Distribusi Probabilitas Diskrit:
Binomial & Multinomial 6
Debrina Puspita Andriani www.debrina.lecture.ub.ac.id E-mail :
[email protected] /
[email protected]
2
Outline
Distribusi Variabel Acak Diskrit
Distribusi Binomial
Distribusi Multinomial www.debrina.lecture.ub.ac.id
22/10/2014
Distribusi Probabilitas Adalah sebuah susunan distribusi yang mempermudah mengetahui probabilitas sebuah peristiwa / merupakan hasil dari
3
www.debrina.lecture.ub.ac.id
setiap peluang peristiwa 22/10/2014
4
Variabel Acak/Random ¡ Adalah variabel yang nilai-nilainya ditentukan oleh kesempatan atau variabel yang dapat bernilai numerik yang dapat didefinisikan dalam suatu ruang sampel ¡ Misal: pelemparan sebuah dadu sebanyak 6 kali, maka muncul angka 1 sebanyak 0,1,2,3,4,5, atau 6 kali merupakan kesempatan
www.debrina.lecture.ub.ac.id
22/10/2014
5
Macam Variabel Acak/Random Variabel Acak Diskrit ¡
Variabel random yang tidak mengambil seluruh nilai yang ada dalam sebuah interval atau variabel yang hanya memiliki nilai tertentu.
¡
Nilainya merupakan bilangan bulat & asli, tidak berbentuk pecahan
¡
Contoh: ¡
¡
Banyaknya pemunculan angka/gambar dalam pelemparan sebuah koin Jumlah anak dalam keluarga
www.debrina.lecture.ub.ac.id
Variabel Random Kontinu ¡
Variabel random yang mengambil seluruh nilai yang ada dalam sebuah interval atau variabel yang dapat memiliki nilai2 pada suatu interval tertentu
¡
Nilainya dapat berupa bilangan bulat maupun pecahan
¡
Contoh: ¡
Pada label kurva baja tertulis diameter 2 ± 0,0005 mm.
sehingga daerah hasil variabel random X adalah Rx = {X : 1,9995 ≤ x ≤ 2,0005; x adalah bilangan real} 22/10/2014
6
1.
Distribusi Binomial
suatu distribusi probabilitas yang dapat digunakan bilamana suatu proses sampling dapat diasumsikan sesuai dengan proses Bernoulli. www.debrina.lecture.ub.ac.id
22/10/2014
Percobaan terdiri dari beberapa usaha tiap-tiap ulangan percobaan bebas satu sama lainnya.
7
usaha
Probabilitas kesuksesan tidak berubah dari percobaan satu ke percobaan lainnya.
Proses Bernoulli www.debrina.lecture.ub.ac.id
Persyaratan: • Percobaan terdiri atas n-usaha yang berulang • Tiap-tiap usaha memberikan hasil yang dapat dikelompokkan menjadi 2kategori, sukses atau gagal • Peluang kesuksesan dinyatakan dengan p, tidak berubah dari satu usaha ke usaha berikutnya. • Tiap usaha bebas dengan usaha lainnya. 22/10/2014
perlemparan sekeping uang logam sebanyak 5 kali
Dua macam kartu yang diambil berturut-turut dengan label ; • merah : “berhasil” • hitam : “gagal”
www.debrina.lecture.ub.ac.id
8 Sisi gambar Sisi angka
berhasil
gagal
22/10/2014
Distribusi Binomial
9
Suatu usaha bernoulli dapat menghasilkan: § kesuksesan dengan probabilitas p § kegagalan dengan probabilitas q = 1 – p maka distribusi probabilitas perubah acak binomial X yaitu banyaknya kesuksesan dalam n-usaha bebas adalah
⎛ n ⎞ x n− x b(x;n,p) = ⎜ ⎟ p q ⎝ x ⎠
;x = 0,1, 2,....,n
Di mana :
www.debrina.lecture.ub.ac.id
22/10/2014
Contoh
10
Peluang cacat dan baik dari hasil produksi suatu perusahaan yang hampir bangkrut adalah 50%. Apabila perusahaan itu memproduksi 3 barang, berapakah probabilitas yang diperoleh, jika: a. Satu barang cacat b. Dua barang baik c. Maksimum dua barang cacat maka akan diperoleh ruang sampel sbb: S = {bbb, bbc, bcb, cbb, bcc, cbc, ccb, ccc} b = barang baik c = barang cacat
www.debrina.lecture.ub.ac.id
22/10/2014
Solusi:
11
Misal x adalah banyaknya barang baik dari 3 barang yang diproduksi, maka nilai x adalah: sampel bbb bbc bcb cbb bcc cbc ccb ccc
