = 0.1770383; b1 = -4.07718e-3; b2 = 5.148e-5; Cpst0 =
c0 + c1.*T + c2.*T.^2 + c3.*T.^3 + c4.*T.^4 + ... (a0 + a1.*T + a2.*T.^2).*S + ... (b0 + b1.*T + b2.*T.^2).*S.*sqrt(S);
%-----------% eqn 28 p.33 %-----------a0 = -4.9592e-1; a1 = 1.45747e-2; a2 = -3.13885e-4; a3 = 2.0357e-6; a4 = 1.7168e-8; b0 b1 b2 b3 b4
= 2.4931e-4; = -1.08645e-5; = 2.87533e-7; = -4.0027e-9; = 2.2956e-11;
c0 c1 c2 c3
= -5.422e-8; = 2.6380e-9; = -6.5637e-11; = 6.136e-13;
del_Cp0t0 = (a0 + a1.*T + a2.*T.^2 + a3.*T.^3 + a4.*T.^4).*P + ... (b0 + b1.*T + b2.*T.^2 + b3.*T.^3 + b4.*T.^4).*P.^2 + ... (c0 + c1.*T + c2.*T.^2 + c3.*T.^3).*P.^3; %-----------% eqn 29 p.34 %-----------d0 = 4.9247e-3; d1 = -1.28315e-4; d2 = 9.802e-7; d3 = 2.5941e-8; d4 = -2.9179e-10; e0 = -1.2331e-4; e1 = -1.517e-6; e2 = 3.122e-8; f0 f1 f2 f3
= -2.9558e-6; = 1.17054e-7; = -2.3905e-9; = 1.8448e-11;
g0 =
9.971e-8;
h0 = 5.540e-10; h1 = -1.7682e-11; h2 = 3.513e-13; j1 = -1.4300e-12; S3_2 = S.*sqrt(S); del_Cpstp = [(d0 + d1.*T + d2.*T.^2 + d3.*T.^3 + d4.*T.^4).*S + ... (e0 + e1.*T + e2.*T.^2).*S3_2].*P + ...
[(f0 + f1.*T + f2.*T.^2 + f3.*T.^3).*S g0.*S3_2].*P.^2 [(h0 + h1.*T + h2.*T.^2).*S j1.*T.*S3_2].*P.^3;
+ ... + ... + ...
cp = Cpst0 + del_Cp0t0 + del_Cpstp; if Transpose cp = cp'; end %if return %------------------------------------------------------------------
Lampiran 4. List program untuk mendapatkan nilai koefisien ekspansi thermal function [ALPHA] = sw_alpha(S, T, P, keyword) % SW_ALPHA Thermal expansion coefficient (alpha) %================================================================ % SW_ALPHA $Revision: 1.6 $ $Date: 1998/04/21 05:42:10 $ % Copyright (C) CSIRO, Nathan Bindoff 1993. % % USAGE: [ALPHA] = alpha(S, T, P, keyword) % % [ALPHA] = alpha(S, T, P, 'temp') %default % [ALPHA] = alpha(S, PTMP, P, 'ptmp') % % DESCRIPTION: % A function to calculate the thermal expansion coefficient. % % INPUT: % S = salinity [psu (PSS-78) ] % * PTMP = potential temperature [degree C (IPTS-68)] % * T = temperature [degree C (IPTS-68)] % P = pressure [db] % (P may have dims 1x1, mx1, 1xn or mxn for S(mxn) ) % % keyword = optional string to identify if temp or ptmp passed. % = No argument defaults to 'temp' % = 'temp' assumes (S,T,P) passed. Will execute slower % as ptmp will be calculated internally. % = 'ptmp' assumes (S,PTMP,P) passed. Will execute faster. % % OUTPUT: % ALPHA = Thermal expansion coeff (alpha) [degree_C.^-1] % % AUTHOR: N.L. Bindoff 1993 % % DISCLAIMER: % This software is provided "as is" without warranty of any kind. % See the file sw_copy.m for conditions of use and licence. % % REFERENCE: % McDougall, T.J. 1987. "Neutral Surfaces" % Journal of Physical Oceanography vol 17 pages 1950-1964, % % CHECK VALUE: % See sw_beta.m amd sw_aonb.m %================================================================ % % % %
Modifications 93-04-22. Phil Morgan, 93-04-23. Phil Morgan, 94-10-15. Phil Morgan,
Help display modified to suit library Input argument checking Pass S,T,P and keyword for 'ptmp'
% CHECK INPUT ARGUMENTS if ~(nargin==3 | nargin==4) error('sw_alpha.m: requires 3 or 4 input arguments') end %if if nargin == 3 keyword = 'temp'; end %if % CHECK [ms,ns] [mt,nt] [mp,np]
S,T,P dimensions and verify consistent = size(S); = size(T); = size(P);
% CHECK THAT S & T HAVE SAME SHAPE if (ms~=mt) | (ns~=nt) error('check_stp: S & T must have same dimensions') end %if % CHECK OPTIONAL SHAPES FOR P if mp==1 & np==1 % P is a scalar. Fill to size of S P = P(1)*ones(ms,ns); elseif np==ns & mp==1 % P is row vector with same cols as S P = P( ones(1,ms), : ); % Copy down each column. elseif mp==ms & np==1 % P is column vector P = P( :, ones(1,ns) ); % Copy across each row elseif mp==ms & np==ns % PR is a matrix size(S) % shape ok else error('check_stp: P has wrong dimensions') end %if [mp,np] = size(P);
