Ministry of Forestry Forestry Research and Development Agency Jakarta Indonesia
J. For. Res
Vol. 10
No.1
Pages 1-64
Jakarta 2013
ISSN 0216-0919
r Journal of Forestry Research Vol.lO No.1, 2013 Journal of Forestry Research is previously published as Forestry Research Journal (2000 - 2001). This Journal is published in one volume of two issues per year by the Forestry Research and Development Agency, Indonesia. The journal publishes primary research findings and synthesized articles containing significant contribution to science and its theoretical application in forestry in Indonesia. Overseas works relevant to Indonesian conditions may be accepted for consideration. Editorial Board
Dr. Ir. Haruni Krisnawati, M.Sc. (Forest Assesment and Biometrics) Pro£ Dr. Ir. Ani Mardiastuti, M.Sc. (Conservation and Biodiversity) Prof. Dr. Ir. Imam Wahyudi, MS. (Wood Science) Prof. Dr. Lilik Budi Prasetyo, M.Sc. (Spatial and landscape Modeling) Pro£ Dr. Ir. Iskandar Zulkarnaen Siregar, M.For.Sc (Forest Genetic) Pro£ Dr. Ir. I Wayan Laba, M.Sc. (plant Pests and Diseases) Dr. Ir. Chay Asdak, M.Sc. (Forest Hydrology) Dr. Ir. Sri Noegroho Marsoem, M.Agr.Sc (Wood Science) Dr. Ir. Maman Turjaman, DEA. (Forest Microbiology) Dr. Ir. Taulana Sukandi, M.Sc (Agroforestry) Dr. Ir. Han Roliadi, M.Sc. (Forest Products Technology and Chemistry) Dr. Ir. Kade Sidiyasa (Taxonomy) Dr. Irnayuli R. Sitepu, SP., MCp (Microbiology) Dr. Ir. Anto Rimbawanto, M.Sc. (Molecular Biology) Dr. Ir. Niken Sakuntaladewi, M.Sc (Social Forestry) Dr. Ir. Achmad Fauzi Mas'ud, M.Sc. (Forest Microbiology) Managing Editors
Head of Evaluation, Dissemination and Library Division Head of Dissemination, Publication and Library Sub Division Dr. Krisdianto, S.Hut, M.Sc Dian Anggraini, S.Hut, M.M Ane Dwi Septina, S.Sos Suhardi Mardiansyah, A.Md Muhamad Iqbal, S.Hut Listya Mustika Dewi, S.Hut Ujang Wawan Dharmawan, S.Hut
All inquiries and manuscripts should be sent to the: Journal of Forestry Research Sub Bagian Diseminasi, Publikasi dan Perpustakaan Sekretariat Badan Litbang Kehutanan J1. Gunung Batu No.5 Bogor 16610
Telephone Fax E-mail Website
(0251)-7521671 (0251)-7521671
[email protected] www.forda-mof.org
Printed in Indonesia ©20 13, Forestry Research and Development Agency, Indonesia
Accredited by the Indonesian Institute of Sciences
No. 625/E/2013
Peer Reviewers Prof Dr. Yusuf Sudo Hadi Forest Product Technology Bogar Agricultultural University, Indonesia
Dr. Sri Wilarso Budi R. Biotechnology Bogar Agricultultural University, Indonesia
ISSN 0216-0919 625/E/2013
Journal of Forestry Research Vol. 10 No.1, 2013 Contents Tides
Pages
EARLY WARNING OF RAINFALL-INDUCED LANDSLIDES AND DEBRIS FLOWS ON MT. BAWAKARAENG, SOUTH SULAWESI, INDONESIA Hasnawir...................................................................................................................
1
UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE Subyakto, Nanang Masruchin, Kurnia Wiji Prasetiyo and Ismadi ......................
11
CARBON STOCK ASSESSMENT IN PINE FOREST OF KEDUNG BULUS SUB-WATERSHED (GOMBONG DISTRICT) USING REMOTE SENSING AND FOREST INVENTORY DATA Tyas Mutiara Basuki and Nining Wahyuningrum .................................................
21
DETECTION OF POLLEN FLOW IN THE SEEDLING SEED ORCHARD OF Acaciamangium USING DNA MARKER ViviYuskianti andKeiyaIsoda...............................................................................
31
GEOGRAPHIC VARIATION OF CHLOROPLAST DNA HAPLOTYPES IN Acacia auiacocarpa A. Cunn. ex Benth Anthonius YPBC Widyatmoko and Susumu Shiraishi ........................................
42
TREND OF REALIZED GENETIC GAIN OBSERVED IN SECONDGENERATION SEEDLING SEED ORCHARDS OF Acacia mangium IN SOUTH KALIMANTAN, INDONESIA Arif Nirsatmanto, Teguh Setyaji and Surip ............................................................
