BIDANG ILMU : PERTANIAN
LAPORAN HASIL PENELITIAN DISERTASI DOKTOR TAHUN ANGGARAN 2011
Judul
:
Peneliti :
Studi Ikatan Konden Tannin Dengan Lisin/Metionin Ditinjau Dari Profil Spektranya Serta Pengaruhnya Dalam Pakan Lengkap Ternak Kambing Perah Terhadap Produksi Gas In Vitro Ir. Mashudi, M.Agr.Sc.
Dibiayai Oleh Direktorat Jendral Pendidikan Tinggi, Kementerian Pendidikan Nasional Melalui DIPA Universitas Brawijaya REV. 1 No. 0636/023-04.2.16/15/2011/R, Tanggal 30 Maret 2011, Dan Surat Keputusan Rektor Universitas Brawijaya Nomor: 214/SK/2011 Tanggal 2 Mei 2011
Universitas Brawijaya Malang 2011
RINGKASAN Penelitian ini secara umum bertujuan ingin mengkaji suplemen unggul berupa produk ”asam amino Lisin dan Metionin terproteksi dengan KT” terhadap produktifitas ternak perah yang sedang laktasi dengan menggunakan metoda laboratoris yaitu produksi gas in vitro. Produk ini bila diberikan ke ternak perah diharapkan dapat tersalurkan ke dalam pasca rumen untuk dicerna dan diserap yang pada gilirannya dapat meningkatkan prestasi produksi ternak perah baik produksi maupun kualitas. Untuk mencapai tujuan tersebut telah dilakukan penelitian dalam dua tahap. Tahap I bertujuan mengetahui adanya ikatan secara kimia antara Lisin/Metionin dengan KT (Lisin/Metionin-KT komplek) pada larutan netral (pH= 7) dengan menggunakan uji Spektrofotometer UV Vis serta mengetahui adanya pelepasan ikatan komplek tersebut pada larutan asam (pH:2-3) dengan mengunakan uji Spektrofotometer UV Vis. Selanjutnya tahap II bertujuan mengetahui kualitas suplemen berupa produk ”asam amino Lisin dan Metionin terproteksi dengan KT” pada Pakan Lengkap ternak kambing perah dengan uji laboratoris (produksi gas, konsentrasi NH3 , nilai VFA dan nilai KCBO, NE, ME dan MP). Metode penelitian tahap I dilakukan dengan metode percobaan kualitatif menggunakan 2 bahan asam amino dan campuran keduanya yaitu lisin/ metionin dan lisin+metionin dicampur dengan KT selanjutnya diamati perlindungan asam amino ini dengan melihat ikatannya dalam bentuk profil spektra (uji kualitatif) dengan mengunakan alat spektrophotometer UV Vis. Besarnya ikatan yaitu besarnya absorbansi diuji statistik dengan metode percobaan RAK. Untuk kontrol dilakukan pengamatan lisin/metionin dan lisin+metionin saja tanpa KT. Kombinasi antara lisin dan metionin sesuai dengan pedoman NRC (2001) yaitu perbandingan antara lisin dan metionin berkisar sebesar 3 : 1. Sedangkan level KT sesuai petunjuk dengan Barry and Forss (1983) bahwa perbandingan antara protein dan KT sebesar 11 : 1 sampai 16 : 1 (sehingga level KT terhadap asam amino berkisar antara 6% sampai 10%). Setiap bahan mengalami empat (4) level perlakuan proteksi dengan menggunakan KT dari ekstrak Mimosa. Sebagai ulangan (kelompok) digunakan inokulum cairan rumen. Metode penelitian tahap II dilakukan untuk mengetahui pengaruh suplemen lisin, metionin terproteksi dengan KT dalam Pakan Lengkap kambing perah terhadap nilai-nilai parameter laboratoris seperti produksi gas, nilai VFA dan produksi NH3, dan prediksi ME, NE, OMD dan MP. Kandungan nutrisi standard Pakan Lengkap mengacu untuk kebutuhan