UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2014 – 2015
Evaluation of the role of digital technology on customer experience
Masterproef voorgedragen tot het bekomen van de graad van Master of Science in de Toegepaste Economische Wetenschappen
Jens Scheerlinck onder leiding van Prof. dr. Dirk Van den Poel en Matthijs Meire
UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2014 – 2015
Evaluation of the role of digital technology on customer experience
Masterproef voorgedragen tot het bekomen van de graad van Master of Science in de Toegepaste Economische Wetenschappen
Jens Scheerlinck onder leiding van
Prof. Dirk Van den Poel en Matthijs Meire
Vertrouwelijkheidsclausule PERMISSION Ondergetekende verklaart dat de inhoud van deze masterproef mag geraadpleegd en/of gereproduceerd worden, mits bronvermelding. Naam student: Jens Scheerlinck
Samenvatting
Vorig onderzoek heeft aangetoond hoe de koopervaring kan gemeten worden in een online context (Guo & Poole, 2009; Hsieh, Hsieh, Chiu, & Yang, 2014; Novak, Hoffman, & Yung, 2000; Rose, Clark, Samouel, & Hair, 2012). Daarnaast hebben verschillende studies de effecten van meerdere verkoopkanalen, zowel online als offline, op de koopervaring bestudeerd (Sousa & Voss, 2006; van Birgelen, de Jong, & de Ruyter, 2006; Wang, Song, & Yang, 2013). Er is echter nauwelijks onderzoek verricht naar het effect van verschillende toestellen waarmee online content geraadpleegd wordt. Waar vroeger enkel een desktop computer of laptop gebruikt werd, zien we dat smartphones en tablets in populariteit blijven toenemen. Daarom wordt in deze studie onderzocht of er een verschil bestaat in online koopervaring tussen traditionele toestellen zoals desktop computers of laptops enerzijds en mobiele toestellen anderzijds. Bovendien wordt er gekeken of de online koopervaring verbetert wanneer bedrijven de inhoud van hun e-commerce toepassingen aanpassen aan het toestel dat de klant gebruikt. Tot slot kijken we of het mogelijk is een carry-over effect van koopervaring te detecteren tussen verschillende toestellen, analoog aan het carry-over effect tussen online en offline kanalen dat reeds werd aangetoond in de literatuur. Om deze vragen te beantwoorden werd gebruik gemaakt van het model voor online koopervaring door Rose et al. (2012). Een vragenlijst werd verspreid die peilt naar de ervaring van consumenten met e-commerce op verschillende toestellen, gevolgd door een voorstelling van drie koopervaringen die beoordeeld dienden te worden door de respondenten. De analyse van de resultaten heeft aangetoond dat er een verschil in koopervaring bestaat, afhankelijk van welk toestel gebruikt wordt door de consument. Dit verschil werd vastgesteld voor de aankoop van hetzelfde product bij hetzelfde bedrijf. Daarnaast werd aangetoond dat een e-commerce applicatie die specifiek ontworpen is voor een mobiel toestel een significant betere koopervaring oplevert dan wanneer dit niet het geval is. Deze resultaten tonen aan dat bedrijven en e-retailers rekening dienen te houden met het gebruik van verschillende toestellen, en dat het lonend kan zijn om een specifieke applicatie te ontwikkelen voor mobiele toestellen om de online koopervaring te verbeteren. Dit wordt verder ondersteund door de bevinding dat afhankelijk van het type toestel andere verwachtingen worden geschept ten opzichte van de antecedenten van online koopervaring. Een significant carry-over effect werd in deze studie niet gevonden, wat impliceert dat het voor bedrijven belangrijk is op elk toestel een sterke online koopervaring neer te zetten, aangezien positieve ervaringen op bijvoorbeeld een desktop computer niet worden overgedragen naar een smartphone.
I
Foreword
The last eight months of my education at Ghent University have been an interesting journey, during which a lot of time was devoted to the writing of this thesis. I am extremely happy to have been able to research a topic in which I have great interest. I am convinced that both technology and customer experience have a great and lasting impact on people and companies alike. During the writing of this thesis progress was not always as fast paced as I would have liked it to be, but the end result has provided me with a great sense of fulfillment. I would like to thank everyone who has helped me to complete this thesis. In particular I wish to thank Prof. dr. Dirk Van den Poel for the opportunity to work on this interesting research topic, which has helped me to secure a job in technology consulting, and Matthijs Meire for the excellent supervision and the fast and helpful feedback. Special thanks go to Sofie Van den Abbeele for rigorously proofreading my thesis, and my parents for their continuous support and the opportunity they have given me to obtain a Master’s degree. Lastly I would like to thank all the respondents who filled in my questionnaire, without whom I would have never been able to complete this thesis.
II
Table of Contents 1. Introduction ................................................................................................................... 1 2. Literature Review ......................................................................................................... 3 2.1. Customer experience and the importance of touch points .................................. 3 2.2. Integration of different channels in the customer experience ........................... 4 2.4. Hypothesis development ................................................................................................. 6
3. Methodology ................................................................................................................... 9 3.1. Sample and participants .................................................................................................. 9 3.2. Experimental design ....................................................................................................... 10 3.3. Procedure ........................................................................................................................... 11
4. Discussion of the results .......................................................................................... 13 4.1. Differences in OCE between traditional versus mobile devices and traditional versus adapted content. .................................................................................. 13 4.2. Analyzing the carry-‐over effect between online experiences for traditional and mobile devices. ................................................................................................................. 16 4.3. Differences in antecedents and outcomes of OCE for traditional and mobile devices. ........................................................................................................................................ 17
5. Conclusions and practical implications .............................................................. 20 6. Limitations and future research ............................................................................ 22 Bibliography ..................................................................................................................... 22 Appendix 1. Measurement scales for online customer experience. ................ 1 Appendix 2. Measurement scales for outcomes of online customer experience on mobile devices ....................................................................................... 2 Appendix 3. Measurement scales for outcomes of online customer experience on traditional devices ............................................................................... 3 Appendix 4. Measurement scales for antecedents of online customer experience on mobile and traditional devices. ....................................................... 4 Appendix 5. Excerpt of survey ...................................................................................... 5
III
List of Abbreviations AES CES OCE ANOVA ANCOVA
Affective experiential state Cognitive experiential state Online customer experience Analysis of variance Analysis of covariance
IV
List of Tables 1. Availability and usage of devices ......................................................................... 10 2. Experimental design to measure OCE for different devices and content .............................................................................................................................................. 11 3. Means for traditional desktop, traditional mobile and adapted mobile experiences ...................................................................................................................... 14 4. Differences in means between traditional desktop, traditional mobile and adapted mobile experiences .............................................................................. 14 5. Analysis of the effect of confounding variables on the mean differences between the traditional desktop experience, adapted mobile experience and traditional mobile experience. ......................................................................... 15 6. Descriptive statistics regarding a difference in OCE based on the first shown experience. ......................................................................................................... 16 7. ANOVA tests for a difference in OCE based on the first shown experience .............................................................................................................................................. 17 8. Reliability of variables concerning the outcomes of OCE ............................ 17 9. Paired Samples T-‐Test for variables concerning the outcomes of OCE ... 18 10. Paired Samples T-‐Test for variables concerning the antecedents of AES .............................................................................................................................................. 18
List of Figures 1. Model for online customer experience by Rose, Clark, Samouel, & Hair .............................................................................................................................................. 9 2. Diagram with regard to the measurement of OCE for different devices and content types in the online questionnaire ................................................... 12
V
1. Introduction In the complex and rapidly changing environment we live in today, finding and sustaining a competitive advantage is harder than ever (Gosselin & Tindemans, 2012). Within this context a unique and satisfying customer experience can act as a strong differentiator and be the source of a competitive advantage (Rawson, Duncan, & Jones, 2013a). In order to develop a unique and enjoyable customer experience, the use of (digital) technologies is becoming increasingly important (Moran, Muzellec, & Nolan, 2014). At the same time a lot of touch points that help shape the total customer experience now lie beyond the control of the company itself. Instead they are taking place in the digital realm, e.g. on search engines and social media (Edelman, 2010). These so called earned media (Bao & Chang, 2014) – media not at the discretion of the company -‐ are visited through a wide array of devices: from traditional desktop computers to more and more portable devices such as laptops, tablets, smartphones and as of recent even wearable devices like smart watches and smart eyewear. In 2013 20,2% of the population worldwide was in the possession of a smartphone (“Smartphone Users Worldwide Will Total 1.75 Billion in 2014 -‐ eMarketer,” 2014). As of writing this number is expected to increase to 24,4% for 2014. By the end of 2017 this number is believed to increase to 33,8%. Meanwhile, the next growth wave for digital technologies is already emerging in the form of wearables (Drubin, 2014). Existing research has focused primarily on the dimensions of the customer experience (Guo & Poole, 2009; Hamzah, Alwi, & Othman, 2014) and on online interactions such as through a company’s website (Lee & Jeong, 2014; McKinney, Yoon, & Zahedi, 2002), a retailer’s website such as Amazon (Hamzah et al., 2014) or social media (Misopoulos, Mitic, Kapoulas, & Karapiperis, 2014; Uzunoğlu & Misci Kip, 2014). Yet little or no research has been conducted on what the effect of the devices used by consumers is on the customer experience when viewing digital content, nor whether this content should be adapted to the device that is used. Technology has already accommodated the different devices consumers’
1
use; responsive design is a well-‐known concept with web-‐ and application developers alike. Should marketers and companies be using these technologies to deliver more compelling digital experiences? In this study we will research whether there is a significant difference in customer experience for different types of devices a (potential) customer might be using and whether the content itself has an influence on this relationship.