57
Journal of Forestry Research ABSTRACTS ISSN 0216-0919
Vol.lO No.1, 2013
Keywords given arefree terms. Abstracts may be reproduced without permission or charge nX:.'ODC63O*165.3 ~
E-\RLY \\.R'\:ING OF RAINFALL-INDUCED LANDSUDES DEBRIS FLOWS ON MY. BAWAKARAENG, SOUTH SU........\\E.SI, INDONESIA ~GAT"-\"''1 DINI PADA TANAH LONGSOR DAN ALlRAN prI~G-PCING AKIBAT HUJAN DI GUNUNG _-\",-.;0
a . .u-_-\K-\R..~G,SULAWESISELATAN,INDONESIA)
_-\mhang batas curah hujan yang membentuk dasar dari sistem ~
tanah longsor, saat ini dapat dijumpai di beberapa tempat di lndoo:!esia. Berdasarkan pada riwayat analisa data, penunjukan ambang :-:as berYariasi mengikuti karakteristik curah hujan dan ambang batas ~ mebmpaui sesuai dengan kemungkinan terjadinya tanah longsor. I"tting:inm dim pada tanah longsor dan aliran puing-puing mencakup lciixmasi spesifik tentang daerah yang terkena, kemungkinan terjadinya ,...n Ioogsor dan aliran puing-puing, dan waktu yang diharapkan layak liC012 tdrnis seperti telah digambarkan oleh sebuah studi kasus di G..wDg ~eng, Sulawesi Selatan, Indonesia. Catatan data curah In:m dan tahun 1997 sampai 2007 dan sejarah tanah longsor dan aliran ~-puing dikwnpulkan dari Kementerian Pekerjaan Umum, I:adooesia. _-\mhang batas, sepetti yang didefinisikan dengan batas bawah aim citH:-ritik yang mewakili tanah longsor dan puing-puing dipicu ~ bujan, dinyatakan dengan persamaan I = 41,85D~·"sebelurn 1XlJi:, Iocgso:r skala besar pada tanggal26 Maret 2004 dan 1= 37,71D c. ~ tanah longsor skala besar, dimana I adalah intensitas curah l!cOam mm/jam) dan D adalah durasi hujan Gam). Menurut analisis ~ baras empiris, kurva regresi dapat dianggap sebagai arnbang :-:as inn:nsitas-durasi curah hujan yang dipercaya untuk digunakan di d:K:ah srudi, yang mana di atas arnbang batas tersebut, tanah longsor :iI!lIO.almm puing-puingmungkin terjadi. "-'ahmci: Peringatan dim, tanah longsor, aliran puing-puing, ambang baras curah hujan, Gunung Bawakaraeng
CDC ODC 630"'832.2
s..o.mo, ~arutng Masruchin, Kurnia Wiji Prasetiyo and Ismadi CTILIZ,\TION OF MICRO SISAL FIBERS AS JtE.:D.TORCDfENT AGENT AND POLYPROPYLENE OR POLYL\CTIC ACID AS POLYMER MATRICES IN mocO~IPOSITESMANUFACTURE
,
i'£Y.-\...'T-\...-\T"\N SERAT MIKRO SISAL SEBAGAI BAHAN D"-\...'\: POUPROPILENA ATAU POLIASAM LAKTAT 5ER....G~....I :\lATRIKS POLlMER DALAM PEMBUATAN ~GL-\T
i BlO"-O~IPOSI1)
(MOE) dengan proses injeksi lebih rendah dibandingkan dengan proses cetak panas. Nilai MOR dari MSFC-PLA lebih rendah dibandingkan dengan PLA murni, tetapi nilai MOEnya lebih ringgi. Kata kunci: Biokomposit, sisal, serat mikro, polipropilena, poliasam laktat, sifat fisik mekanik UDC/ODC630*907.3 Tyas Mutiara Basuki and Nining Wahyuningrum CARBON STOCK ASSESSMENT IN PINE FOREST OF KEDUNG BULUS SUB-WATERSHED (GOMBONG DISTRIC1) USING REMOTE SENSING AND FOREST INVENTORY DATA (PENlLAIAN STOK KARBON PADA HUTAN PINUS DI SUBDAERAH ALlRAN SUNGAI KEDUNG BULUS (KECAMATAN GOMBONG) DENGAN PENGINDERAAN JAUH DAN DATA INVENTARISASITEGAKAN) Stok karbon di dalam pohon dapat dikuantifikasi secara langsung dengan menebang dan menimbang pohon dan diasumsikan bahwa 50 % dari berat kering biomassa terdiri dari karbon. Pengukuran secara langsung tersebut dianggap yang paling akurat., namun untuk areal yang luas memerlukan waktu dan biaya. Dalam mendukung pengelolaan dan pengambilan kebijakan di bidang kehutanan, penginderaan jauh sudah terbukti merupakan teknik yang penring untuk memetakan dan memonitor stok karbon dari ringkat landskap ke skala global. Penelitian ini ditujukan untuk (1) membuat model regresi yang digunakan untuk mengestimasi stok karbon dalam hutan pinus berdasarkan pengukuran lapangan dan data dari penginderaan jauh, (2) mengkuantifikasi stok karbon dalam tanah di bawah tegakan hutan pinus dengan menggunakan pengukuran lapangan. Penelitian dilakukan di sub-daerah aliran sungai Kedung Bulus, Gombong-Jawa Tengah. Data yang diakses dari citra Satellite Probatoire d' Observation de fa Tem (SP01) meliputi spektral band 1, 2, 3, dan 4, Normalized Differences Vegetation Index (NDVI), dan Principle Component Anafysis (PCA). Data tersebut diintegrasikan dengan pengukuran lapangan untuk membuat model regresi. Contoh-contoh tanah diambil dengan bor tanah untuk setiap kedalaman 20 cm sampai kedalaman 100 cm. Potensi dari teknik penginderaan jauh untuk mengestimasi stok karbon diperlihatkan dari nilai korelasi yang cukup kuat antara multi spektral SPOT (band 2, 3; band 1,2,3; band 1,3,4; dan band 1, 2, 3, 4) dan stok karbon dengan r = 0.76, PCA (pCI, PC2, PC3) dan stok karbon dengan r = 0.73. Peranan hutan pinus untuk mengurangi CO, di armosfer diperlihatkan oleh jumlah carbon dalam pohon dan tanah. Stok karbon dalam pohon bervariasi dari 26 hingga 206 Mg C/ha dan dalam tanah di bawah hutan pinus berkisar dari 85 sarnpai 194 Mg C /ha.
