78
DAFTAR PUSTAKA
Agung, A. I. (2013). Potensi Sumber Energi Alternatif Dalam Mendukung Kelistrikan Nasional. Jurnal Pendidikan Teknik Elektro, 2(4), 892-897. Ahmad, A. (2017). Pengembangan Katoda Udara Berbasis Limbah Batu Baterai. Universitas Mercu Buana. Jakarta. Tugas Akhir. Alfathoni, G. ( 2002). Rahasia Untuk Mendapatkan Produk Mutu Karbon Aktif Dengan Serapan Iodin Diatas 1000 MG/G. Yogyakarta. Alva, S., & Mohd, R. A. (2011). Metal-Air Cell And Method Of Fabricating Thereof. Patents. WIPO. WO 2011/139140 A2. Alva, S., Lee, Y. H., & Musa, A. (2011). Screen-Printed Potassim Ion Sensor Fabricated From Photocurable and Self-Plasticized Acrylic Film. Journal of Physical Science, 17(2), 141–150. Atkins, P. W. (1997). Kimia Fisika Jilid 2. Edisi keempat. Jakarta: Erlangga. Berndt, D., & Kiehne, H. A. (2003). Electrohcemical Energy Storage, dalam buku Battery Technology, 2nd edition hal: 1-100. Marcel Dekker. Inc. New York. Buchmann, I. (2001). Batteries in A Portabel World, Cadex Electronics Inc. Drelinkiewies, D., Kalemba-Jaje, Z., Lalik, E., & Kosydar, R. (2014). OrganoSulfonic Acids Doped Polyaniline-Based Solid Acid Cataysts for The Formation of Bio-Esters in Transesterification and Esterification Reactions. Fuel, 116, 760-771. Fadhli, H. (2015). Spektrofotomer Inframerah Transformasi Fourier. Diambil dari website: http://www.haiyul-fadhli.tk/2015/08/spektrofotometerinframerah.html Ferry, E.(2011). Spektroskopi IR Dalam Penentuan Struktur Molekul Organik. Diambil dari website: http: //endiferrysblog.blogspot.co.id/2011/11/ spektroskopi-ir-dalam-penentuan.html
http://digilib.mercubuana.ac.id/
79 Egan, D. R., Ponce, D. L., Wood, R. J. K., Jones, R. L., Stokes, K. R., & Walsh, F. C. (2013). Developments in Electrode Materials and Electrolytes for Metal--Air Batteries. Journal of Power Sources, 236, 293-310. Endalew, A. (2011). Inorganic Heterogenous Catalyst for Biodiesel Production From Vegetable Oils. Biomass And Bioenergy, 35, 3787-3809. Gelman, D., Shvartsev, B., & Ein, E.Y. (2014). Aluminum–Air Battery Based On An Ionic Liquid Electrolyte. Journal of Materials Chemistry A, 2, 20237-20242. Gelman, D., Lasman, I., Elfimcheva, S., Starosvetsky, D., & Ein, E. Y. (2015), Aluminum Corrosion Mitigation In Alkaline Electrolytes Containing Hybrid Inorganic/Organic Inhibitor System For Power Sources Applications. Journal of Power Sources, 285, 100-108. H. Li., Y. M. Chen., X. T. Ma., J. L. Shi., B. K. Zhu., & L. P. Zhu. (2011). Gel Polymer Electrolytes Based on Active PVDF (Polydimethyl Siloxane) Blending Membrane. J. Membr. Sci, 379, 379-420. Halim, R. P., et al. (2014). Pengaruh Porositas Elektroda Terhadap Tegangan Listrik Aluminium-Air Battery. Jurusan Teknik Mesin Fakultas Tenik Universitas Barawijaya. Malang. Halwani, Z. (2009). Solid Heterogenous Catalysts for Transesterification of Trigliserides With Methanol: A Review. Appl Catal A, 363, 1-10. Jake, C., Paul, A., Roel, S. S. C., Timm, L., Boris, K., Ralf., Jasim, A., & Aleksandar, K. (2012). A Critical Review of Li/Air Batteries. Journal of The Electrochemical Society, 159, R1-R30. Jang, S. L., Sun, T., K., Ruiguo, C, Nam, S. C., Meilin, L., Kyu, T. L., & Jaephil, C. (2011). Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air, Advanced Energy Materials, 1, 34-50. Jo, S. M., Kim, D. Y., & Jang, S.Y. (2012). Metal Oxide Ultrafine Fiber-Based Composite Separator with Heat Resistance and Secondary Battery Using Same. US Patent 20120003524 A1.