2
2. Literature Review 2.1. Customer experience and the importance of touch points Meyer and Schwager (2007) have defined customer experience as “the internal and subjective response that customers have to any direct or indirect contact with a company” (p. 118). These direct or indirect contacts with a company are defined as touch points (Rawson et al., 2013a). Marketers used to focus efforts on awareness and closing the deal at point of purchase. But touch points have changed in both number and nature (Edelman, 2010). A lot of these touch points now reside in the online world: social media, customer reviews on retailers’ websites, expert reviews on YouTube and the companies own website are just a few examples of how customers interact with brands, products and companies in an online environment. Furthermore, a lot of these touch points are not controlled by the company itself, but instead monitored by bloggers, advocates, critics and other third parties (Moran et al., 2014; Novak et al., 2000). All of these touch points form expectations towards the brand, product or service. This implicates that all touch points have an influence on the customer experience (Meyer & Schwager, 2007). Different authors have noted the importance of taking all touch points into account simultaneously in order to fully understand customer experience (Edelman, 2010; Rawson, Duncan, & Jones, 2013b; Roggeveen & Schlesinger, 2008; Tax, McCutcheon, & Wilkinson, 2013). Analogous to touch points forming expectations and influencing the customer experience, a model of customer experience creation proposed by Verhoef et al. (2009) recognizes that experiences in alternative channels influence one another. For example, the experience a customer enjoys in a physical store will carryover to a future purchase on the website of the same company. This carry-‐ over effect of customer experience between channels had already been established by various other studies (Sousa & Voss, 2006; van Birgelen et al., 2006). However, no research has been conducted to find a similar carry-‐over effect between different devices (e.g. a laptop, tablet and smartphone). We believe a similar effect on the customer experience can be found.
3
2.2. Integration of different channels in the customer experience As the number of channels forming the customer experience increases, so does the need for the integration of various physical and virtual channels. A study by Sousa and Voss (2006) has shown that integration quality is an important determinant of overall perceived customer experience. Furthermore they have identified two dimensions determining integration quality: channel-‐service configuration and integrated interactions. Channel-‐service configuration comprises the variety of channels customers are able to choose from and their knowledge about these channels and the channels’ attributes. The integrated interaction dimension takes into account content consistency between channels as well as process consistency; conveying the same brand values throughout all processes is key here (Sousa & Voss, 2006). The importance of consistency between channels has been empirically verified for the hotel branch using congruity theory as a theoretical background (Lee & Jeong, 2014). Meanwhile, in the banking sector, evidence has been found that suggests the customer’s satisfaction with multiple service channels is important for the formation of behavioral intentions (van Birgelen et al., 2006). Research by Wang et al. (2013) shows that a substitution effect exists between online and traditional channels and that this result is consistent for different product categories. Drawing from the status-‐quo bias they prove that a consumer is less likely to switch channels after the search stage due to perceived switching costs, stemming from incomplete product information prior to purchase. This negative influence is most relevant to experiential goods, which are traditionally purchased offline and use online channels to funnel customers into their stores. Internet based virtual reality technologies (e.g. 360° tours, visualized product configurators) are believed to reduce these cross-‐channel dissynergies (Wang et al., 2013). These findings reinforce the notion that cross-‐ channel consistency in both content and process is important.
4
2.3. Digital customer experiences Customer experience in an offline setting as well as through different channels has been a widely researched topic. However, studies focusing on digital or online customer experience remain scarce. The most comprehensive model is posited by Rose et al. (2012) and is shown in figure 1. Their contributions include the discovery of perceived control as a mediating variable influencing the affective experiential state (AES) and that both AES and cognitive experiential state (CES) form the online customer experience. Previously this relation had only been found for offline customer experience. The authors also propose flow as a replacement for CES in an online context, with telepresence (being fully immersed in the experience) and challenge (a test of skill) as antecedents (Rose et al., 2012). Flow in an online context is defined as “a cognitive state experienced during online navigation” (Novak et al., 2000) and has been found to positively relate to exploratory behavior – the will to experiment and look for new things -‐ (Ghani & Deshpande, 1994; Novak et al., 2000; Webster, Trevino, & Ryan, 1993) as well as Figure 1: Model for online customer experience by Rose, Clark, Samouel, & Hair (2012, p.310)
5
purchase intention (Koufaris, Kambil, & Labarbera, 2001; Toñita Perea y Monsuwé, Benedict G.C. Dellaert, & Ko de Ruyter, 2004). Guo & Poole (2009) have proposed a model that explains the effect of perceived website complexity on customer experience using the original flow theory as introduced by Csikzentmihalyi (1988). The results across all studies agree that in an online context (perceived) challenge is an important factor influencing flow as well as telepresence.
2.4. Hypothesis development Research has provided insights into multi-‐channel customer experience – using both offline and online channels – and has shown how traditional online channels such as websites influence customer experience. As of recent, however, the number and type of devices customers use to access digital content has increased. While companies make use of multiple channels in an online context (websites, social media, retailer platforms…), customers start using multiple devices to access this content, often in conjunction. Software companies have acted on this by introducing continuity features in their operating systems. For example, both Apple and Microsoft have recently introduced features that facilitate the ‘hand-‐off’ of tasks such as e-‐mailing and file sharing from websites to desktop computers and vice versa. Moreover the number of mobile application keeps growing and the time spent in mobile applications increased by 21% between 2013 and 2014 (Hoch, 2014). We are therefore interested in how the type of device used by a customer influences their customer experience with the same product or brand. In this study we will research differences in customer experience between traditional personal computers (desktops and laptops) and mobile devices (tablet computers and smartphones), based on the content a user is exposed to. In our research we will use the conceptual model for online customer experience as posited by Rose et al. (2012). To make our results more actionable we will also
6
gauge amongst consumers which specific features enhance their experience on a traditional device and a mobile device respectively. Specifically, we will test the following hypotheses: H1 Using traditional content – defined as the average online content not adapted to any particular screen size or device, but originally intended to be viewed on a desktop computer or laptop – online customer experience (OCE) using a traditional device (desktop or laptop) is different from viewing the same content on a mobile device (smartphone or tablet). We expect the OCE for mobile devices to be lower, possibly due to reduced ease-‐of-‐use caused by excessive scrolling necessary to view the content. H2 When content is adapted to the device a customer is using -‐ as in specifically designed and developed for use on a particular type of device, e.g. a smartphone -‐ , we expect no significant difference in OCE when using a traditional device versus a mobile device. H3 People enjoying a positive customer experience on a mobile device are more likely to have a positive experience with the same company or product on a traditional device and vice versa. In other words, a carry-‐over effect of customer experience exists between traditional-‐ and mobile devices. H4 We hypothesize that consumers have different purchase intentions for a particular product or service dependent on the device they are using. We expect to see higher purchase intentions for traditional devices. H5 Furthermore we expect to see differences in the importance of antecedents of the affective experiential state, which ultimately form the online customer
7
experience. Implicating that different features are important for consumers depending on which device they are using. The above hypotheses will be tested using an online survey.