Kata kunci: Penginderaan jauh, stok karbon, pengukuran lapangan Penelirian ini bertujuan untuk membuat biokomposit dari serat r - - - - - - - - - - - - - - - - - - - - - - - - - i :mkro sis3l '~4ga", sisalana) sebagai bahan penguat dan polipropilena (PP) UDC/ODC 630*232.311.3 lDil poIasam laktat (PLA) sebagai matriks. Serat sisal diproses menjadi Vivi Yuskianti and Keiya Isoda ~~ h:mudian serat dibuat ukuran sekitar 10 flm dengan alat refiner dan DETECTION OF POLLEN FLOW IN THE SEEDLING SEED iiib-ringkan dalam oven. Serat mikro pulp kering (microfibrillated sisalpulp : .1iiIn ~/:\ISFq dicampur dengan PP atau PLA dengan berbagai ORCHARD OF Acacia mangiumUSING DNA MARKER (DETEKSI SEBARAN SERBUK SARI PADA KEBUN BENIH """""" b:mudian dibuat cetakan. Cetakan dibuat dengan proses kempa SEMAIAcaciamangiumMENGGUNAKAN PENANDADNA) ~ =u cetak injeksi. Pada proses cetak panas, rasio MSFC/PP atau VSFC PL\ berkisar 30/70~50/50. Sedangkan pada proses cetak Penelitian ini bertujuan untuk mengetahui pola penyebaran serbuk lIlIio::bi.. hanya biokomposit MSFC/PLA yang dibuat dengan rasio sari pada dua kebun benih semai Acacia mangium di Indonesia yaitu ~ 10190~30/70. Hasil biokomposit diuji sifat fisik dan AM006 Grup C di Kalimantan Selatan dan AM004 Grup di Surnatera :mdo:miImTIL Pada proses cetak panas, sifat fisik dan mekanik MSFCSelatan. Dua belas mikrosatelit lokus digunakan untuk analisis tetua P'I...:\ lebih tinggi dibandingkan dengan komposit MSFC/PP. Rasio (parentage anafysis) pada semua pohon dan biji dari 10 pohon induk di .::If''!''DUID :\ISFC/PP maupun MSFC/PLA adalah 40/60. Kekuatan setiap kebun benih. Hasil penelitian menunjukkan bahwa penyebaran ~sit :\ISFC/PP maupun MSFC/PLA lebih tinggi dibandingkan serbuk sari menurun seiring dengan peningkatan jarak dengan induk d
Sekitar 80% dari semua persilangan ditemukan dalam range 40 m deng.n jarak persilangan terbanyak pada jarak 0 - 10m. Tidak ditemukan biji hasil persilangan sendiri pada kedua kebun benih. Semua aspek yang ditemukan pada penelitian ini seperti pola penyebaran serbuk sari yang acak dan jarak efektif penyebaran serbuk sari akan berguna untuk pemapanan kebun benih semai, kebun benih k10n dan aktifitas program pemuliaan pohon lainnya. Kata kunci: Acacia mangium, kebun benih semai, penyebaran serbuk sari,
jarak efektif, rasio persilangan sendiri UDC/ODC630*165.3 Anthonius YPBC Widyatmoko and Susumu Shiraishi GEOGRAPHIC VARIATION OF CHLOROPLAST DNA HAPLOTYPES IN Acacia aulacocarpa A. Cunn. ex Benth (VARIASI GEOGRAFIS DARI HAPLOTIPE KLOROPLAS DNA PADAAcacia aulacocarpaA. Cunn. ex Benth) Penelitian ini bertujuan untuk mengetabui variasi geografis 18 populasi Alam Acacia aulacocarpa berdasarkan kloroplas DNA haplotipe. Populasi yang digunakan mewakili distribusi alami A. aulacocarpa yang tersebar di Papua, Papua New Guinea dan Queensland. Penanda yang digunakan dalam penelitian ini adalah Single strand conformation polymorphism (SSCP). Dua non-coding regions dari cpDNA, intron dari troL gene dan intergenic spacer region antara trnP dan troW gene dianalisis dan empat haplotipe (A, B, C dan D) dapat diidentifikasi. Distribusi dari haplotipe tersebut berhubungan dengan distribusi geografis dari populasi. Berdasarkan 4 kloroplas DNA haplotipe, 18 populasi dapat dibagi menjadi 3 kelompok, yaitu kelompok Papua dan Papua New Guinea, Queensland bagian U tara dan Queensland bagian Selatan. Haplotipe C hanya terdapat pada populasi Papua dan Papua ]\;ew Guinea, sedangkan 3 haplotipe yang lain (A, B dan D) hanya terdapat pada populasi Queensland. Ketiga haplotipe tersebut terdapat pada populasi di Queensland bagian Selatan, sedangkan populasi Queenslan bagian U tara hanya terdiri dari haplotipe B saja. Queensland bagian Selatan mempunyai keragaman yang tertinggi dalam k1oroplas DNA haplotipe. Kata kunci: Acacia aulacocarpa, variadi geografis, k1oroplas DNA, noncoding region, haplotipe, PCR-SSCP
UDC/ODC 630*232.311.3 Arif Nirsatmanto, Teguh Setyaji, and Surip TREND OF REALIZED GENETIC GAIN OBSERVED IN SECOND-GENERATION SEEDUNG SEED ORCHARDS OF Acacia mangjum IN SOUTH KALIMANTAN, INDONESIA (TREN DARI KEUNTUNGAN DITINJAU GENETIKA PADA GENERASI KE-DUA PEMBIBITAN BIBIT KEBUN BUAH Acacia mangium DI KALIMANTAN SELATAN, INDONESIA) Program pemuliaan Acacia mangium yang komprehensif telah dilaksanakan sejak tabun 1992 melalui pembangunan kebun benih semai (KBS). Proses seleksi generasi pertama (KBS F-l) sudab selesai dilaksanakan, dan dilanjutkan dengan program pemuliaan generasi kedua (F-2). Penelitian ini berrujuan untuk mengetabui tren perbaikan genetik akrual sebagai respon terhadap seleksi KBS F-l yang diamati secara periodik sampai umur 4 tahun pada tiga