http://digilib.mercubuana.ac.id/
80 Jossen, A. (2015). Welcome to Batteries-A New Open Access Journal on Battery Technology and Systems, Batteries, 1, 1-2. Kartawidjaja & Abdurrochman. (2008). Pencarian Parameter Bio-batere Berbasis Asam Sitrat (C6H8O7). Prosiding Seminar Nasional Sains dan Teknologi-II 2008. Universitas Lampung. Lampung. Khah, A. M., & Ansari, R. (2009). Activated Charcoal: Preparation, characterization and Applications: A review article. International Journal of ChemTech Research. 1(4), 859-864. Lempang, M. (2014). Pembuatan dan Kegunaan Arang Aktif. Jurnal Info Teknis EBONI, 11(2), 65-80. Linden, D., & Reddy, T. B. (2011). Basic Concepts, dalam buku Linden’s Handbook of Batteries, 4th edition, 1.3-1.17. Mc Graw Hill. New York. Lorenzo, G., Elie, P., Guk, T. K., Simone., & Stefano, P. (2014). Ionic Liquid Electrolytes for Li-Air Batteries: Lithium Metal Cycling, Int. J. Mol. Sci. 15, 8122-8137. Lou, W. (2008). Efficien Production of Biodiesel From High Free Fatty AcidContaining Waste Oils Using Various Karbohydrate-Derived Solid Acid Catalysts. Biorexourse Technology, 99, 8752-8758. Malone, E., Kian, R., Daniel, C., Tood, I., Hilary, L., & Hodd, L. (2004). Freeform fabrication of zinc-air batteries and electromechanical assemblies. Rapid Prototyping Journal, 10(1), 58-69. Manjunatha, H., Suresh, G. S., & Venkatesha, T. V. (2011). Electrode Materials for Aqueous Rechargable Lithium Batteries. Journal of Solid State Electrochem, 15, 431-445. Marliyana, M., Meor, Z. M. T., Edy, H. M., Siti, M.,Wan, M. F. W. R., Wan, R. W. D., & Jaafar, S. (2015). Recent Developments in Materials For Aluminum–Air Batteries: A Review, Journal of Industrial and Engineering Chemistry, 32, 120.
http://digilib.mercubuana.ac.id/
81 Minami., Song, J. H., Yoichiro, O., Shigeyuki., Hajimu, I., Michio, S., & Akiya, K. (2005). Journal Asian of Electric Vehicles. Charging and Discharging Method of Lead Acid Batteries Bassedon Internal Voltage Control. Graduate School os Science and Engineering. Yamagata University, 3(1). Mohamad, A. A. (2008). Electrochemical Properties Of Aluminum Anodes In Gel Electrolyte Based Aluminum-Air Batteries. Corrosion Science, 50, 3475-3479. Nugraha, Y. (2016). Pengenalan Spektroskopi FTIR (Fourrier Transform Infrared). Universitas Pendidikan Indonesia. Bandung. Othman, R., W. J. Basirun., A. H. Yahaya., & A. K. Arof. (2001). Hydroponic Gels as a New Electrolyte Gelling Agent for Alkaline Zinc-Air. Journal of Power Sources, 103, 34-41. Ponec,V., Knor, Z., & Cerny, S. (1974). Adsorption on solids. London. England: Butterworth Group. Prabowo, A. (2009). Pembuatan Karbon Aktif dari Tongkol Jagung Serta Aplikasinya Untuk Adsorpsi Cu, Pb, dan Amonia. Universitas Indonesia Depok. Skripsi. Prihandoko, B., & Achmad, S. (2011). Pemanfaatan Soda Lime Silica Dalam Pembuatan Komposit Elektrolit Baterai Lithium. Disertasi Fakultas Teknik: Universitas Indonesia. Primadianto, A. (2013). Jebis-jenis Polimer dan Kegunaannya. Diambil dari website: http://alfaprimadianto.blogspot.co.id/2013/07/jenis-jenis-polimer-dankegunaanny.html Putra, G. A. (2016). Desain dan Pembuatan Baterai Alumunium Udara Menggunakan Variasi Karbon Aktif. Universitas Mercu Buana. Tugas Akhir. Qomariyah, S. N. (2011). Pengembangan Sensor Alkohol dati Bahan Polipirol Konduktif
dengan
Variasi
Kosentrasi
Dopan
Flouroborat.