kambing perah yang sedang laktasi (NRC, 2007). Penelitian ini dilakukan dengan metode percobaan dengan menggunakan rancangan Acak Kelompok, yang terdiri 17 perlakuan. Hasil penelitian tahap I menunjukkan bahwa rofil spektra berupa λmax antara campuran antara lisin/metionin (dan lisin+metionin) dengan berbagai level KT pada larutan pH netral memilki λmax lebih rendah (279 nm) dibanding λmax KT (288 nm), hal ini menunjukkan bahwa λmax campuran dua zat bergeser ke kiri yang berarti telah terjadi ikatan hidrogen antara asam amino tersebut dengan KT. Profil spektra berupa λmax antara campuran antara lisin/metionin (dan lisin+metionin) dengan berbagai level KT pada larutan asam memilki λmax sama (279 nm) dengan λmax KT (279 nm), hal ini menunjukkan bahwa λmax campuran dua zat tidak terjadi pergeseran yang berarti tidak terjadi ikatan hidrogen antara asam amino tersebut dengan KT. Baik pada larutan netral maupun asam , semakin tinggi level KT semakin tinggi nilai absorbansinya (P<0,01) yang bermakna bahwa kerapatan elektron dua campuran senyawa ini semakin besar dan ikatan hidrogen antara asam amino dengan KT semakin kuat. Hasil penelitian tahp II menunjukkan bahwa suplemen lsin-metionin teproteksi dengan KT secara umum menunjukkan bahwa KT berpengaruh sangat nyata (P<0,01) sedangkan level lisin-metionin tidak berbeda nyata (P>0,05) ditinjau dari parameter produksi gas, serta berpengaruh nyata (P<0,05) terhadap parameter b dan a+b, namun tidak berpengaruh nyata (P>0,05) terhadap parameter a dan c baik pengaruh KT maupun level lisin-metionin. Untuk
parameter lain menunjukkan bahwa suplemen lisin-metionin tidak berpengaruh nyata (P>0,05) terhadap KCBKdan KCBO, produksi VFA baik partial maupun total, prediksi ME, NE, OMD dan MP baik pengauh KT maupun pengaruh level Lisin-metionin, namun berpengaruh nyata (P<0,05) terhadap produksi amonia baik karena pengaruh KT maupun pengaruh level Lisinmetionin. Secara umum semakin tinggi level KT, semakin menurunkan produksi gas, parameter b dan c, kecernaan BK dan BO, NH3, VFA maupun prediksi ME, NE, MD dan MP. Selanjutnya semakin tinggi level Lisin-metionin, semakin meningkatkan produksi gas, parameter b dan c, kecernaan BK dan BO, NH3, dan VFA. Dengan demikian dapat disimpulkan bahwa asam amino lisin/metionin dapat membentuk ikatan pada kondisi basa dan ikatan tersebut akan lepas pada kondisi asam. Dengan uji produksi gas in vitro, KT ternyata dapat menurunkan produksi gas dengan parameternya seperti besarnya degradasi, laju degradasi, serta dapat menurunkan kecernaan serta NH3. Sebaliknya Lisin dan metionin sendiri ternyata dapat meningkatkan produksi gas, dengan parameternya seperti besarnya degradasi, laju degradasi, serta dapat meningkatkan kecernaan, NH3 serta VFA. Dengan demikian KT dapat digunakan untuk melindungi asam amino pembatas lisin dan metionin dari degradasi mikroba rumen, sehinga suplemen lisin dan metionin terproteksi apabila diberikan ke ternak kambing perah diharapkan akan dapat meningkatkan produktifitasnya. Kata kunci : Lisin, metionin, konden tanin (KT), profil spktra, absorbansi, produksi gas, amonia, VFA.