KBS F-2 (sub-galur B, C dan D). Parameter yang diamati meliputi tinggi, diameter dan kelurusan batang. Perbaikan genetik aktual dihitung sebagai persentase peningkatan sifat dari populasi termuliakan (pohon plus terpilih di KBS F-l) terhadap populasi yang belum termuliakan. Hasil penelitian menunjukkan bahwa sampai umur 4 tahun, populasi termuliakan menunjukkan perrumbuhan dan kelurusan batang yang lebih baik. Besarnya perbaikan genetik akrual bervariasi berdasarkan tipe sub-galur dan umur, dengan kisaran antara 1,1 % - 5% unruk tinggi, 2,8% - 6,7% unruk diameter, dan 1,8% - 8,4% untuk kelurusan batang. Sementara iru dari hasil analisa data gabungan ketiga sub-galur, perbaikan genetik berkisar antara 2,2% - 3,1% unruk tinggi, 4,3% - 5,2% unruk diameter dan 4,3% - 6% unruk kelurusan batang. Besarnya perbaikan genetik akrual menunjukkan tren menurun dengan bertambahnya umur tanaman, sebaliknya kelurus.n batang menunjukkan tren meningkat dengan bert.mb.hnya umur tan.man. K.ta kunei: Acacia mangjum, perbaikan genetik akrual, Kebun Benih Semai. generasi ke-dua
THE POTENTIAL OF FOREST BUFFER TO PREVENT STREAM FROM WATER POLLUTANTS:A CASE STUDY IN GROJOKAN SEWU SUB-WATERSHED, KARANGANYAR DISTRICT, CENTRAL JAVA 1,2
1
Nining Wahyuningrum and Irfan Budi Pramono
Received : 11 February 2013, Accepted : 12 September 2013
ABSTRACT Population growth leads to water scarcity in terms of both quality and quantity. Agricultural and urban watersheds potentially produce more pollutantsthan forested area. It is considered that forested area has potential in storing and protecting water supply in such a way that water distribution and quality can be guaranteed. The objective of the study was to determine the relationship between the percentages of forested area in a watershed with the water quality. Thestudy was conducted in 2010in GrojokanSewu Sub-watershed, Karanganyar District, Central Java. Using GIS (Geographic Information System), this sub-watershedwas divided into four sub-sub-watershedswith different percentages of forested areas. Water samples were collected in each sub-sub-watershedto find out the relationship between the forested area and the total dissolvedsolids, turbidity, sodium, nitrite, nitrate, sulfate and organic matters. The statistical analysis indicates relationships in quadratic form between sodium, nitrite, TDS, sulfate and organic matters with the percentage of forested area (R2=0.99, R2=0.99, R2=0.98, R2=0.95 and R2=0.77, respectively). The relationships are different from those of 2 2 2 turbidity and nitrate that have low R (R =0.28 and R =0.36) values. It implies that the forested area is capable to reduce sodium, nitrite, TDS, sulfate and organic matters, and thus water pollutants can be reduced by forest formation as it can filter water through retention of sediments and nutrients. Keywords: forest, water quality, watershed, land use I. INTRODUCTION Demand for water is rising rapidly in line with world's population growth. Water scarcity for drinking water as well as for agriculture is increasing. On the other hand ground water is being depleted as ecosystems are becoming polluted and degraded (Rosegrant et al., 2002).The water use is related to the consumption of the people. The water consumption of a country is defined as the volume of water needed for the production of the goods and the services consumed by the inhabitants of the country. USA appears to have an average water consumption of 2480m3/cap/yr, while China has 700m3/cap/yr. 1
Forestry Institute on Watershed Management, Jl. A. Yani Pabelan, Kartasura, POBOX 295, Surakarta 2 Corresponding Author:
[email protected]
106
The global average water consumption is 1240m3/cap/yr (Hoekstra and Chapagain, 2007). A wide range of construction and development activities can adversely affect the world's water supplies in terms of both quality and quantity. These conditions are also affected by land use formations. It is widely known that watershed hydrology depends on many factors, including land use, climate, and soil conditions. (Tong, 2002) Agricultural and urban watersheds potentially produce more pollutantsthan forested areas.(Lenat and Crawford, 1994; Dauer et al., 2000; Fisher et al., 2000; Wang, 2001) It maybe the result of high concentration of fertilizers (Mattikalli and Richards, 1996) and municipal wastes (Fisher et al., 2000). Moreover, conversion of forested lands to agriculture and/or urban/ residential areas has been associated with declines in stream and lake water quality (Houlahan and
The Potential of Forest Buffer to Prevent Stream from Water Pollutants:a Case Study in Grojokan Sewu ..... (Nining Wahyuningrum et al.)