8
3. Methodology 3.1. Sample and participants Research was conducted in the Flemish Region of Belgium. An online questionnaire was distributed through the social network Facebook and the popular Flemish message board 9lives.be. The questionnaire was written in Dutch. Respondents were recruited on a self-‐selection basis. In total 260 respondents completed the questionnaire. The division in gender male-‐female was respectively 51%-‐49%, while 72% of respondents were between the age of 18 and 25. Also, 68% of respondents indicated that they have received higher education (college or university). Notable results in terms of usage are the high availability of laptops and smartphones. 94.31% of respondents indicated they have a laptop available to them, while 84.83% of respondents have a smartphone available. The 2015 global results are respectively 84% and 85%, while the 2015 Belgian results are respectively 83% and 68% (“DigitasLBi‘s 2015 Connected Commerce study,” 2015). The discrepancy between the Belgian results according to DigitasLBi’s (2015) survey and this study can be explained by the smaller sample size of this study as well as the large portion of respondents between the age of 18 and 25. When comparing the usage of different devices for search purposes, it is apparent that again the laptop and smartphone are the most popular devices. For laptops, 42.41% of respondents search for products, services or companies on a daily basis. While 50,24% of respondents use their smartphone every day to search for products, services or companies. For purchasing products or services online, 63.74% of respondents use their laptop at least once per month. 22.98% of smartphone owners use their device at least once a month to make an online purchase.
9
Table 1: availability and usage of devices Availability of devices to respondents Desktop
Laptop
Tablet
Smartphone
46,91%
94,31%
55,92%
84,83%
Usage of devices to search for products, services and companies
Never
Yearly
Monthly
Weekly
Daily
Desktop
36,96%
13,03%
20,85%
17,30%
11,85%
Laptop
4,97%
2,13%
14,69%
35,78%
42,41%
Tablet
28,91%
9,95%
22,27%
23,22%
15,64%
Smartphone
13,74%
2,37%
9,00%
24,64%
50,24%
Usage of devices to purchase products and companies
Never
Yearly
Monthly
Weekly
Daily
Desktop
57,82%
17,77%
10,19%
4,98%
2,13%
Laptop
12,56%
23,70%
48,34%
11,61%
3,79%
Tablet
69,43%
10,66%
14,22%
3,79%
1,90%
Smartphone
65,88%
11,14%
13,74%
5,21%
4,03%
As an incentive for filling out the questionnaire two film tickets were raffled amongst respondents.
3.2. Experimental design The main goal of the questionnaire was to assess online customer experience for different devices. Therefore the variable ‘online customer experience’ (OCE) was measured on three levels: desktop browser experience, smartphone browser experience and smartphone application experience. To measure the OCE on the three aforementioned levels, three videos were created. Each video contains footage of creating a reservation on the travel website booking.com, followed by ordering a book on amazon.com, a popular e-‐retailer. They respectively represent the online purchase of a service and a product. The video format was chosen as opposed to redirecting respondents to an actual website so that the checkout process could be included in order to measure the full online customer experience. The videos were shown in random order. Furthermore, a within-‐ subjects design was used, every video was shown to every respondent. An overview is shown in table 2.
Additionally five antecedents and three outcome variables were measured, based on the work by Rose et al. (2012). The outcome variables ‘online shopping
10
Table 2: Experimental design to measure OCE for different devices and content.
Video 1
Video 2
Video 3
Dependent variable
OCE
OCE
OCE
Device
Desktop
Smartphone
Smartphone
Content
Booking.com website
Booking.com mobile
Booking.com website
Amazon.com website
application
Amazon.com website
Amazon.com mobile application Content type
Traditional – not
Adapted to device
adapted Level of OCE measured
Traditional – not adapted
Traditional desktop
Adapted mobile online
Traditional mobile
online customer
customer experience
online customer
experience Display order
experience Randomized
satisfaction’ ‘trust in online shopping’ and ‘online repurchase intention’ were measured on two levels using a within-‐subjects design: traditional device (desktop/laptop) and mobile device (smartphone/laptop). The same design was used to measure five antecedents: ‘ease-‐of-‐use’, ‘customization’, ‘connectedness’, ‘aesthetics’ and ‘perceived benefits’.
3.3. Procedure After a brief introduction text respondents were prompted to answer a set of questions with regard to which devices they have access to and how they use them. Respondents were asked whether they have access to a desktop computer, laptop, tablet or smartphone. Then, respondents had to order these devices from most frequently used to least frequently used. If a device was not available to them, participants were asked to imagine how often they would use it in case it were. Next, two questions were asked to measure how frequently they use each device to either search for products, services or companies online or to purchase products or services online. A five-‐point scale was used containing the following options: never, yearly, monthly, weekly and daily. Afterwards, respondents were briefed about the scenario. Three videos were presented to them in random order. Each consisted of booking a holiday followed by purchasing a book. Following each video, respondents were asked to
11
rate their online customer experience using scales that measure affective experiential state (AES) and cognitive experiential state (CES). AES and CES are the two components that form online customer experience (Rose et al., 2012). AES was measured using eight items, each on a seven-‐point scale, which can be found in appendix 1. CES was also measured on a seven-‐point scale using the concept of flow (appendix 1). Respondents were asked to which extent they did, or did not, experience flow during the online shopping experience that was displayed. Showing videos was preferred over instructing respondents to visit a particular website and browse around themselves in order to standardize the experiences. Figure 2: Diagram with regard to the measurement of OCE for different devices and content types in the online questionnaire.
Subsequently, respondents were asked to answer a set of questions with regard to the antecedents and outcomes of online customer experience for both traditional and mobile devices separately, based on their personal experience with them. A five-‐point Likert scale was used to measure the outcome constructs (appendix 2 and 3), while participants were asked to rate the importance of different antecedents on a scale ranging from 0 to 100 (appendix 4). To conclude the questionnaire, respondents were asked about their gender, age and level of education. After which they were thanked for their cooperation. A full excerpt of the questionnaire can be found in appendix 5.
12
4. Discussion of the results 4.1. Differences in OCE between traditional versus mobile devices and traditional versus adapted content. In order to test the first two hypotheses, concerning the difference in OCE between a traditional desktop experience, adapted mobile experience and traditional mobile experience, two Repeated Measures ANOVA tests were executed: one for CES as dependent variable and one for AES as dependent variable, which are the components of OCE. The mean scores for these variables were used to compare traditional desktop to traditional mobile and adapted mobile experiences. CES was measured using the concept of flow (Rose et al., 2012), while AES was measured using eight items as found in previous research (source). Both components were measured using seven-‐point scales. The mean score on the eight AES items is used in the analysis. Reliability of the AES measurement items was verified for the traditional desktop experience (Cronbach’s α = .829), traditional mobile experience (Cronbach’s α = .799) and adapted mobile experience (Cronbach’s α = .818). Results show that a significant difference exists between a traditional desktop and traditional mobile experience. The traditional desktop experience was rated significantly higher in terms of both CES (F(2, 480) = 19.943, p < .001) and AES (F(2, 480) = 29.837, p < .001). Equally, a significant difference was found for CES (F(2, 480) = 19.943, p = .013) and AES (F(2, 480) = 29.837, p < .001) between the traditional desktop experience and adapted mobile experience, in favor of the traditional desktop experience. Using OCE as dependent variable, calculated as the mean of CES and AES, results are consistent. Again, the traditional desktop experience is rated significantly higher versus the traditional mobile experience (F(2, 480) = 15.963, p < .001) and the adapted mobile experience (F(2, 480) = 15.963, p = .001). An overview of the results can be found in tables 3 and 4. Based on these findings it is possible to confirm H1; the traditional desktop OCE (using a desktop or laptop) is rated significantly higher than the traditional mobile OCE (using a smartphone or tablet). However, H2 cannot be confirmed.
13
The traditional desktop OCE was rated significantly higher than the adapted mobile OCE, while no significant difference was expected. Table 3: means for traditional desktop, traditional mobile and adapted mobile experiences.
CES
AES
OCE
Experience
Mean
Std. Deviation
Mean
Std. Deviation
Mean
Std. Deviation
Traditional Desktop
3,66
1,706
4,166
0,87595
3,9131
1,15179
Adapted mobile
3,37
1,777
3,980
0,86918
3,6748
1,18309
Traditional mobile
3,00
1,614
3,794
0,80908
3,3989
1,07554
Table 4: differences in means between traditional desktop, traditional mobile and adapted mobile experiences. CES
Mean Difference
Sig.