x
3
2
2
2
1
1
1
0
¡ Probabilitas nilai x, yaitu: ¡ X = 0, nilai probabilitasnya = p(x = 0) = 1/8 ¡ X = 1, nilai probabilitasnya = p(x = 1) = 3/8 ¡ X = 2, nilai probabilitasnya = p(x = 2) = 3/8 ¡ X = 3, nilai probabilitasnya = p(x = 3) = 1/8 ¡ Kasus di atas dapat diselesaikan dengan distribusi binomial Dengan: p = ½, q = ½ x = banyaknya barang yang baik n=3 Dengan x = 0, 1, 2, 3 www.debrina.lecture.ub.ac.id
22/10/2014
Solusi:
12
a. Jika peristiwa A à satu barang cacat, maka A mempunyai ruang sampel : S = { bbc, bcb, cbb} à p(A) = 3/8 Dengan distribusi binomial x = 2 à 1 barang cacat, yang tidak cacat (x) = 2
b. Jika peristiwa B à adalah memproduksi dua barang baik, maka B mempunyai ruang sampel : S = { bbc, bcb, cbb} à p(B) = 3/8 Dengan distribusi binomial x = 2 à 2 barang baik
www.debrina.lecture.ub.ac.id
22/10/2014
Solusi:
13
c. Jika peristiwa C adalah memproduksi maksimum dua barang cacat, maka C mempunyai ruang sampel : S = { bbb, bcb, bcb,cbb, ccb, cbc, bcc} à p(C) = 7/8 Dengan distribusi binomial x = 1, 2 dan 3 à Maksimum 2 barang cacat, x ≠ 0
1–
www.debrina.lecture.ub.ac.id
22/10/2014
n
r
p 0.01
15
.......
0.4
14
.........
1 2
0.0271
: : : 8
0.9050
9
0.9662
: : 15
Tabel Binomial - Cara membaca 9
Untuk n=15, p=0.4
→
∑ b(x;15; 0.4) =;0.9662
x =0
8
∑ b(x;15; 0.4) = 0.9050
x =0
2
∑ b(x;15;0.4) = 0.0271
www.debrina.lecture.ub.ac.id
x=0
22/10/2014
Contoh
15
Probabilitas seseorang sembuh dari penyakit jantung setelah operasi adalah 0.4. Bila diketahui 15 orang menderita penyakit ini, berapa peluang: a. sekurang-kurangnya 10 orang dpt sembuh b. ada 3 sampai 8 orang yg sembuh c. tepat 5 orang yg sembuh Penyelesaian: Misal : X = menyatakan banyaknya orang yg sembuh Diketahui : p = 0.4 n = 15 a) P(X ≥ 10) = 1 − P(X < 10) = 1 − [P(X = 0) + P(X = 1) + P(X = 9)]
9
=1−
∑ b(x;15; 0.4)
← lihat tabel
x =0
=1 − 0.9662 = 0.0338 Jadi probabilitas sekurang-kurangnya 10 orang sembuh = 0.0338 www.debrina.lecture.ub.ac.id
22/10/2014
b)
P(3 ≤ X ≤ 8) = P(X ≤ 8) − P(X ≤ 2) =
8
2
x =0
x =0
16
∑ b(x;15, 0.4) − ∑ b(x;15, 0.4) ← lihat tabel
= 0.9050 − 0.0271 = 0.8779 Jadi probabilitas terdapat 3 sampai 8 orang yg sembuh = 0.8779 c) P(X = 5) = b(5;15; 0.4) = P(X ≤ 5) − P(X ≤ 4)
=
5
4
x =0
x =0
∑ b(x;15, 0.4) − ∑ b(x;15, 0.4) ← lihat tabel
= 0.4032 - 0.2173 = 0.1859 Jadi probabititas tepat 5 orang yang sembuh = 0.1859 www.debrina.lecture.ub.ac.id
22/10/2014
Distribusi Binomial Kumulatif
17
Adalah probabilitas dari peristiwa binomial lebih dari satu sukses. n
PBK = ∑ nCx ⋅ p x ⋅ q n − x x −0 n
= ∑ P( X = x) x −0
= P( X = 0) + P( X = 1) + P( X = 2) + ... + P( X = n)
www.debrina.lecture.ub.ac.id
22/10/2014
Tabel Distribusi Probabilitas Binomial Kumulatif
18
r
B(r; n, p) = ∑ b( x; n, p) x =0
www.debrina.lecture.ub.ac.id
B(r=1;n=2,p=0.30) = 0.9100 22/10/2014
Contoh Soal u/ Tabel Binomial
19
Warna mesin cuci yang diproduksi oleh PT. Makmur Jaya adalah putih dan merah. Suatu rumah tangga memesan 2 mesin cuci tersebut dan pengirimannya dilakukan 2 kali. Berapa probabilitas ? 1. Ke-2 mesin cuci berwarna merah 2. Ke-2 mesin cuci berwarna putih 3. Berwarna merah minimal 1 Kerjakan dengan Tabel Distribusi Binomial dan Tabel Distribusi Binomial Kumulatif. www.debrina.lecture.ub.ac.id
22/10/2014
20
¡ Tabel Distribusi Binomial p = ½, q = ½, dan n=2 X = banyaknya mesin cuci yang berwarna merah. Dari tabel distribusi binomial : Nilai x Probabilitas
0 0,2500
1
2
0,500
0,2500
1.
