LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 2010-2011
SMK NEGERI DAN SWASTA KOTA SURABAYA
MATEMATIKA KELOMPOK TEKNOLOGI PAKET II B
MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA 1
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
MATA PELAJARAN Mata Pelajaran
: Matematika
Jenjang
: SMK
Kelompok
: Teknologi
WAKTU PELAKSANAAN Hari
: Rabu
Tangga
: 2 Maret 2011
Jam
: pk. 07.00 – 09.00
PETUNJUK UMUM 1 2 3 4 5 6 7 8 9
2
Isikan identitas Anda ke dalam Lembar Jawaban Latihan Ujian Nasional yang tersedia dengan menggunakan pensil 2 B sesuai petunjuk pada LJUN Hitamkan bulatan di depan nama mata ujian pada LJUN Tersedia waktu 120 menit untuk mengerjakan paket tes tersebut Jumlah soal sebanyak 40 butir, pada setiap butir soal terdapat 5 (lima) pilihan jawaban Periksa dan bacalah soal-soal sebelum Anda menjawabnya Laporkan kepada pengawas ujian apabila terdapat lembar soal yang kurang jelas, rusak, atau tidak lengkap Tidak diizinkan menggunakan kalkulator, HP, tabel matematika atau alat bantu hitung lainnya. Periksalah pekerjaan Anda sebelum diserahkan kepada pengawas ujian Lembar soal boleh di corat-coret untuk mengerjakan perhitungan
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
1.
Agar mendapatkan untung 20 % , Sebuah mobil harus dijual dengan harga Rp. 90.000.000,maka harga beli mobil adalah . . . A.
Rp. 72.000.000,-
B.
Rp. 72.200.000,-
C.
Rp. 73.500.000,-
D.
Rp. 74.200.000,-
E.
Rp. 75.000.000,-
2. Banyaknya siswa laki-laki dan perempuan suatu SMK mempunyai perbandingan 7 : 2 , jika banyaknya siswa seluruhnya 1953 maka banyaknya siswa perempuan adalah ... A. 217 siswa B. 279 siswa C. 343 siswa D. 434 siswa E. 1519 siswa 3. Himpunan penyelesaian dari 3 A. B. C. D. E.
7x 6
1 27
4x 3
adalah ….
{2} {3} {0} {-2 } {-4 }
4. Jika a = 3
72 , b = (2 − 8 ) dan c = (1 −2 32 ), maka bentuk paling sederhana dari (a
− b + 2 c) adalah …. A. B. C. D. E.
6 2 2 2 4 2 12 2
5. Bentuk sederhana dari 2 log 24 A. B. C. D. E. 3
2
log 12
2
log
1 9
2
log 8 adalah ….
-3 -2 1 2
1 2 MATEMATIKA SMK
TEKNOLOGI
IIB 2011
6. Himpunan penyelesaian dari sistem persamaan : 1 2 x y 2 3 x y
7.
3 1
A.
−8
B.
−4
C.
−2
D.
4
E.
8
adalah {(xo, yo)} Nilai 4xo.yo = ….
Persamaan garis yang melalui titik A ( 2 , −1) dan sejajar garis y = 3x + 1 adalah …. A. y − 3x + 7 = 0 B. y + 3x + 7 = 0 C. y −3x + 7 = 0 D. y + 3x – 5 = 0 E. x – 3y − 5 = 0
8. Persamaan grafik fungsi kuadrat dibawah ini adalah . . . y
0
y= 3x2 +6x
B.
y= 3x2 −6x
C.
y= x2 + 3x
D.
y= x2 – 3x +3
E.
y= x2 + 3x −3
x
(1,-3) 0
4
A.
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
9.
Nilai x yang memenuhi pertidaksamaan A. B. C. D. E.