I
J
(I -‐ J)
Traditional desktop experience
Adapted mobile experience
.290
.013
Traditional mobile experience
.656
.000
Adapted mobile experience
Traditional desktop experience
-‐.290
.013
Traditional mobile experience
.365
.002
Traditional mobile experience
Traditional desktop experience
-‐.656
.000
Adapted mobile experience
-‐.365
.002
AES
Mean Difference
Sig.
I
J
(I -‐ J)
Traditional desktop experience
Adapted mobile experience
.186
.000
Traditional mobile experience
.373
.000
Adapted mobile experience
Traditional desktop experience
-‐.186
.000
Traditional mobile experience
.187
.001
Traditional mobile experience
Traditional desktop experience
-‐.373
.000
Adapted mobile experience
-‐.187
.001
OCE
Mean Difference
Sig.
I
J
(I -‐ J)
Traditional desktop experience
Adapted mobile experience
.238
.001
Traditional mobile experience
.514
.000
Adapted mobile experience
Traditional desktop experience
-‐.238
.001
Traditional mobile experience
.276
.000
Traditional mobile experience
Traditional desktop experience
-‐.514
.000
Adapted mobile experience
-‐.276
.000
Using Repeated Measures ANCOVA these results were tested for the effect of confounding variables. Next to the dependent variable OCE, the analysis included the independent variables frequency of search and purchase on different devices as well as socio-‐demographic variables such as gender, age and level of
14
education. The between-‐subjects factors ‘purchase frequency on smartphones’ (F(4, 236) = 2.755, p = .029) and ‘purchase frequency on laptop’ (F(4, 236) = 4.239, p = .002) had a statistically significant effect on the measured level of OCE, our dependent variable. When accounting for purchase frequency on laptops, the difference between the traditional mobile experience and the adapted mobile experience was not significant (p = .412). This does not contradict earlier findings about H1 and H2. Taking the purchase frequency on smartphones into consideration, no significant difference was found between the traditional desktop experience and the adapted mobile experience (p = 1.000). The higher the purchase frequency on smartphones, the higher the adapted mobile OCE was rated. Respondents indicating that they never use their smartphone to make online purchases rated the adapted mobile OCE on average 3.5185 on a 7-‐point scale, while respondents using their smartphone weekly to make online purchases rated the adapted mobile OCE 4.5625 on average. This result suggests that it is possible to confirm H2 -‐ no significant difference in OCE exists between a traditional desktop experience and adapted mobile experience -‐ for people that are accustomed to using their smartphone for online purchases. This indicates that a learning curve might exist for online purchases on smartphones, which has to be overcome in order to rate the adapted mobile OCE equally high as the traditional desktop OCE. Table 5: analysis of the effect of confounding variables on the mean differences between the traditional desktop experience, adapted mobile experience and traditional mobile experience.
F
p
Gender (male or female)
F(1, 220) = 2.562
p = .111
Age
F(4, 217) = 1.197
p = .313
Level of education
F(3, 218) = .502
p = .681
Search frequency, desktop
F(4, 236) = 2.372
p = .053
Search frequency, laptop
F(4, 236) = 1.102
p = .356
Search frequency, tablet
F(4, 236) = 2.185
p = .071
Search frequency, smartphone
F(4, 236) = 1.552
p = .188
Purchase frequency, desktop
F(4, 236) = 1.310
p = .267
Purchase frequency, laptop
F(4, 236) = 4.239
p = .002
Purchase frequency, tablet
F(4, 236) = .705
p = .589
Purchase frequency, smartphone
F(4, 236) = 2.755
p = .029
15
4.2. Analyzing the carry-‐over effect between online experiences for traditional and mobile devices. In order to detect a possible carry-‐over effect between online experiences, the effect of display order on the device-‐ and content dependent OCE was analyzed. Three videos were displayed, giving six possible display orders. Using display order as a between-‐subjects independent factor in a Repeated Measures ANCOVA analysis, with OCE as the dependent factor over three experiences yielded no significant result (F(5, 235) = .542, p = .744). The variable display order was then recoded to reduce the possible combinations from six to three, allowing for a less complex interpretation. The new variable indicated which experience (traditional desktop OCE, adapted mobile OCE or traditional mobile OCE) was shown first. The Repeated Measures ANCOVA analysis was run again, indicating that the variable first experience is not a significant between-‐subjects factor (F(2, 238) = .444, p = .642). Finally, a One-‐Way ANOVA test was conducted with traditional desktop OCE, adapted mobile OCE and traditional mobile OCE as dependent variables and first shown experience as independent variable. Again, there was no significant difference in OCE for any of the displayed experiences with the first shown experience as between-‐subjects factor. Thus, there is no evidence supporting the existence of a significant carry-‐over effect of OCE between devices. Therefore it is not possible to confirm H3. Table 6: Descriptive statistics regarding a difference in OCE based on the first shown experience. First shown
experience
Traditional Desktop OCE
Std. Mean
Deviation Std. Error Minimum Maximum
Traditional Desktop 92
3,7262
1,11133
,11586
1,13
6,63
Adapted Mobile
80
3,9852
1,10608
,12366
1,75
6,44
Traditional Mobile 88
4,0362
1,20533
,12849
1,50
6,00
260 3,9108
1,14642
,07110
1,13
6,63
Total
N
Adapted Mobile
Traditional Desktop 80
3,6586
1,20102
,13428
1,13
6,63
OCE
Adapted Mobile
94
3,5047
1,07561
,11094
1,63
5,75
Traditional Mobile 90
3,7951
1,21217
,12777
1,00
6,00
264 3,6503
1,16379
,07163
1,00
6,63
Total
Traditional Mobile Traditional Desktop 78
3,3566
1,07218
,12140
1,19
6,06
OCE
3,5313
1,09501
,12399
1,31
5,63
Traditional Mobile 104 3,3702
1,09810
,10768
1,44
6,00
Total
1,08797
,06747
1,19
6,06
Adapted Mobile
78
260 3,4144
16
Table 7: ANOVA tests for a difference in OCE based on the first shown experience.
F
p
Traditional Desktop OCE
F(2, 257) = 1.900
p = .152
Adapted Mobile OCE
F(2, 261) = 1.440
p = .239
Traditional Mobile OCE
F(2, 257) = .644
p = .526
4.3. Differences in antecedents and outcomes of OCE for traditional and mobile devices. First, the reliability of the variables with regard to the outcomes of OCE was established. The results are displayed in table 8. Based on these findings we can conclude that the constructs ‘trust in online shopping’, ‘online shopping satisfaction’ and ‘online repurchase intention’ are internally consistent for both traditional and mobile devices. Table 8: Reliability of variables concerning the outcomes of OCE. Traditional devices
Mobile devices
Construct
Cronbach’s α
Construct
Cronbach’s α
Trust in online shopping
.770
Trust in online shopping
.810
Online shopping
.791
Online shopping
.837
satisfaction Online repurchase
satisfaction .832
intention
Online repurchase
.831
intention
In order to analyze differences between the outcomes of OCE for traditional and mobile devices, a paired samples T-‐Test was executed. The results are given in table 9. This test allows us to conclude that there is a significant difference between traditional and mobile devices concerning the outcome variables of OCE. Trust in online shopping, online shopping satisfaction and online repurchase intention are all significantly higher on traditional devices than on mobile devices. This result further aids to supports the earlier findings for H1 and H2, since a higher OCE directly leads to higher trust in online shopping, online shopping satisfaction and online repurchase intention (Rose et al., 2012). Moreover it is possible to confirm H4, purchase intentions differ based on the device used and purchase intentions for traditional devices are still higher than those for mobile devices.
17
Table 9: Paired Samples T-‐Test for variables concerning the outcomes of OCE.
Mean
t(df)
p
Trust in online shopping
Mtraditional = 3.2970
t(185) = -‐6.181
< .001
t(185) = -‐12.855
< .001
t(185) = -‐14.574
< .001
Mmobile = 2.9987 Online shopping
Mtraditional =3.8333
satisfaction
Mmobile = 3.1331
Online repurchase
Mtraditional = 3.9104
intention
Mmobile = 2.6792
With regard to the antecedents of OCE, respondents were asked to rate the importance of each of the affective experiential state antecedents on a 0-‐100 scale. The results in table 10 show that only the variables ‘connectedness’ and ‘perceived benefits’ differ significantly for traditional and mobile devices. Connectedness – as in connecting with other users, for example through customer reviews or social media sharing options – is perceived more important on traditional devices than on mobile devices, while perceived benefits (e.g. timesaving, availability of information, etc.) for traditional online shopping is rated as more important than perceived benefits for mobile online shopping. The difference in the importance of perceived benefits for the users could be attributed to the existence of a learning effect for mobile devices, since the results indicate that mobile devices are less frequently used for online purchase. An alternative explanation could be that shopping on a mobile device is regarded more as a game, thus lowering the importance of perceived benefits like timesaving over offline shopping. Drawing conclusions for the antecedent connectedness is difficult due to the relatively marginal difference in importance Table 10: Paired Samples T-‐Test for variables concerning the antecedents of AES.