% IF ALL ROW VECTORS ARE PASSED THEN LET US PRESERVE SHAPE ON RETURN. Transpose = 0; if mp == 1 % row vector P = P(:); T = T(:); S = S(:); Transpose = 1; end %if %***check_stp % BEGIN ALPHA = sw_aonb(S,T,P,keyword).*sw_beta(S,T,P,keyword); return %-----------------------------------------------------------------------
Lampiran 5. List Program untuk mendapatkan nilai koefisien kontraksi salinitas function [BETA] = sw_beta(S, T, P, keyword) % SW_BETA Saline contraction coefficient (beta) %================================================================= ======= % SW_BETA $Revision: 1.4 $ $Date: 1994/11/15 04:10:05 $ % % Copyright (C) CSIRO, Nathan Bindoff 1993. % % USAGE: [BETA] = sw_beta(S, T, P, {keyword} ) % % [BETA] = sw_beta(S, T, P, 'temp') %default % [BETA] = sw_beta(S, PTMP, P, 'ptmp') % % DESCRIPTION % The saline contraction coefficient as defined by T.J. McDougall. % % INPUT: (all must have same dimensions) % S = salinity [psu (PSS-78) ] % * PTMP = potential temperature [degree C (IPTS-68)] % * T = temperature [degree C (IPTS-68)] % P = pressure [db] % (P may have dims 1x1, mx1, 1xn or mxn for S(mxn) ) % % keyword = optional string to identify if temp or ptmp passed. % = No argument defaults to 'temp' % = 'temp' assumes (S,T,P) passed. Will execute slower % as ptmp will be calculated internally. % = 'ptmp' assumes (S,PTMP,P) passed. Will execute faster. % % OUTPUT % BETA = Saline Contraction Coefficient [psu.^-1] % % AUTHOR: N.L. Bindoff 1993 % % DISCLAIMER: % This software is provided "as is" without warranty of any kind. % See the file sw_copy.m for conditions of use and licence. % % REFERENCE: % McDougall, T.J. 1987. "Neutral Surfaces" % Journal of Physical Oceanography vol 17 pages 1950-1964, % % CHECK VALUE: % beta=0.72088e-3 psu.^-1 at S=40.0 psu, ptmp = 10.0 C, p=4000 db %================================================================= ======= % % % %
Modifications 93-04-22. Phil Morgan, 93-04-23. Phil Morgan, 94-10-15. Phil Morgan,
Help display modified to suit library Input argument checking Pass S,T,P and keyword for 'ptmp'
% CHECK INPUT ARGUMENTS if ~(nargin==3 | nargin==4) error('sw_beta.m: requires 3 or 4 input arguments') end %if if nargin == 3 keyword = 'temp'; end %if % CHECK [ms,ns] [mt,nt] [mp,np]
S,T,P dimensions and verify consistent = size(S); = size(T); = size(P);
% CHECK THAT S & T HAVE SAME SHAPE if (ms~=mt) | (ns~=nt) error('check_stp: S & T must have same dimensions') end %if % CHECK OPTIONAL SHAPES FOR P if mp==1 & np==1 % P is a scalar. Fill to size of S P = P(1)*ones(ms,ns); elseif np==ns & mp==1 % P is row vector with same cols as S P = P( ones(1,ms), : ); % Copy down each column. elseif mp==ms & np==1 % P is column vector P = P( :, ones(1,ns) ); % Copy across each row elseif mp==ms & np==ns % PR is a matrix size(S) % shape ok else error('check_stp: P has wrong dimensions') end %if [mp,np] = size(P);
% IF ALL ROW VECTORS ARE PASSED THEN LET US PRESERVE SHAPE ON RETURN. Transpose = 0; if mp == 1 % row vector P = P(:); T = T(:); S = S(:); Transpose = 1; end %if %***check_stp % ENSURE WE USE PTMP IN CALCULATIONS if strcmp(lower(keyword),'ptmp') % already have ptmp else T = sw_ptmp(S,T,P,0); % now have ptmp end %if % BEGIN
c1=fliplr([ 0.785567e-3, -0.301985e-5 ... 0.555579e-7, -0.415613e-9]); c2=fliplr([ -0.356603e-6, 0.788212e-8]); c3=fliplr([0.0 0.408195e-10, -0.602281e-15]); c4=[0.515032e-8]; c5=fliplr([-0.121555e-7, 0.192867e-9, -0.213127e-11]); c6=fliplr([0.176621e-12 -0.175379e-14]); c7=[0.121551e-17]; % % Now calaculate the thermal expansion saline contraction ratio adb % [m,n] = size(S); sm35 = S-35*ones(m,n); BETA = polyval(c1,T) + sm35.*(polyval(c2,T) + ... polyval(c3,P)) + c4*(sm35.^2) + ... P.*polyval(c5,T) + (P.^2).*polyval(c6,T) ... +c7*( P.^3); return %-----------------------------------------------------------------------
Lampiran 6. Penampang Menegak Frekuensi Apung pada Masing-Masing Stasiun
Lampiran 7. Penampang menegak Bilangan Richardson pada masing-masing stasiun
Lampiran 8. Penampang Menegak Koefisien Difuisvitas Eddy pada Masingmasing Stasiun