Matematika dan Ilmu Pengetahuan Alam. Universitas Jember.
http://digilib.mercubuana.ac.id/
Fakultas
82 Ramadhan, D. (2016). Natrium Hidroksida (NaOH): Pengertian, Fakta dan Kegunaanya. Diambil dari website: http://www.panduankimia.net/2016/12/natriumhidroksida-naoh-pengertian.html Richard, K. M., Gerry, A. O., & Barker, B. D. (2002). The Metal-Air Cell: A Handson Approach to the Teaching of Electrochemical Technology, Int. J. Engng Ed, 18, 379-388. Rossetto, H. L., Milton, F. D. S., & Victor, C. P. (2008). Chaotropic Substances and their Effects on the Mechanical Strength of Portland Cement-Based Materials. Materials Research, 11 (2), 183-185. Sekretariat Panitia Teknis Sumber Energi, (2006), Blueprint Pengelolaan Energi Nasional 2006-2025. Kementerian Energi dan Sumber Daya Mineral. Jakarta. Sembiring, M. T., & Tuti, S. S. (2003). Arang Aktif (Pengenalan dan Proses Pembuatannya). Digitized by USU digital library. Semwal, S. (2011). Review Biodiesel Production Using Heterogenous Catalysts. Bioresource Technology. Elsevier Ltd. All rights reserved, 102, 2151-2161. Setyaningsih, H. (1995). Pengolahan Limbah batik dalam Proses Kimia dan Adsorpsi Karbon Aktif. Tesis Program Pascasarjana. Universitas Indonesia. Jakarta. Shu, Q. (2010). Synthesis of Biodiesel From Waste Vegetable Oil With Large Amounts of Free Fatty Acid Using a Carbon Based Solid Acid Catalyst. Appl Energy, 87, 2589-2596. Subadra, I., Setiaji, B., & Tahir, I. (2005). Activated Carbon Production
From
Coconut Shell With (NH4) HCO3 Activator As An Adsorbent In Virgin Coconut Oil Purification. Yogyakarta: Universitas Gadjah Mada. Sudibandriyo, M. (2003). Ph Disertation : A Generalized Ono-KondoLattice Model for High Pressure on Carbon Adsorben. Oklahoma: Oklahoma State University. Sukir. (2008). Pembuatan dan karakterisasi karbon aktif dari sekam padi. Departemen Kimia. FT-UI. Depok.
http://digilib.mercubuana.ac.id/
83 Sun, Y. (2013). Lithium Ion Conducting Membranes for Lithium-Air Batteries. Nano Energy, 2, 801-816. Sunarya & Setiabudi. (2009). Mudah dan Aktif Belajar Kimia. Pusat Perbukuan Departemen Pendidikan Nasional. Veljkovic, V. B. (2009). Kinetics of Sunflower Oil Methanolysis Catalyzed by Calcium Oxide. Fuel, 88, 554-562. Vincenzo, C., & Benedetto, B. (2014). Materials Science Aspects of Zinc–Air Batteries: A Review, Mater Renew Sustain Energy, 3, 2-12. Wahyu, F. (2012). Teori Dasar Listrik. Diambil dari website: http://blogfebrian.blogspot.co.id/2012/08/dasar-ilmu-listrik.html Wang, J. (2006). Analytical Electrochemistry. 3rd Edition, John Wiley & Sons. Inc, New Jersey. Wikipedia. (2017). Seng. Diambil dari website: https://id.wikipedia.org/wiki/Seng Wikipedia. (2017). Polimer. Diambil dari website: https://id. wikipedia.org/wiki/Polimer Zhang, S. S. (2007), A Review on the Separators of Liquid Electrolyte Li-Ion Batteries, Journal of Power Sources, 164, 351-364. Zheng, J. P., Liang, R.Y., Hendrickson, M., & Plichta, E. J. (2008). Theoretical Energy Density of Li–Air Batteries. J. Electrochem. Soc, 155, A432-A437.
http://digilib.mercubuana.ac.id/
84
LAMPIRAN A
GRAFIK TRANSITION GLASS (Tg) pTHFA 100:1
http://digilib.mercubuana.ac.id/
85
GRAFIK TRANSITION GLASS (Tg) pTHFA 100:2
http://digilib.mercubuana.ac.id/
86
GRAFIK TRANSITION GLASS (Tg) pTHFA 100:3
http://digilib.mercubuana.ac.id/
87
GRAFIK TRANSITION GLASS (Tg) pTHFA 100:4
http://digilib.mercubuana.ac.id/
88
GRAFIK TRANSITION GLASS (Tg) pTHFA 100:5
http://digilib.mercubuana.ac.id/
89
LAMPIRAN B
GRAFIK SPEKTRUM INFRARED POLY TETRAHYDROFURFURYL ACRYLATE (pTHFA)
180 160
120 100 2952.83 2875.92
80 60 40 20 4000
1728.18
%Transmittance
140
3500
3000
2500 2000 Wavenumbers (cm-1)
http://digilib.mercubuana.ac.id/
1500
1000
500