Mean
t(df)
p
Ease-‐of-‐use
Mtraditional = 86.4080
t(200) = -‐.176
= .860
t(190) = -‐1.371
= .172
t(180) = -‐2.452
= .015
t(196) = 0.82
= .935
t(196) = -‐3.782
< .001
Mmobile = 86.1990 Customization
Mtraditional =57.3455 Mmobile = 55.3979
Connectedness
Mtraditional = 39.9061 Mmobile = 37.1934
Aesthetics
Mtraditional = 70.0152 Mmobile = 70.1066
Perceived benefits
Mtraditional = 76.4315 Mmobile = 71.6294
18
(Mtraditional = 39.9061 versus Mmobile = 37.1934). Notwithstanding, one might argue that when using a mobile device, people are more focused on the main goal (purchasing a product or service) and don’t want to be distracted by connecting or relating with other consumers. Supporting this interpretation with data, however, lies beyond the scope of this study.
19
5. Conclusions and practical implications The goal of this study was to contribute to the research of online customer experience by evaluating how different devices such as desktops, laptops, tablets and smartphones and different types of content like a traditional website or a device-‐specific application influence the online customer experience. This research uses existing models (Guo & Poole, 2009; Novak et al., 2000; Rose et al., 2012; Sousa & Voss, 2006) to analyze these differences. The conclusions and practical implications of this study are relevant for all companies that currently serve their customers via one or more digital channels and companies that are looking to do so in the future. First, a difference in online customer experience was established between traditional devices (desktop or laptop) and mobile devices (smartphone or tablet). For the same content – in this research a traditional website was used – the online customer experience was lower for mobile device users. While adapted content (a device-‐specific application) received a significantly better online customer experience rating than the aforementioned traditional website on a mobile device. For users frequently making purchases on a smartphone, the difference in online customer experience between a traditional website and an adapted mobile application was insignificant. Therefore, companies looking to provide a consistently high online customer experience across different devices should put effort towards optimizing their e-‐commerce specifically for each type of device. When doing so, companies should first analyze how customers use their e-‐commerce tool by conducting an experiment of their own, or by analyzing online traffic with the help of tools like Google Analytics. In practice, different options exist for adapting content to different devices. From making an existing website responsive -‐ where the existing website adapts itself to the device a customer is using -‐ to creating a dedicated application for mobile devices, like the examples Booking.com and Amazon used in this study have done. This study was unable to detect a carry-‐over effect of online customer experience from one device to another. This entails that a low or high online customer experience on one device has no predictive power for the online customer
20
experience on a different device, used subsequently. This leads to two possible implications. First, a bad online customer experience on one device does not necessarily lower the online customer experience on another device. Effectively providing the company with a second chance. Secondly, it is important to provide an excellent online customer experience on each device a customer might use, because a positive online customer experience is not carried over either. Therefore a bad online customer experience on a specific device might lead to lost sales. Analyzing the outcomes of online customer experience shows that online (re)purchase intention is still significantly lower for mobile devices like smartphones and tablets. This is caused by the lower online customer experience on these devices, as this negatively impacts the online repurchase intention (Rose et al., 2012). With smartphone users growing to an expected 33.8% worldwide by 2017 (“Smartphone Users Worldwide Will Total 1.75 Billion in 2014 -‐ eMarketer,” 2014), this should serve as another incentive to adapt e-‐ commerce content to specific types of devices such as smartphones, by means of a mobile application or responsive website. In terms of antecedents of online customer experience, two differences were found between traditional and mobile devices. A small difference was found for the antecedent connectedness. Connectedness is perceived slightly less important on mobile devices than on traditional devices. However, suggesting omitting features concerning connectedness on mobile devices would be premature, but perhaps their position could be made less prominent. A suggestion for companies is to conduct their own analysis on the importance of antecedents of online customer experience for their specific e-‐commerce tool, in order to determine which aspects should receive more attention on traditional websites and mobile applications respectively.
21
6. Limitations and future research The findings in this study are somewhat constrained by limitations in the research. Some of these limitations provide opportunities for future research. The geographic region in which this study was conducted is limited to the Flemish speaking region of Belgium. The same research may yield different results in other geographic areas due to differences in availability and usage of devices. Next, a large portion of respondents (72%) was between the age of 18 and 25. This is not representative for the actual population. Conducting a research with a quota-‐based sample instead of a convenience sample will resolve this issue. Lastly, for testing the first two hypotheses concerning a difference in online customer experience for different devices and different types of content, a between-‐subjects design would be preferable over a within-‐subjects design in order to limit learning effects and the effects of boredom. Furthermore, a notable result of this study is that while 50.24% of respondents use a smartphone to search for products, services or companies on a daily basis, only 22.98% of them indicate making a purchase on their smartphone at least once a month. The purchase frequency for laptops is almost three times higher while the number of respondents using the device to search for products on a daily basis is lower. Future studies could try to identify in detail what the causes of this discrepancy are. In general it is important that more research is conducted towards the role of mobile devices on the customer experience and other aspects of marketing, because of their increasing popularity and their as of yet unexplored capabilities to increase overall customer experience and customer satisfaction.
22
Bibliography Bao, T., & Chang, T. S. (2014). Why Amazon uses both the New York Times Best Seller List and customer reviews: An empirical study of multiplier effects on product sales from multiple earned media. Decision Support Systems, 67, 1–8. http://doi.org/10.1016/j.dss.2014.07.004 DigitasLBi‘s 2015 Connected Commerce study. (2015). Retrieved May 12, 2015, from http://www.digitaslbi.com/connectedcommerce2015data/#/ Drubin, C. (2014). Internet of Things, Smart Home and, Wearables Will Drive Next Growth Wave. Microwave Journal, 57(12), 65–65. Edelman, D. C. (2010). Branding in The Digital Age: You’re Spending Your Money In All the Wrong Places. Harvard Business Review, 88(12), 62–+. Ghani, J. A., & Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human-‐computer interaction. The Journal of Psychology, 128(4), 381. Gosselin, D., & Tindemans, B. (2012). Toekomstmakers: hoe besturen bij onzekerheid?. LannooCampus. Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: a test of alternative models. Information Systems Journal, 19(4), 369–390. http://doi.org/10.1111/j.1365-‐2575.2007.00292.x Hamzah, Z. L., Alwi, S. F. S., & Othman, M. N. (2014). Designing corporate brand experience in an online context: A qualitative insight. Journal of Business Research, 67(11), 2299–2310. http://doi.org/10.1016/j.jbusres.2014.06.018
VI
Hoch, D. (2014, September 16). Time in App Increases by 21% Across All Apps. Retrieved May 18, 2015, from http://info.localytics.com/blog/time-‐in-‐ app-‐increases-‐by-‐21-‐across-‐all-‐apps Hsieh, J.-‐K., Hsieh, Y.-‐C., Chiu, H.-‐C., & Yang, Y.-‐R. (2014). Customer Response to Web Site Atmospherics: Task-‐relevant Cues, Situational Involvement and PAD. Journal of Interactive Marketing, 28(3), 225–236. http://doi.org/10.1016/j.intmar.2014.03.001 Koufaris, M., Kambil, A., & Labarbera, P. A. (2001). Consumer Behavior in Web-‐ Based Commerce: An Empirical Study. International Journal of Electronic Commerce, 6(2), 115. Lee, S. (Ally), & Jeong, M. (2014). Enhancing online brand experiences: An application of congruity theory. International Journal of Hospitality Management, 40, 49–58. http://doi.org/10.1016/j.ijhm.2014.03.008 McKinney, V., Yoon, K., & Zahedi, F. (2002). The measurement of web-‐customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13(3), 296–315. http://doi.org/10.1287/isre.13.3.296.76 Meyer, C., & Schwager, A. (2007). Understanding customer experience. Harvard Business Review, 85(2), 116–+. Misopoulos, F., Mitic, M., Kapoulas, A., & Karapiperis, C. (2014). Uncovering customer service experiences with Twitter: the case of airline industry. Management Decision, 52(4), 705–723. http://doi.org/10.1108/MD-‐03-‐ 2012-‐0235 Moran, G., Muzellec, L., & Nolan, E. (2014). Consumer Moments of Truth In the Digital Context How “Search” and “E-‐Word of Mouth” Can Fuel Consumer
VII
Decision Making. Journal of Advertising Research, 54(2), 200–204. http://doi.org/10.2501/JAR-‐54-‐2-‐200-‐204 Novak, T. P., Hoffman, D. L., & Yung, Y.-‐F. (2000). Measuring the Customer Experience in Online Environments: A Structural Modeling Approach. Marketing Science, 19(1), 22–42. http://doi.org/10.1287/mksc.19.1.22.15184 Rawson, A., Duncan, E., & Jones, C. (2013a). The Truth About Customer Experience. Harvard Business Review, 91(11), 26–26. Rawson, A., Duncan, E., & Jones, C. (2013b). Touchpoints matter, but it’s the full journey that really counts. Harvard Business Review, 91(9), 90–+. Roggeveen, A., & Schlesinger, L. (2008). Customer Experience Creation: Determinants, Dynamics and Management Strategies. Journal of Retailing. Retrieved from http://digitalknowledge.babson.edu/mktgpw/1 Rose, S., Clark, M., Samouel, P., & Hair, N. (2012). Online Customer Experience in e-‐Retailing: An empirical model of Antecedents and Outcomes. Journal of Retailing, 88(2), 308–322. http://doi.org/10.1016/j.jretai.2012.03.001 Smartphone Users Worldwide Will Total 1.75 Billion in 2014 -‐ eMarketer. (2014, January 16). Retrieved November 3, 2014, from http://www.emarketer.com/Article/Smartphone-‐Users-‐Worldwide-‐Will-‐ Total-‐175-‐Billion-‐2014/1010536 Sousa, R., & Voss, C. A. (2006). Service Quality in Multichannel Services Employing Virtual Channels. Journal of Service Research, 8(4), 356–371. http://doi.org/10.1177/1094670506286324 Tax, S. S., McCutcheon, D., & Wilkinson, I. F. (2013). The Service Delivery Network (SDN): A Customer-‐Centric Perspective of the Customer Journey.