x x x x x
x 2 2
2x 1 adalah . . . 3
≤ −4 ≥ −4 ≤ 4 ≥ 4 ≤ 8
10. Titik potong grafik fungsi kuadrat f(x) = 3x2 – 5x – 2 dengan sumbu x adalah . . . A. (-⅓, 0) dan (2, 0) B. (⅓, 0) dan (-2, 0) C. (-⅔, 0) dan (1, 0) D. (⅔, 0) dan (-1, 0) E. (-⅔, 0) dan (2, 0)
11. Sebuah industri membuat dua jenis barang yaitu A dan B dengan menggunakan dua mesin yaitu M1 dan M2. Satu unit barang A dibuat dengan mengoperasikan mesin M1 selama 2 menit dan mesin M2 selama 4 menit, sedangkan satu unit barang B dibuat dengan mengoperasikan mesin M1 selama 8 menit dan mesin M2 selama 4 menit. Jika setiap mesin membutuhkan waktu 480 menit perhari, model matematika untuk permasalahan di atas adalah …. A. x + 2y ≤ 240; 2x + y ≤ 120; x ≥ 0; y ≥ 0 B. x + y ≤ 240; x + y ≤ 120; x ≥ 0; y ≥ 0 C. 2x + y ≤ 240; 2x + y ≤ 120; x ≥ 0; y ≥ 0 D. 2x + y ≤ 240; x + 2y ≤ 120; x ≥ 0; y ≥ 0 E. x + 4y ≤ 240; x + y ≤ 120; x ≥ 0; y ≥ 0 12. Nilai maksimum dari f(x,y) = 2x + y yang memenuhi sistem pertidaksamaan x + 2y ≤ 8 x+y≤6 x≥0 y≥0 adalah …. A. 4 B. 6 C. 10 D. 12 5
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
E. 16 13. Diketahui A =
x 3
10 adalah matriks singular. Nilai x adalah .... 15
A. −2 B. −1 C. 0 D. 1 E. 2
14. Diketahui matriks A =
1 3
2 , 2
B=
5 q
p dan C = 1
11 4 . Nilai p dan q yang 1 0
memenuhi C − 2B = A berturut-turut adalah .... A. –2 dan –1 B. –2 dan 1 C. –2 dan 3 D. 1 dan 2 E. 3 dan –2
a i 2 j 4 k , v 4 i 2 j 2 k dan w u + w adalah …. tegak lurus, maka A. i 4 j 10 k B. i 4 j 10 k C. 3 i 4 j 10 k D. 3 i 4 j 10 k E. 4 i j 10 k
15. Diketahui u
4 i 2 j 6 k . Jika u dan v saling
16. Besar sudut antara vektor a = 2i – j + 3k dan b = i + 3j – 2k adalah …. A. 1 8 1 B. 4
6
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
C. 1 3 D. 1 2 E. 2 3
17.
Diketahui persegi dengan panjang sisi 14 cm keliling daerah yang diarsir adalah … A. 38,5 cm2 B. 39,6 cm2 C. 42 cm2 D. 48,5 cm2 E. 70,5 cm2
18. Luas permukaan tabung tertutup dengan diameter alas 14 cm dan tinggi 60 cm adalah … . A. B. C. D. E.
1474 cm2 1628 cm2 2794 cm2 2948 cm2 2984 cm2
19. Nilai kebenaran dari pernyataan ~p q adalah … . A. BSBB B. SBBB C. BBSB D. BSSB E. BBBS 20. Ingkaran pernyataan : “ Semua peserta UNAS, tidak membawa kalkulator “ adalah … . A. B. C. D. E.
Beberapa peserta UNAS, tidak membawa kalkulator Beberapa peserta UNAS, membawa kalkulator Semua peserta UNAS, membawa kalkulator Tak satupun peserta UNAS, membawa kalkulator Tiada peserta UNAS, tidak membawa kalkulator
21. Konvers dari pernyataan “ Jika matematika pelajaran yang mudah maka semua siswa senang matematika” adalah … 7
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
A. Jika semua siswa senang matematika maka matematika pelajaran yang tidak mudah B. Jika semua siswa senang matematika maka matematika pelajaran yang mudah C. Jika matematika pelajaran yang mudah maka ada siswa yang senang matematika D. Jika matematika pelajaran yang tidak mudah maka ada siswa yang senang matematika E. Jika matematika pelajaran yang tidak mudah maka ada siswa yang tidak senang matematika 22. Diberikan premis-premis : Premis (1) : Jika Ani rajin atau pandai maka ia lulus ujian Premis (2) : Ani tidak lulus ujian Kesimpulan yang sah dari kedua premis di atas adalah … A. B. C. D. E.
Ani tidak rajin atau tidak pandai Ani rajin atau tidak pandai Ani rajin dan tidak pandai Ani tidak rajin dan tidak pandai Ani rajin atau pandai
23. Diketahui segitiga ABC siku-siku seperti gambar berikut ,Sin A = 3 jika panjang sisi AC = 20 5
cm maka panjang sisi BA = …. A. 4 cm B. 12 cm C. 16 cm D. 24 cm E. 28 cm
C
B
A
24. Koordinat kartesius dari titik A ( 12 , 240o) adalah … A. B. C. D. E. 25.
(6 , -6√3 ) (-6 , 6√3 ) (-6√2 , 6 ) (-6√3 , 6 ) (-6 , -6√3)
Diketahui sin A = 4 dan Tan B = 5 , A sudut tumpul dan B sudut lancip maka nilai 5
12
(A-B) = ….