SUMMARY
The main objective of this research was to obtain such an excellent product, namely “Protected Lysine/Methionine”, and to know its effect on productivity of lactating of dairy goat using in vitro gas production method. This product is hopely able to be by-pass into pasca rumen, then digested and absorbed which finally can enhance performance of dairy goat, either its milk yield or milk quality. The experiment was carried out through two stages. First, it was aimed to investigate whether there is chemical bound between Lysine/Methionine and Condensed Tannin (Lysine/Methionin-CT complex) at neutral solution (pH=7) as well as to investigate releasing of the complex at acid solution (pH=2-3) using Spectrophotometer UV Vis. Experiment method used in this stage was Qualitative experiment by using two amino acids and its mixture, while Lysine/Methionine mixed with Condensed Tannin and their bound was observed in form of spectra profile (qualitative) using spektrophotometer UV Vis equipment. The strength of the bond was tested on the absorption value statistically analysed using Randomized Block Design. The proportion of Lysine and Methionine was 3:1 (NRC, 2004), whereas CT level referred to Barry and Forss (1983) that proportion of protein and CT should be around 11:1 until 16:1 (so that CT level on amino acids around 6% until 10%). Each treatment consists of 4 level protections using CT taken from Mimosa Bark Extract and rumen liquid was used as replication. The second stage was to know the quality of product “Protected Lysine/Methionine” in complete feed of lactating dairy goat tested with in vitro gas production (Makkar, 1995). Measured variables were in vitro gas production, ammonia and VFA production and estimated OMD, NE, ME dan MP value, Nutrient Requirement of Lactating Dairy Goat (NRC, 2007) was used as
guidance for nutrient content of complete feed (treatment). Method applied in this stage was Randomized Block Design with 17 treatments. The result of the first experiment showed that the spectra profile of λmax between the mixture of Lysine and Methionine on various levels of CT in neutral pH had the lower λmax (279 nm), compared to λmax of CT (288 nm). This indicated that λmax of the mixture swings to the left which was meant that there had already occured hidrogen bound between the amino acids and CT itself. While in acid solution, the spectra profile of λmax between the mixture of Lysine and Methionine on various levels of CT had the same λmax (279 nm) as CT (279 nm). This indicated that there was no swinging, meant that there was no hidrogen bound between the amino acids and CT itself. Either in neutral or acid solution, the higher of CT level, the higher of absorbancy value (P<0,01). In other say that the greater of the electron density of the two mixed compunds, the stronger of hidrogen bound between amino acids and CT. The second experiment showed the result that in general the supplementary of Lysine and Methionine protected with CT explained the influence of CT level was very significantly different (P<0.01), while Lysine and Methionine levels were not significantly different (P>0.05) viewed from gas production. The influence of both CT level and Lysine and Methionine level was significantly different (P<0.05) upon parameter b and a+b, but no significant difference (P>0,05) on DMD, OMD. VFA production in total or partial, as well as on estimated ME, NE, OMD and MP. Ammonia production was influenced significantly (P<0.05) by both CT level and Lysine and Methionine level. There was tendency that the higher of CT level led to the lower of gas production, parameters b and c, DMD and OMD, NH3. VFA, as well as of estimated ME, NE, OMD and MP. Furthermore, the higher of Lysine and Methionine level led to the higher of gas production, parameters b and c, DMD and OMD, NH3. VFA. In conclusion, Lysine and Methionine were able to create a bound in bases condition and the bound was released in acid condition. By in vitro gas production test, CT in fact could lower gas production and its parameters such as degradability rate, as well as digestibility and NH3. Meanwhile Lysine and Methionine could increase gas production and its parameters, digestibility, NH3 and VFA. Thus, CT could be applied to protect limiting amino acids such as Lysine and methionine from being degraded by ruminal microbes which is in turn the CTprotected Lysine and methionine supplemented to goat could improve their productivity Key Words : Lysine, methionine, condensed tannin (CT), spectra profile, absorbance, in-vitro gas production, ammonia, VFA.