VIII
Journal of Service Research, 16(4), 454–470. http://doi.org/10.1177/1094670513481108 Toñita Perea y Monsuwé, Benedict G.C. Dellaert, & Ko de Ruyter. (2004). What drives consumers to shop online? A literature review. International Journal of Service Industry Management, 15(1), 102–121. http://doi.org/10.1108/09564230410523358 Uzunoğlu, E., & Misci Kip, S. (2014). Brand communication through digital influencers: Leveraging blogger engagement. International Journal of Information Management, 34(5), 592–602. http://doi.org/10.1016/j.ijinfomgt.2014.04.007 Van Birgelen, M., de Jong, A., & de Ruyter, K. (2006). Multi-‐channel service retailing: The effects of channel performance satisfaction on behavioral intentions. Journal of Retailing, 82(4), 367–377. http://doi.org/10.1016/j.jretai.2006.08.010 Wang, Q., Song, P., & Yang, X. (2013). Understanding the substitution effect between online and traditional channels: evidence from product attributes perspective. Electronic Markets, 23(3), 227–239. http://doi.org/10.1007/s12525-‐012-‐0114-‐2 Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-‐computer interactions. Computers in Human Behavior, 9(4), 411–426. http://doi.org/10.1016/0747-‐5632(93)90032-‐N
IX
Appendix 1. Measurement scales for OCE. Construct
Reference
Adapted Scale (English)
Adapted Scale (Dutch)
Cognitive
• The word “flow” is used to describe
• Het woord “flow” wordt gebruikt om
Experiental State
a state of mind sometimes
een gemoedstoestand te beschrijven
(Flow)
experienced by people who are
die soms ervaren wordt door mensen
deeply involved in some activity. One
die diep betrokken zijn in een
example of flow is the case where a
activiteit. Een voorbeeld van flow is
professional athlete is playing
het geval waar een professionele
exceptionally well and achieves a
atleet uitstekend aan het spelen is en
state of mind where nothing else
in een gemoedstoestand komt waar
matters but the game; he or she is
niets telt behalve het spel. Hij of zij is
completely and totally immersed in it.
er compleet in ondergedompeld. Niet
The experience is not exclusive to
alleen atleten ervaren dit; veel
athletics; many people report this
mensen melden deze
state of mind when playing games,
gemoedstoestand wanneer ze
engaging in hobbies, or working.
videospellen spelen, zich engageren in
Activities that lead to flow completely
hun hobby of aan het werk zijn.
captivate a person for some period of
Wanneer iemand flow ervaart is het
time. When one is in flow, time may
vaak zo dat tijd lijkt stil te staan, en de
seem to stand still, and nothing else
rest van de wereld lijkt te verdwijnen.
seems to matter. Flow may not last for
Flow hoeft niet noodzakelijk lang te
a long time on any particular
duren en kan komen en gaan. Flow
occasion, but it may come and go over
wordt beschreven als een aangename
time. Flow has been described as an
ervaring.
intrinsically enjoyable experience.
• Antwoord op de volgende vraag
• Thinking about your most recent
terugdenkend aan je meest recente
Internet shopping experience,
internet aankoop op een mobiel
respond to the following (1–7 scale):
toestel (1-‐7 schaal):
• When Internet shopping I have
• Ik heb flow ervaren tijdens het
experienced flow...When Internet
internetshoppen … Ik heb geen flow
shopping I have never experienced
ervaren tijdens het internetshoppen.
flow. Affective Experiental State
Using the rating scale below indicate
Duidt op onderstaande schalen aan
the feelings you had following your
hoe u zich voelde tijdens de getoonde
most recent online shopping
online koopervaringen.
experience (1–7 scale):
Ongelukkig
Gelukkig
Unhappy
Happy
Ontevreden
Tevreden
Melancholic
Contented
Vervelend
Plezierig
Annoyed
Pleased
Sloom
Enthousiast
Sluggish
Frenzied
Kalm
Levendig
Calm
Excited
Ontspannen
Geprikkeld
Relaxed
Stimulated
Begeleid
Autonoom
Guided
Autonomous
Beïnvloed
Invloedrijk
Influenced
Influential
1
Appendix 2. Measurement scales for outcomes of OCE on mobile devices Construct
Reference
Adapted Scale (English)
Adapted Scale (Dutch)
Trust in Online
• Internet shopping is reliable.
• Mobiel internet shoppen is
• In general I can rely on Internet
betrouwbaar.
vendors to keep the promises that
• In het algemeen kan ik vertrouwen
they make.
op de beloftes die gemaakt worden
• Internet shopping can be trusted,
door verkopers op mobiele internet
there are no uncertainties.
shopping applicaties.
• Internet shopping is a trustworthy
• Mobiel internet shoppen is te
experience.
vertrouwen, er zijn geen
Shopping
onzekerheden.
• Mobiel internet shoppen is een vertrouwenswaardige ervaring.
Online Shopping
Satisfaction
• I am satisfied with my overall
• Ik ben tevreden met de algemene
experiences of Internet shopping.
koopervaring wanneer ik winkel op
• I am satisfied with the pre-‐purchase
mijn mobiel toestel.
experience of Internet shopping
• Ik ben tevreden met de ervaring
websites (e.g., consumer education,
voorafgaand aan de aankoop bij
product search, quality of information
mobiel internet shoppen (bv.
about products, product comparison).
beschikbaarheid en kwaliteit van
• I am satisfied with the purchase
informative, zoeken naar producten,
experience of Internet shopping
vergelijken van producten).
websites (e.g., ordering, payment
• Ik ben tevreden met de
procedure).
koopervaring bij mobiel online
• I am satisfied with the post-‐
winkelen (bv. bestel-‐ en
purchase experience of Internet
betaalprocedure).
shopping websites (e.g., customer
• Ik ben tevreden met de dienst na
support and after sales support,
verkoop wanneer ik aan mobiel
handling of returns/refunds, delivery
online shoppen doe.
care). Online repurchase intention
• It is likely that I will repurchase
• Het is waarschijnlijk dat ik in de
from Internet shopping websites in
nabije toekomst aankopen zal doen
the near future.
via mijn mobiel toestel.