8
A.
56 65
B.
16 65
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
Sin
C. D. E.
26.
16 65 56 65 63 65
Dari 8 soal yang tersedia dikerjakan 5 soal ,jika soal no. 1 sampai 3 harus dikerjakan maka banyaknya pilihan yang mungkin ada ... macam A. B. C. D. E.
10 20 21 30 42
27. Dua buah dadu dilempar undi bersama-sama. Peluang munculnya jumlah mata dadu 5 atau 10 adalah …. 3 A. 36 7 B. 36 8 C. 36 9 D. 36 11 E. 36
28.
Diagram berikut menunjukkan hasil ulangan matematika untuk 30 siswa , siswa dikatakan kompeten jika mendapatkan nilai ninimal 7, maka banyaknya siwa yang dinyatakan kompeten adalah…. F 10 0 6 -4
A. 12 siswa B. 15 siswa
8
82 -
C. 18 siswa D. 20 siswa
8
8
8
4 5 6 7
8 9
Nilai
E. 22 siswa
8
8
9
MATEMATIKA SMK
TEKNOLOGI
IIB 2011
29.
Rata-rata dari data pada tabel distribusi di bawah adalah ... A. B. C. D. E.
30.
7,6 8,0 8,5 9,0 10,0
Modus dari data pada tabel distribusi frekuensi berikut ini adalah…. Nilai 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 – 89 90– 99
31.
32.
10
A. 74,2 B. 74,6 C. 75,2 D. 75,6 E. 76,2
Simpangan baku dari data 7, 4, 4, 3, 6, 6, 5, 5 adalah … A.
1,25
B.
1,5
C.
1,8
D. E.
2 2,5
Kuartil atas dari data pada tabel distribusi frekuensi berikut ini adalah… Nilai 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 – 89 90– 99
33.
Frekuensi 1 3 11 21 43 32 9
Frekuensi 1 3 11 21 43 32 9
A. 82,1 B. 82,4 C. 82,6 D. 82,9 E. 83,1
x2 1 = ... . 1 x2 3x 2
Nilai lim x
MATEMATIKA
SMK
TEKNOLOGI
IIB 2011
A. -2 B. -1 C. 0 D. 1 E. 2 34.
Turunan pertama dari f(x) = A. B. C.
x2 + 1 x + 1 2x (1 x ) 2 2
D. 1
x
2 (1 x ) 2
E. 35.
2x adalah .... 1 x
∫ ( x2 − 4x) dx = …. A. x3 + 2 x2 + C B. x3 − 2 x2 + C C. x3 + x2 + C D. ⅓ x3 − 2 x2 + C E. ⅓ x3 + 2 x2 + C
36.
A. 128 B. 138 C. 144 D. 150 E. 198 37.
Luas daerah yang dibatasi oleh kurva y = x2 − 4x + 3 dan sumbu x adalah .... A. 1 1 satuan luas 3
11
MATEMATIKA
SMK
TEKNOLOGI
IIB 2011
B. 1 2 satuan luas C. D. E. 38.
3 1 2 3 31 3 2 3 3
satuan luas satuan luas satuan luas
Volume benda putar yang terjadi jika daerah yang dibatasi sumbu x dan kurva
y
4 x2
diputar sejauh 360 mengelilingi sumbu y adalah …. A. B. C. D. E.
2 15 2 38 15 4 40 15 1 41 15 1 48 15 34
satuan volume satuan volume satuan volume satuan volume satuan volume
39. Suku ke –n deret aritmatika adalah Un = 5n − n , jumlah 10 suku yang pertama deret tersebut adalah … A. 200 B. 210 C. 220 D. 225 E. 400 40. Suku pertama barisan geometri adalah 25 dan suku ke -8 adalah 3200 , maka suku ke -6 barisan tersebut adalah … . A. 200 B. 320 C. 400 D. 800 E. 1600
12
MATEMATIKA
SMK
TEKNOLOGI
IIB 2011
13
MATEMATIKA
SMK
TEKNOLOGI
IIB 2011
14
MATEMATIKA
SMK
TEKNOLOGI
IIB 2011
15
MATEMATIKA
SMK
TEKNOLOGI
IIB 2011