Findlay, 2004). Therefore, forest is expected to be effective in maintaining water quality by reducing any pollutant into the river. By intercepting rain, a forest canopy reduces the impact of heavy rainfall on the forest floor and decreases soil disturbance. Leaves and natural debris on the forest floor may slow down the rate of water runoff and trap soil washing away from surrounding fields. Consequently, it reduces soil loss which potentially brings nutrient to the stream (Zisheng et al., 2011; Foltz, 2012). Forest condition that manages to regulate water is the forest which has multilayers, such as natural forest (Tíscar and Linares, 2011) or agroforestry system (Suryanto and Putra, 2012). Natural forest which consists of trees at different stages of growth, such as seedlings, saplings, poles and mature trees creates canopy layers (Tíscar and Linares, 2011). This multilayer can also be found in agroforestry in which trees or shrubs are grown in association with agricultural crops (Suryanto and Putra, 2012). Based on that, characteristic of forested area acts as water filter and thus protects soil from erosion and surface run off (Wentai et al., 2011; Singh and Mishra, 2012), as well as supplies ground water discharge which provides oxygen to the stream (Núñez et al., 2006). Hairiah et al. (2012) reported that forest conversion to coffee-based agroforestry initially led to a decrease in the rate of litter fall and the accumulated litter layer covering the soil, replenishment of soil organic matter (SOM), and likely related to a reduction in soil macro porosity. On sloping land, a reduction of macro porosity and soil cover will increase overland flow and erosion (Hairiah et al., 2012). It indicates that the type of trees used as shade trees to the coffee can influencedirectly the physical conditions of the soil through their rooting pattern. A combination of trees with slowly decomposing litter, that help to protect the soil surface, and trees with deep root systems that directly create macro porosity is probably the best for securing soil conditions that meet the requirements of low surface runoff and erosion rates. Based on the important effect of forested area on water quality, the study was aimed to determine the relationship between land use type composition (the percentage of forest cover) and water quality parameters, i.e. total dissolvedsolids
(TDS), sodium (Na), sulfate (SO4), nitrite (NO2N), nitrate (NO3-N) and organic matters in a watershed. To achieve the goal of the study, observation of water quality was conducted in four sub-watersheds which have different percentagesof forested areas. II. MATERIAL AND METHOD A. Location This research has been conducted in Grojokan Sewu Sub-watershed in Karanganyar District, Central Java. Geographically, which is located between 7°41'24.10''-7°37'32.48''S and 111°07'27.07''-111°07'19.01''E. Grojokan Sewu Sub-watershed was divided into four sub-subwatersheds: Grojokan Sewu, Blumbang, Gondosuli 1 and Gondosuli 2. GrojokanSewu Sub-watershed is dominated by undulating topography. This area was selected because there are extensive agricultural activities on steep slopes using intensive fertilizer (Prasetyo, 2013) which may lead to erosion and water pollution. B. Land cover classification Land cover mapwas generated from QuickBird image of September 29, 2006 which was downloaded from Google Earth in 2010. ArcMap 9.3 was used in image processing, such as geo referencing and digitizing. Geo referencing process utilized the coordinate system of WGS 84 based on images coordinates of Google Earth. On-screen digitizing was done by delineating similar patternsseen in the image, such as color and texture of the objects. Land cover types were divided into four types,i.e. vegetable garden, settlement, forest and shrub. Ground checking survey was conducted in the same yearas the image downloading. Survey was based on land cover map by matching the present type in the field with the map. To determine forest density, tree measurement was conducted to obtain parameters such as tree species, diameter at breast height (DBH), tree height and number of trees in the 30 m × 30m sample plots (sample intensity was approximately 10%). These 107
Journal of Forestry Research Vol. 10 No. 2, 2013: 106-114
plotswere considered as training samplesused to complete the image classification. Finally, land coverswere classified into six classes such as vegetable crops, settlement, sparse plantation forest, moderately dense plantation forest, dense natural forest and shrubs. Cover story and under storywere also analyzed in order to find out their effect on water filtering. C. Water sample analysis Water samples were collected in 2009 during the rainy season from each sub-subwatershed with different percentages of forested area. The samples (4 samples) were taken simultane ously. Each sample consisted of 1500 ml water and it was analyzed in the Indonesian Ministry of Health's Laboratory, Yogyakarta. Parameters analyzed were turbidity, TDS, natrium, sulfate, nitrite, nitrate and organic matters. The standard methods used were SNI 06-6989.25-2005; SNI 06-6989.1-200; APHA2012, Section 3500-Na; SNI 6989.20-2009; SNI 06-6989.9-2004; APHA 2012, Section 4500- NO3 and SNI 066989.222004, respectively. Regression method was used to develop the relationship between forested area and each water quality parameter.
III. RESULT AND DISCUSSION 1. Land cover types Based on image analysis there were six land cover classes in the study area, i.e.vegetable crops, settlement, sparse plantation forest, moderately dense plantation forest, dense natural forest and shrubs. The distribution of land cover types is presented in Figure 1. Settlements are generally situated inflat areas, while vegetable gardens, forests and shrubs are found in areas with steeper slopes, in areas with slope of more than 45%. Based on the map, Grojokan Sewu Sub-watershed is dominantly covered by forests (55%) (Table 1). Table 1 shows the percentage of forested area in each sub-watershed, namely Gondosuli 2 (88%), Gondosuli 1 (72%), Blumbang (64%) and Grojokan Sewu (55%). The forest cover type was divided into three classes based on density levels, i.e. (1) sparse plantation forest, (2) moderately dense plantation forest, and (3) dense natural forest. The forest density is influenced by the type of plant, tree density per ha, canopy closure, understory plants and diameter (Table 2). Natural forests are densely populated by mixed
Figure 1. Land cover map of GrojokanSewu Sub-watershed 108
The Potential of Forest Buffer to Prevent Stream from Water Pollutants:a Case Study in Grojokan Sewu ..... (Nining Wahyuningrum et al.)
species of trees and shrubs. Species of shrubs found in the area were Gleichenia linearis, Eupatorium odoratum, Nephrolelepis falcata, Mimosa
pudica, Centotheca lappacea, Echinocloa colonum, Aristolochia tagala, Dicranopteris linearis, Cyperus rotundus, and Imperata cylindrica.