• I anticipate repurchasing from
• Ik koop regelmatig aan via dezelfde
Internet shopping websites in the
mobiele shopping applicaties.
near future.
• Ik voorzie in de nabije toekomst
• I regularly repurchase from the
aankopen te doen via mijn mobiel
same websites.
toestel.
• I expect to repurchase from Internet
shopping websites in the near future.
2
Appendix 3. Measurement scales for outcomes of OCE on traditional devices Construct
Reference
Adapted Scale (English)
Adapted Scale (Dutch)
Trust in Online
• Internet shopping is reliable.
• Internet shoppen is betrouwbaar.
• In general I can rely on Internet
• In het algemeen kan ik vertrouwen
vendors to keep the promises that
op de beloftes die gemaakt worden
they make.
door verkopers op internet shopping
• Internet shopping can be trusted,
websites.
there are no uncertainties.
• Internet shoppen is te vertrouwen,
• Internet shopping is a trustworthy
er zijn geen onzekerheden.
experience.
• Internet shoppen is een
Shopping
vertrouwenswaardige ervaring. Online Shopping
Satisfaction
• I am satisfied with my overall
• Ik ben tevreden met de algemene
experiences of Internet shopping.
koopervaring wanneer ik online
• I am satisfied with the pre-‐purchase
winkel.
experience of Internet shopping
• Ik ben tevreden met de ervaring
websites (e.g., consumer education,
voorafgaand aan de aankoop bij
product search, quality of information
internet shoppen (bv.
about products, product comparison).
beschikbaarheid en kwaliteit van
• I am satisfied with the purchase
informative, zoeken naar producten,
experience of Internet shopping
vergelijken van producten).
websites (e.g., ordering, payment
• Ik ben tevreden met de
procedure).
koopervaring bij online winkelen (bv.
• I am satisfied with the post-‐
bestel-‐ en betaalprocedure).
purchase experience of Internet
• Ik ben tevreden met de dienst na
shopping websites (e.g., customer
verkoop wanneer ik aan online
support and after sales support,
shoppen doe.
handling of returns/refunds, delivery care). Online repurchase intention
• It is likely that I will repurchase
• Het is waarschijnlijk dat ik in de
from Internet shopping websites in
nabije toekomst aankopen zal doen
the near future.
via een internet shopping website.
• I anticipate repurchasing from
• Ik koop regelmatig aan via dezelfde
Internet shopping websites in the
websites.
near future.
• Ik plan in de nabije toekomst
• I regularly repurchase from the
aankopen te doen via internet
same websites.
shopping websites.
• I expect to repurchase from Internet
shopping websites in the near future.
3
Appendix 4. Measurement scales for antecedents of OCE on mobile and traditional devices. Construct
Reference
Adapted Scale (English)
Adapted Scale (Dutch)
Mobile devices:
How important are the following
Hoe belangrijk vindt u onderstaande
Ease-‐of-‐use,
characteristics to you when shopping
eigenschappen tijdens het winkelen
customization,
on your smartphone or tablet? (Scale
op uw smartphone of tablet? (Schaal
connectedness,
0-‐100)
0-‐100)
aesthetics,
perceived benefits
• Ease-‐of-‐use
• Gebruiksgemak
• Customization
• Personaliseerbaarheid
• Connectedness (with other users)
• Verbondenheid (met andere
• Aesthetics
gebruikers)
• Benefits in comparison to traditional
• Ontwerp en uiterlijk
shopping (e.g. time-‐saving, price
• Voordelen ten opzichte van
comparison, availability of
traditioneel shoppen (tijdsbesparing,
information,…)
prijsvergelijking, beschikbaarheid van informatie,…)
Traditional
How important are the following
Hoe belangrijk vindt u onderstaande
devices: Ease-‐of-‐
characteristics to you when shopping
eigenschappen tijdens het winkelen
use, customization,
on your computer or laptop? (Scale 0-‐
op uw computer of laptop? (Schaal 0-‐
connectedness,
100)
100)
aesthetics,
perceived benefits
• Ease-‐of-‐use
• Gebruiksgemak
• Customization
• Personaliseerbaarheid
• Connectedness (with other users)
• Verbondenheid (met andere
• Aesthetics
gebruikers)
• Benefits in comparison to traditional
• Ontwerp en uiterlijk
shopping (e.g. time-‐saving, price
• Voordelen ten opzichte van
comparison, availability of
traditioneel shoppen (tijdsbesparing,
information,…)
prijsvergelijking, beschikbaarheid van informatie,…)
4
Appendix 5. Excerpt of survey The effect of digital technology on customer experience S1 Beste deelnemer, Ik voer momenteel een onderzoek uit in het kader van mijn masterthesis. In functie van dit onderzoek werd een enquête opgesteld, het invullen hiervan zal maximaal tien minuten in beslag nemen.Door het invullen van deze vragenlijst doet u mij niet alleen een ontzettend plezier, maar u maakt ook kans op een Kinepolis duoticket. Indien u wenst mee te dingen naar het Kinepolis duoticket moet u op het einde van de vragenlijst uw e-‐mail adres achterlaten.Alvast bedankt!Jens ScheerlinckMaster student Toegepaste Economische Wetenschappen: MarketingUniversiteit Gent Q1 Over welke van de volgende toestellen beschikt u? Desktop computer (1) Laptop (2) Tablet (3) Smartphone (4) Q2 Rangschik onderstaande toestellen volgens uw gebruiksfrequentie. Het toestel dat u het vaakst gebruikt komt bovenaan. Indien u niet beschikt over één of meerdere toestellen, stel u dan voor hoe vaak u het toestel zou gebruiken ten opzichte van de toestellen waar u wel over beschikt. ______ Desktop computer (1) ______ Laptop (2) ______ Tablet (3) ______ Smartphone (4) Q3 Hoe vaak gebruikt u de volgende toestellen om informatie op te zoeken over bedrijven, diensten en/of producten? Bijvoorbeeld: openingsuren, productinformatie, beschikbaarheid, prijzen,...
Nooit (1)
Jaarlijks (2)
Maandelijks
Wekelijks
Dagelijks
(3)
(4)
(5)
5
Desktop
Laptop (2)
Tablet (3)
computer (1)
Smartphone (4)
Q4 Hoe vaak gebruikt u de volgende toestellen om online goederen en/of diensten aan te kopen? Bijvoorbeeld: aankopen van producten, aankopen van muziek, aankopen van films of series, aankopen van videospelletjes of applicaties, het boeken van een vakantie,...
Desktop
Nooit (1)
Jaarlijks (2)
Maandelijks
Wekelijks
Dagelijks
(3)
(4)
(5)
Laptop (2)
Tablet (3)
computer (1)
Smartphone (4)
S2 U krijgt nu enkele opnames te zien van online aankopen op verschillende toestellen, gevolgd door enkele vragen. Het is belangrijk dat u zich voorstelt dat u zelf aan het online shoppen bent.Het scenario is telkens hetzelfde: u boekt eerst een vakantie en gaat vervolgens op zoek naar een boek om mee te nemen op reis.De opnames bevatten geen geluid. V1 Bekijk onderstaande video in fullscreen: Q5 Het woord “flow” wordt gebruikt om een gemoedstoestand te beschrijven die soms ervaren wordt door mensen die diep betrokken zijn in een activiteit. Een
6
voorbeeld van flow is het geval waar een professionele atleet uitstekend aan het spelen is en in een gemoedstoestand komt waar niets telt behalve het spel. Hij of zij is er compleet in ondergedompeld. Niet alleen atleten ervaren dit; veel mensen melden deze gemoedstoestand wanneer ze videospellen spelen, zich engageren in hun hobby of aan het werk zijn. Wanneer iemand flow ervaart is het vaak zo dat tijd lijkt stil te staan, en de rest van de wereld lijkt te verdwijnen. Flow hoeft niet noodzakelijk lang te duren en kan komen en gaan. Flow wordt doorgaans beschreven als een aangename ervaring.Duid op onderstaande schaal uw ervaring aan met de getoonde online koopervaring.
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
Ik heb geen flow ervaren tijdens het internetshoppen.:Ik heb flow ervaren tijdens het internetshoppen (1)
Q6 Duidt op onderstaande schalen aan hoe u zich voelde tijdens de getoonde online koopervaring.