Probabilitas ke-2 mesin berwarna merah dapat ditentukan x=2, P = 0,2500
2.
Probabilitas ke-2 mesin berwarna putih dapat ditentukan x=0, P = 0,2500
3.
Probabilitas berwarna merah minimal 1 dapat ditentukan dengan nilai x=1 ditambah nilai x = 2. sehingga: 0,5000 + 0,2500 = 0, 7500
www.debrina.lecture.ub.ac.id
22/10/2014
21
¡ Tabel Distribusi Binomial Kumulatif p = ½, q = ½, dan n=2 X = banyaknya mesin cuci yang berwarna merah. Dari tabel distribusi binomial kumulatif: Nilai x Probabilitas
0 0,2500
1 0,7500
1.
Probabilitas ke-2 mesin berwarna merah = P(x=2) – P(x=1) = 1,0000- 0,7500= 0,2500
2.
Probabilitas ke-2 mesin berwarna putih = P(x=0) = 0,2500
3.
Probabilitas berwarna merah minimal 1 = {P(x=1) – P(x=0)} + {P(x=2) – P(x=1)} = {0,7500 - 0,2500} + {1,0000 - 0,7500} = 0,7500
www.debrina.lecture.ub.ac.id
2 1,0000
22/10/2014
Distribusi Multinomial
22
Distribusi probabilitas binomial digunakan untuk sejumlah sukses dari n percobaan yang independen, dimana seluruh hasil (outcomes) dikategorikan ke dalam dua kelompok (sukses dan gagal). Distribusi probabilitas multinomial digunakan untuk penentuan probabilitas hasil yang dikategorikan ke dalam lebih dari dua kelompok. Fungsi distribusi probabilitas multinomial:
n! xk x1 x2 P(x1, x2 ,.., xk ) = p1 p2 ... pk x1 !x2 !...xk ! www.debrina.lecture.ub.ac.id
22/10/2014
Contoh (1)
23
Berdasarkan laporan sebuah penelitian tahun 1995, diantara produk mikroprosesor pentium generasi pertama diketahui terdapat cacat yang mengakibatkan kesalahan dalam operasi aritmatika. Setiap mikroprosesor dapat dikategorikan sebagai baik, rusak dan cacat (dapat digunakan dengan kemungkinan muncul kesalahan operasi aritmatika). Diketahui bahwa 70% mirkoprosesor dikategorikan baik, 25% cacat dan 5% rusak. Jika sebuah sample random berukuran 20 diambil, berapa probabilitas ditemukan 15 mikroprosesor baik, 3 cacat dan 2 rusak? Penyelesaian :
20! P(15,3,2) = .715 )(.253 )(.052 ) ( 15! 3! 2 ! =.0288
www.debrina.lecture.ub.ac.id
22/10/2014
Contoh (2)
24
Bila dua buah dadu dilemparkan 6 kali, berapa peluang mendapat jumlah bilangan yang muncul sebesar 7 atau 11 sebanyak 2 kali, bilangan yang sama pada kedua dadu sekali, dan kemungkinan lainnya sebanyak 3 kali? Penyelesaian : o S = 36 o E1 = jumlah kedua dadu 7 atau 11: peluangnya adalah 2/9 o E2 = bilangan yang sama pada kedua dadu : peluangnya 1/6 o E3 = kemungkinan lainnya: 1 – P(E1 + E2) = 1 – (2/9 + 1/6) = 11/18
Maka f(2,1,3; 2/9, 1/6, 11/18, 6) x
p
n = 0,1127
www.debrina.lecture.ub.ac.id
22/10/2014