DAFTAR PUSTAKA Anonymous, 2005. All About Goats. Collection: Goat Handbook Origin: United States. Extension Goat Handbook. Pennsylvania State University Park. ARC. 2000. Nutrient Requirement of dairy cattle. New york. USA Asmak. 2005. Pakan Tambahan Penggemukan Sapi Potong. Departemen Pertanian. Liptan. BPTP Sumatra Barat. http://www.bptpsumbar.co./liptan. Diakses 30 Maret 2010 Atabany, A. 2005. Studi kasus produktivitas kambing Peranakan Etawah dan kambing Saanen pada peternakan kambing perah Barokah dan PT. Taurus Dairy Farm. Thesis. Program Pascasarjana. Institut Pertanian Bogor. Bogor. Casper, D. P., and D. J. Schingoethe. 1988. Protected methionine supplementation to a barleybased diet for cows during earlylactation. J. Dairy Sci. 71:164–172. Casper, D. P., D. J. Schingoethe, C.-M. J. Yang, and C. R. Mueller.1987. Protected methionine supplementation with extruded blendof soybeans and soybean meal for dairy cows. J. Dairy Sci.70:321–330. Cheeke,P.R. 2005. Applied Animal Nutrition : Feeds and Feeding. 3rd Edition. Pearson Prentice Hall. Upper Saddle River. New Jersey. Cho.J. et al., 2007. Determining the Amount of Rumen-Protected Methionine Supplement That Corresponds to the Optimal Levels of Methionine in Metabolizable Protein for Maximizing Milk Protein Production and Profit on Dairy Farms. J. Dairy Sci. Vol. 90, No. 10, 2007. Champredon C.Debras E.,Mirand P.P. and Arnal M., , 2000. Methionine Flux and Tissue Protein Synthesis in Lactating and Dry Goats. American Inst. Of Nutr. 53:1006-1015 Devendra, C., Coop, I.E. (2002): Ecology and Distribution. In: I.E. Coop (Editor) : World Animal Science C 1 Production System Approach: Sheep and Goat Production. Amsterdam: Elsevier. pp. 1-14. FAO (Food and Agricultural Organization) (2006): Major food and agricultural commodities and producers. Country by commodity. [cited 2006 Aug 25]. Available from: http://www.fao.org/es/ess/top/commodity.html?lang=en& item=1020&year=2005. Feng Yu and R.A Leng. 1980. Effect on wool growth of sheep on roughage supplemented by condensed tannins treated Lupins. Department of Biochemistry, Microbiology and Nutrition. University of New England. Armidale. Australia. Fleet, I.R. and T.B.Mepham, 1985. Mammary uptake of amino acids and glucose throughout lactation in Friesland sheep. J.Dairy Res. 52:229-237. Hanigan, M.D., B.J. Bequette, L.A. Crampton, and J. France, 2001. Modeling mammary amino acids metabolism. Livestock Prod. Sci. (in press).2001 Hembry, F.G., W. Pfander and R.L. Preston. 1975. Utilization of Nitrogen from Soybean, Casein, Zein and Urea by Mature sheep. J. Nutrition. 105:267 Knights, M., Garcia, G.W. (2007): The status and characteristics of the goat (Capra hircus) and its potential role as a significant milk producer in the tropics: A Review. Small Rumin. Res. 26, 203-215. Kumar, R. and J.P.F. D’ Mello. 1995. Anti nutritional factors in legumes. In: Tropical legumes in Animal Nutrition. Eds. J.P.F. D’Mello and C.Devendra. CAB International. 67:1072 Llg, D.J.,J.L.Sommerfedt and D.J. Schingoethe. 1999. Lactational and Systemic Responses to the Supplementation of Protected Methionine in Soybean Meal Diets. J. Dairy Sci. 70:620-629 Korhonen , M.A., A Vanhatalo, and P. Huhtanen, 2002.Evaluation of isoleucin, leucine and valine as a second limiting amino acids for milk production in dairy cows fed grass silage diet. J. Dairy Sci. 85:1533-1545