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
Vervelend:Plezierig (3)
Sloom:Enthousiast (4)
Kalm:Levendig (5)
Ongelukkig:Gelukkig (1) Ontevreden:Tevreden (2)
Ontspannen:Geprikkeld (6) Begeleid:Zelfstandig
7
(7) Beïnvloed:Invloedrijk
(8)
V2 Bekijk onderstaande video in fullscreen: Q7 Het woord “flow” wordt gebruikt om een gemoedstoestand te beschrijven die soms ervaren wordt door mensen die diep betrokken zijn in een activiteit. Een voorbeeld van flow is het geval waar een professionele atleet uitstekend aan het spelen is en in een gemoedstoestand komt waar niets telt behalve het spel. Hij of zij is er compleet in ondergedompeld. Niet alleen atleten ervaren dit; veel mensen melden deze gemoedstoestand wanneer ze videospellen spelen, zich engageren in hun hobby of aan het werk zijn. Wanneer iemand flow ervaart is het vaak zo dat tijd lijkt stil te staan, en de rest van de wereld lijkt te verdwijnen. Flow hoeft niet noodzakelijk lang te duren en kan komen en gaan. Flow wordt doorgaans beschreven als een aangename ervaring.Duid op onderstaande schaal uw ervaring aan met de getoonde online koopervaring.
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
Ik heb geen flow ervaren tijdens het internetshoppen.:Ik heb flow ervaren tijdens het internetshoppen (1)
Q8 Duidt op onderstaande schalen aan hoe u zich voelde tijdens de getoonde online koopervaring. Ongelukkig:Gelukkig (1)
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
8
Ontevreden:Tevreden
Vervelend:Plezierig (3)
Sloom:Enthousiast (4)
Kalm:Levendig (5)
(2)
Ontspannen:Geprikkeld (6) Begeleid:Zelfstandig (7) Beïnvloed:Invloedrijk (8)
V3 Bekijk onderstaande video in fullscreen: Q9 Het woord “flow” wordt gebruikt om een gemoedstoestand te beschrijven die soms ervaren wordt door mensen die diep betrokken zijn in een activiteit. Een voorbeeld van flow is het geval waar een professionele atleet uitstekend aan het spelen is en in een gemoedstoestand komt waar niets telt behalve het spel. Hij of zij is er compleet in ondergedompeld. Niet alleen atleten ervaren dit; veel mensen melden deze gemoedstoestand wanneer ze videospellen spelen, zich engageren in hun hobby of aan het werk zijn. Wanneer iemand flow ervaart is het vaak zo dat tijd lijkt stil te staan, en de rest van de wereld lijkt te verdwijnen. Flow hoeft niet noodzakelijk lang te duren en kan komen en gaan. Flow wordt doorgaans beschreven als een aangename ervaring. Duid op onderstaande schaal uw ervaring aan met de getoonde online koopervaring.
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
Ik heb geen flow ervaren tijdens het internetshoppen.:Ik heb flow ervaren tijdens het
9
internetshoppen (1)
Q10 Duidt op onderstaande schalen aan hoe u zich voelde tijdens de getoonde online koopervaring.
1 (1)
2 (2)
3 (3)
4 (4)
5 (5)
6 (6)
7 (7)
Vervelend:Plezierig (3)
Sloom:Enthousiast (4)
Kalm:Levendig (5)
Ongelukkig:Gelukkig (1) Ontevreden:Tevreden (2)
Ontspannen:Geprikkeld (6) Begeleid:Zelfstandig (7) Beïnvloed:Invloedrijk (8)
Answer If Over welke van volgende toestellen beschikt u? Smartphone Is Selected Q11 Onderstaande vragen polsen naar uw eigen ervaringen met online winkelen op uw smartphone of tablet. Denk hierbij aan: aankopen van producten, aankopen van muziek, aankopen van films of series, aankopen van videospelletjes of applicaties, het boeken van een vakantie,...
Helemaal
Niet
Neutraal
Akkoord
Helemaal
niet
akkoord
(3)
(4)
akkoord
akkoord
(2)
(5)
(1) Mobiel internet
10
shoppen is betrouwbaar. (2) In het algemeen kan ik vertrouwen op de beloftes die gemaakt worden door
verkopers op mobiele internet shopping applicaties. (3) Mobiel internet shoppen is te vertrouwen, er zijn geen onzekerheden. (4) Mobiel internet shoppen is een vertrouwenswaardige ervaring. (5) Ik ben tevreden met de algemene koopervaring wanneer ik winkel op mijn mobiel toestel. (6) Ik ben tevreden met de ervaring voorafgaand aan de aankoop bij mobiel internet shoppen (bv. beschikbaarheid en kwaliteit van informatie, zoeken naar producten, vergelijken van
11
producten). (7) Ik ben tevreden met de koopervaring bij mobiel online winkelen (bv. bestel-‐
en betaalprocedure). (8) Ik ben tevreden met de dienst na verkoop wanneer ik aan mobiel online shoppen doe. (11) Het is waarschijnlijk dat ik in de nabije toekomst aankopen zal doen via mijn mobiel toestel. (9) Ik koop regelmatig aan via dezelfde mobiele shopping applicaties. (51) Ik voorzie in de nabije toekomst aankopen te doen via mijn mobiel toestel. (10)
Q12 Hoe belangrijk vindt u onderstaande eigenschappen tijdens het winkelen op uw smartphone of tablet? Bij 0 hecht u absoluut geen belang aan deze eigenschap, bij 100 vindt u deze eigenschap erg belangrijk. ______ Gebruiksgemak (1) ______ Personaliseerbaarheid (2) ______ Verbondenheid (met andere gebruikers) (3) ______ Ontwerp en uiterlijk (4)
12
______ Voordelen ten opzichte van traditioneel shoppen (tijdsbesparing, prijsvergelijking, beschikbaarheid van informatie) (5) Q13 Onderstaande vragen polsen naar uw eigen ervaringen met online winkelen op uw computer of laptop. Denk hierbij aan: aankopen van producten, aankopen van muziek, aankopen van films of series, aankopen van videospelletjes of applicaties, het boeken van een vakantie,...
Helemaal
Niet
Neutraal
Akkoord
Helemaal
niet
akkoord
(3)
(4)
akkoord
akkoord
(2)
(5)
(1) Internet shoppen is betrouwbaar. (1)
In het algemeen kan ik vertrouwen op de beloftes die gemaakt worden door verkopers op internet shopping websites. (2) Internet shoppen is te vertrouwen, er zijn geen onzekerheden. (3) Internet shoppen is een vertrouwenswaardige ervaring. (4) Ik ben tevreden met de algemene koopervaring wanneer ik online winkel. (5)
13
Ik ben tevreden met de ervaring voorafgaand aan de aankoop bij internet shoppen (bv. beschikbaarheid en
kwaliteit van informatie, zoeken naar producten, vergelijken van producten). (6) Ik ben tevreden met de koopervaring bij online winkelen (bv. bestel-‐ en betaalprocedure). (7) Ik ben tevreden met de dienst na verkoop wanneer ik aan online shoppen doe. (8) Het is waarschijnlijk dat ik in de nabije toekomst aankopen zal doen via een internet shopping website. (9) Ik koop regelmatig aan via dezelfde websites. (11) Ik plan in de nabije toekomst aankopen te doen via internet shopping websites. (10)
14
Q14 Hoe belangrijk vindt u onderstaande eigenschappen tijdens het winkelen op uw computer of laptop? Bij 0 hecht u absoluut geen belang aan deze eigenschap, bij 100 vindt u deze eigenschap erg belangrijk. ______ Gebruiksgemak (1) ______ Personaliseerbaarheid (2) ______ Verbondenheid (met andere gebruikers) (3) ______ Ontwerp en uiterlijk (4) ______ Voordelen ten opzichte van traditioneel shoppen (tijdsbesparing, prijsvergelijking, beschikbaarheid van informatie) (5) Q15 Wat is uw geslacht? Man (1) Vrouw (2) Q16 Wat is uw leeftijd? jonger dan 18 jaar (1) 18-‐25 jaar (2) 26-‐40 jaar (3) 41-‐55 jaar (4) ouder dan 55 jaar (5) Q17 Wat is het hoogste opleidingsniveau dat u genoten hebt? Lager onderwijs (1) Lager secundair (2) Hoger secundair (3) Hogeschool (4) Universitair (5) Q18 Wenst u kans te maken op een Kinepolis filmticket? Vul dan hier uw e-‐mail adres in.
15
Q19 Browser Meta Info Browser (1) Version (2) Operating System (3) Screen Resolution (4) Flash Version (5) Java Support (6) User Agent (7)
16