Table 1. Distribution ofland cover types in each sub-watershed Land cover types
Sub-watersheds Gondosuli 1 Gondosuli 2 Area Area (ha) % % (ha)
Blumbang Area % (ha)
Vegetable garden Settlement Sparse plantation forest Moderately dense plantation forest Dense natural forest Shrubs Total
Grojokan Sewu Area % (ha)
7.99 -
36.27
5.80 0.53
5.91 0.54
6.23 -
11.95 -
249.37 125.50
22.05 11.10
14.04
63.73
-
-
-
-
182.88
16.17
-
-
49.57
50.47
45.91
88.05
334.15
29.55
2.03
100.0
20.77 21.53 98.21
21.15 21.93 100.0
52.14
100.0
102.70 136.17 1130.77
9.08 12.04 100.0
Table 2. Forest condition and density of GrojokanSewu Sub-watershed Density of Land cover type
Sparse plantation forest Moderately dense plantation forest Dense natural forest
Species
Forest canopy (%)
Understory plant (shrubs)
Area
Average Trees per ha
DBH (cm)
(ha)
(%)
Pinus merkusii, Acacia decurent
26.7
Sparsemoderate
675.0
9.0
182.88
16.17
Pinus merkusii Jungh, Acacia decurent
61.0
Moderatedense
835.0
15.3
334.15
29.55
Mixed species
86.7
Uniformly Dense
1033.3
-
102.70
9.08
2. Water quality The statisticalanalysis indicatesa relationshipin quadratic form between Sodium, Nitrite, TDS, Sulfateand organic matters with the percentage of forested area whereas this relationshipis not found between turbidity and nitrate and the percentage of forested area (Table 3). These relationships between the forested area with TDS, turbidity and other chemical materials are graphed in Figure 2 and Figure 3.
The relationship between TDS and other chemical contents with the percentage of forested areaare in line with the fact that primary sources for TDS and other chemical contents in waters are agricultural and residential runoffs, leaching of contaminated soil and point source water pollution discharge from industrial or sewage treatment plants. Runoff maycontain chemical materials such as sulfate, nitrites, nitrates, sodium, and organic matters. In agriculture (non-forested) 109
Journal of Forestry Research Vol. 10 No. 2, 2013: 106-114
area the application of inorganic fertilizers tends to deliver high concentration of nitrates. In addition the well-drained area contained the highest concentration of nitrates(Hamilton and Helsel, 1995; Coulter et al., 2004). Moreover, water from forested catchments has lower nitrates content compared to those from farmland, and residential areas(Ngoye and Machiwa, 2004). The relationship between turbidity and forested area is similar to the research found by Coulter etal. (2004). They concluded that turbidity is generally higher in the urban and mixed watersheds.Intensive agriculture in the study area by applying intensive tillage and sewage from settlement might be the source of pollutants. These pollutants are delivered to the rivers through runoff and erosion. Surface-runoff, stream flow and overland flow also increase the turbidity level of the water. Turbidity will further influence the other water quality parameters such as TDS. Tillage erosivity increases exponentially with tillage depth. Therefore reducing tillage depth can be considered as an effective soil
conservation strategy (Oost et al., 2006). The forested area reduces pollutants by taking up nutrients and, especially in saturated riparian areas,creating conditions (anaerobic soil conditions and energy source of organic material) for de-nitrification (reduction of nitrite and nitrate to N2 gas). Moreover, higher nitrate-N concentrations were found in streams with adjacent forest cover (Ice and Binkley, 2003; Messer et al., 2012). Forested area e.g. riparian foresthas also a function of maintaining water quality by protecting land from runoff and erosion. Riparian forest can reduce the carbon export to water bodies and forest buffers are effective in protecting water quality and aquatic life, particularly when it is wider than 40 m(Gundersen et al., 2010). Furthermore, riparian forests are highly valued for maintaining water quality through the retention of sediments and nutrients. In addition increases in land development will likely lead to greater erosion and sediment deposition in these areas (Jolley et al., 2010).
Table 3. Relationship of water quality parameters with the percentage of forested area Parameters Sodium (mg/l) NO2-N (mg/l) TDS (mg/l) SO4(mg/l) Organic Matters (mg/l) Turbidity (NTU) NO3-N (mg/l)
Equations Y= - 4.7236X + 186.98 Y= 2E-06X2 - 0.0004X + 0.0161 Y= 0.1623X2 - 24.898X + 1014.3 Y= 0.0472X2 - 6.875X+ 250.59 Y= -0.0078X2 + 1.0495X - 28.767 Y= 14.435e-0.022X Y = 5.6564e-0.065X Remarks:Y = water quality X = percentage of forested area (%) 0.0317X2
R2 Adj. R2 SEE 0.99 0.93 0.54 1 1 0 0.98 0.93 8.62 0.95 0.85 2.68 0.77 0.32 1.39 0.28 -0.77 0.61 0.36 -0.97 1.5 ns = not significant **= significant at 0.1 *= significant at 0.05
Sig. 0.065** 0* 0.15ns 0.22ns 0.47 ns 0.46 ns 0.40 ns
Figure 2. The relationship between forested area with TDS and turbidity of Grojokan Sewu Subwatershed
110
The Potential of Forest Buffer to Prevent Stream from Water Pollutants:a Case Study in Grojokan Sewu ..... (Nining Wahyuningrum et al.)
c
d
Figure 3. Relationship of chemical materials such as natrium (a), SO4 (b), NO3-N (c) NO2-N (d) and organic matter (d) with the percentage of forested area d
Fragment size, or length and width of riparian forest and vegetation type, and fragment location in the catchment may have critical roles in enabling forest fragments to reduce the negative impacts of agriculture. The characteristics of fragments have important consequences for stream remediation. Moreover, small forest fragments can mitigate upstream agricultural effects on water quality (Harding et al., 2006). Therefore, forestry practices e.g. urban forest can be functioned as a buffer region in urbanizing watershed to protect and to improve water quality(Matteo et al., 2006; Vyas et al., 2012). The urban forest cover substantiallyis a benefit to water quality and water quantity at a watershed scale. It was observed that previous cover reduced the problem of nonpoint source pollution from
sediment and nutrient entering into urban watershed systems. Combining riparian and roadside buffers for urban forestry can provide substantial improvements in water quality. In addition, runoff decreased under these spatial policies, thus mitigating storm water problems. Nutrient loss is reduced through tree uptake and reduction in sediment loading (Matteo et al., 2006). Existence of forest increases precipitation and water availability. Progressive deforestation, land conversion from forest to agriculture and urbanization has potentially negative consequences on global precipitation. Therefore, forest ecosystems are fundamental for providing and maintaining freshwater resources, maintaining human health, agricultural production and economic activity (Ellison et al., 2011). 111
Journal of Forestry Research Vol. 10 No. 2, 2013: 106-114
On the other hand, forest may act also as the source of chemical elements resulting from the decomposition of litter (Congyan et al., 2012) such as lignin, Nitrate, Carbon and Phosphorus (Mitchell et al., 2011; Moore et al., 2011). Congyan et al. (2012) concluded that high temperature and intensive precipitation may lead to an accelerated decomposition of litter of conifer and also of broad leave forest in the tropics. Both the litter and forest floor material favor decomposition and nutrient mineralization processes(Laganiere et al., 2010). Moreover, microbial community composition also plays an important role in decomposition (Powers et al., 2009; Bray et al., 2012). Based on the fact that water pollutants can be reduced by forest formation, it is recommended to build forest buffer strips for trapping nonpointsource pollutants and protecting surface water quality(Endreny, 2002). In this regard there are three aspects that should be considered: (1)the likelihood for excess pollutant on a watershed site is a function of the land cover type or use, (2)the likeli hood for run off to leave a water shed site is a function of the size of the upslope contributing area and the slope, and (3) the likelihood for polluted runoff to enter a surface water body is a function of the opportunities for pollution filtering within the runoff dispersal area. IV. CONCLUSION The percentage of forested area has relationships with Sodium, Nitrite, TDS, Sulfate and organic matters in quadratic forms. It implies that forested area may reduce Sodium, Nitrite, TDS, Sulfate and organic matters, and water pollutants can be reduced by forest formation as it can filter water through retention of sediments and nutrients. REFERENCES Bray, S.R., Kitajima, K. and Mack, M.C. 2012. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biology & Biochemistry 49, 30-37. 112
Congyan, W., Guomin, H., Yong, J. 2012. Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in China. Journal of Plant Ecology 5, 279-286. Coulter, C.B., Kolka, R.K. and Thompson, J.A. 2004. Water quality in agricultural, urban, and mixed land use watersheds. JAWRA Journal of the American Water Resources Association 40, 1593-1601. Dauer, D.M., Ranasinghe, J.A. and Weisberg, S.B. 2000. Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries 23, 80-96. Ellison, D., Futter, M.N. and Bishop, K. 2011. Review on the forest coverwater yield debate: from demand to supply-side thinking. Global Change Biology18, 806-820. Endreny, T.A. 2002. Mapping the Water Quality Benefits; Forest Buffer Strips. Journal of Forestry 100, 35-40. Fisher, D.S., Steiner, J.L., Endale, D.M. 2000. The relationship of land use practices to surface water quality in the Upper Oconee Watershed of Georgia. Forest Ecology and Management 128, 38-48. Foltz, R.B. 2012. A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States. Journal of Soil & Water Conservation 67, 536-544. Gundersen, P., Laure´n, A., Fine´r, L. 2010. Environmental Services Provided from Riparian Forests in the Nordic Countries. AMBIO 39, 555-566. Hairiah, K., Suprayogo, D., Widianto. 2012. Alih Guna Lahan Hutan menjadi Lahan Agroforetri Berbasis Kopi: Ketebalan Seresah, Populasi Cacing Tanah dan Makroporositas Tanah. Hamilton, P.A. and Helsel, D.R. 1995. Effects of Agriculture on Ground-Water Quality in Five Regions of the United States. Ground Water 33, 217-226. Harding, J.S., Claassen, K. and Evers, N. 2006. Can forest fragments reset physical and water quality conditions in ag ricultural
The Potential of Forest Buffer to Prevent Stream from Water Pollutants:a Case Study in Grojokan Sewu ..... (Nining Wahyuningrum et al.)
catchments and act as refugia for forest stream invertebrates? Hydrobiologia 568, 391-402. Hoekstra, A.Y. and Chapagain, A.K. 2007. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management 21, 35-48. Houlahan, J.E. and Findlay, C.S. 2004. Estimating the 'critical' distance at which adjacent landuse degrades wetland water and sediment quality. Landscape Ecology 19, 677-690. Ice, G. and Binkley, D. 2003. Forest Streamwater Concentrations of Nitrog en and Phosphorus; A Comparison with EPA's Proposed Water Quality Criteria. Journal of Forestry. Jolley, R.L., Lockaby, B.G. and Cavalcanti, G.G. 2010. Changes in riparian forest composition along a sedimentation rate gradient. Plant Ecol 210, 317-330. Laganiere, J., Pare, D. and Bradley, R.L. 2010. How does a tree species influence litter decomposition? Separating the relative contribution of litter quality, litter mixing, and forest floor conditions. Can. J. For. Res. 40, 465-475. Lenat, D.R. and Crawford, J.K. 1994. Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia 294, 185-199. Matteo, M., Randhir, T. and Bloniarz, D. 2006. Watershed-Scale Impacts of Forest Buffers on Water Quality and Runoff in Urbanizing Environment. Joumal of Water Resources Planning and Management 132, 144-152. Mattikalli, N.M. and Richards, K.S. 1996. Estimation of Surface Water Quality Changes in Response to Land Use Change: Application of The Export Coefficient Model Using Remote Sensing and Geographical Information System. Journal of Environmental Management 48, 263282. Messer, T.L., Burchell, M.R., Grabow, G.L. and Osmond, D.L. 2012. Groundwater nitrate reductions within upstream and down stream sections of a riparian buffer. Ecological Engineering 47, 297-307.
Mitchell, J.D., Lockaby, B.G. and Brantley, E.F. 2011. Influence of Chinese Privet (Ligustrumsinense)on Decomposition and Nutrient Availability in Riparian Forest, . Invasive Plant Science and Management 4, 437-447. Moore, T.R., Trofymow, J.A., Prescott, C.E. and Titus, B.D. 2011. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant Soil 339, 163-175. Ngoye, E. and Machiwa, J.F. 2004. The influence of land-use patterns in the Ruvu river watershed on water quality in the river system. Physics and Chemistry of the Earth, Parts A/B/C 29, 1161-1166. Núñez, D., Nahuelhual, L. and Oyarzún, C. 2006. Forests and water: The value of native temperate forests in supplying water for human consumption. Ecological Economics 58, 606-616. Oost, K.V., Govers, G., Alba, S.d. and Quine, T.A. 2006. Tillage erosion: a review of controlling factors and implications for soil quality. Progress in Physical Geography 30, 443-466. Powers, J.S., Montgomery, R.A., Adair, E.C. 2009. Decomposition in tropical forests: a pantropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97, 801-811. Prasetyo, W. 2013, Demi Bawang, Ketersediaan Pupuk Dijamin, Suara Merdeka, http://m.suaramerdeka.com/index.php/r ead/cetak/2013/06/28/229203, 13 September 2013. Rosegrant, M.W., Cai, X. and Cline, S.A. 2002. Global water Outlook to 2025; Averting an Impending Crisis. A 2020 Vision for Food, Agriculture, and the Environment Initiative. International Water Management Institute, Colombo, Sri Lanka. Singh, S. and Mishra, A. 2012. Spatiotemporal analysis of the effects of forest covers on water yield in the Western Ghats of peninsular India. Journal of Hydrology 446-447, 24-34. 113
Journal of Forestry Research Vol. 10 No. 2, 2013: 106-114
Suryanto, P. and Putra, E.T.S. 2012. Traditional Enrichment Planting in Agroforestry Marginal Land Gunung Kidul, Java, Indonesia. Journal of Sustainable Development 5. Susanna T.Y. Tong and Chen, W. 2002. Modeling the relationship between land use and surface water quality. Jour nal of Environmental Management 66, 377393. Tíscar, P.A. and Linares, J.C. 2011. Structure and Regeneration Patterns of Pinus nigra subsp. salzmannii Natural Forests: A Basic Knowledge for Adaptive Management in a Changing Climate. Forests 2, 1013-1030. Vyas, V., Kumar, A., Wani, S.G. and Parashar, V. 2012. Status of Riparian Buffer Zone and floodplain areas of River Narmada, India.
114
International Journal of Environmental Sciences 3. Wang, X. 2001. Integrating water-quality management and land-use planning in a watershed context. Jour nal of Environmental Management 61, 2536. Wentai, Z., Dongsheng, Y., Xuezheng, S. 2011. The Suitability of Using Leaf Area Index to Quantify Soil Loss under Vegetation Cover. J. Mt. Sci. 8, 564-570. Zisheng, Y., Huali, H. and Qiaogui, Z. 2011. Soil Erosion Control Degree of the Project of Converting Farmland to Forest in Mountainous Areas at China's Southwest Border: A Case Study in Mangshi, Yunnan Province. J. Mt. Sci. 8, 845-854.
Guidelines to authors
General requirements. Manuscript submitted for publication should contain primary research findings or synthesized report relevant to forestry issues in Indonesia, not previously published nor is being submitted for the same purpose in any other scientific journals. The manuscript will be published subsequent to critical review and approval by the Editorial Board. Format of manuscript. Manuscript should contain title, author (s) and institution (s), abstract, key words, introduction, methodology (materials and methods or approach), results and discussion, conclusion, acknowledgement (optional) and references. For reviewing purposes, the abstract should be written in two languages (English and Indonesian) . Tide. The title should be concise and clearly identifies the subject and indicates the purpose of the study. Abstract. The abstract should be self-explanatory. It must include the reason for conducting the study, objectives, methods used, results and conclusion. The length should not exceed 300 words.
Manuscript. Manuscript should be written in English and typed on an A4 paper (9.5 by II-inch). Three hard copies, including the original plus an electronic file are required. The entire manuscript (including the attachment) should not exceed 20 pages (single and half space, Garamond, font size 11). Picture (photos) or graphical illustration is encouraged. Tables should be written separately from the text and each table should include a title. All photographs, graphs and diagrams should accompany the manuscript but should not be inserted in the text. When submitting photo, a postcard size photo is required, either colored or black and white. References. The references section may include published literature and unpublished but available reports, theses and dissertations. References to unpublished data, personal communications and available reports should be included in the text in parentheses. The references list must be in alphabetical order and started with the first author. The author-year or institution-year notation should be used in the text. Journal references should include names of all authors, year, complete title, publication, volume number and inclusive pages. For books, give the names of all authors, the editor (if any), year, complete title, publisher and place of publication. Reprints. Five reprints of the journal will be sent to the first author free of charge.
Ministry of Forestry Forestry Research and Development Agency Jakarta Indonesia
ISSN 0216-0919
111111111111111111111111
9770216091987