Mabjeesh. S.J. , C. E. Kyle , J. C. Macrae , and B. J. Bequette. 2000. Lysine Metabolism by the Mammary Gland of Lactating Goats at Two Stages of Lactation. Journal of Dairy Science .Vol. 83 No. 5 996-1003 Misciattelli, L.,V.F. Kristiensen,M.Vestergaard, M. Weisbjerg,K.Seirsen and T.Hvelplund. 2003. Milk Production, Nutrient Utilization and endocrine responses to increases post ruminal Lysine and Methionine Supply in Dairy Cows. J. Dairy Sci. 86: 275-286 Moran, J.,2005. Tropical Dairy Farming : Feeding Management for Small Holder Dairy Farmers in the Humid Tropics. CSIRO Publishing. Australia National Research Council. 2007. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC Orskov, E.R. 1982. Protein Nutrition in Ruminants. Academic press Inc. London. Reid, CSW., M.J. Ulyatt and J.M. Wilson.1994. Plant tannin, bloat, and nutritive value. Proc. NZ Soc.Anim.Prod. 34:82 Robinson, P.H., R.E. McQueen and P.L. Burgess. 1991. Influence of rumen undegradable protein level on feed intake and milk production of dairy cows. J.Dairy Sci. 74:1623. Rogers, J. A., S. B. Pierce-Sandner, A. M. Papas, C. E. Polan, C. J. Sniffen, T. V. Muscato, C. R. Staples, and J. H. Clark.1989. Production responses of dairy cows fed various amounts of rumen-protected methionine and lysine. J. Dairy Sci. 72: 1800–1817. Rulquin, H., B. Graulet, L. Delaby, and J. C. Robert. 2006. Effect ofdifferent forms of methionine on lactational performance of dairycows. J. Dairy Sci. 89:4387–4394. Seymour, W. M., C. E. Polan, and J. H. Herbein. 1990. Effects of dietary protein degradability and casein or amino acid infusions on production and plasma amino acids in dairy cows. J. Dairy Sci. 73: 735. Schwab, C. G., C. K. Bozak, N. L. Whitehouse, and V. M. Olson. 2006. Amino acidlimitation and flow to duodenum at four stages of lactation. 2. Extent of lysine and methionine limitation. J. Dairy Sci. 75:3503–3518. Shan, J. G., and Z. L. Tan. 2004. The sequences of limiting AA inthe duodenum and effect of duodenal infusion of limiting AA onwhole-body protein turnover for growing goats fed a mixture ofmaize stover and concentrate. MS Thesis. Inst. Subtrop. Agric.,Chin. Acad. Sci., Hunan, China. (in Chinese) Sirait, M.M. 2004. Degradasi in sacco protein kasar serta kecernaan HCL-pepsin beberapa bahan pakan penyusun konsentrat komersial untuk sapi perah yang beredar di kabupaten Malang danPasuruan. Skripsi. Fakultas Peternakan. Universitas Brawijaya. Socha, M. T., C. G. Schwab, D. E. Putnam, N. L. Whitehouse, N. A. Kierstead, and B. D. Garthwaite. 1994. Determining methionine requirements of dairy cows during peak lactation by postruminally infusing incremental amounts of methionine. J. Dairy Sci. 77(Suppl. 1):350.(Abstr.) Soedjono, H. 2004. Evaluasi kualitas protein beberapa jenis konsentrat komersial untuk sapi perah. Skripsi. Fakultas Peternakan. Universitas Brawijaya Malang. Sugeng,Y.B. 2005. Sapi Potong. Penebar Swadaya. Jakarta Sun, Z. H., Z. L. Tan, J. H. Yao, Z. R. Tang, J. G. Shan, J. P. Hu, S.X. Tang, and Y. M. Jiang. 2007. Effects of intraduodenal provisonof limiting amino acids on serum concentrations of immunoglobulinsand tissue concentrations of DNA and RNA in growing goats fed a maize stover-based diet. Small Rumin. Res.69:159–166. Sun, Z. H., Z. L. Tan, S.M. Liu,G.O.Tayo, B.Lin, B.Teng,S.X.Tang, W.J.Wang, Y.P. Liao, Y.F.Pan,J.R Wang, X.G. Zhao and Y.Hu. 2007. Effects of dietary methionine and lysine sources on nutrient digestion, nitrogen utilization, and duodenal amino acids flow in growing goat. Waghorn, G.C., A.Jhon, W.T. Jones and I.D. Shelton. 1987. Nutritive value of Lotus corniculatus containing low and medium concentrations of condensed tannins for sheep. Proceeding of New Zealand Society of Animal Production. 52:89.
Wang, Y. 1995. The effects of condensed tannins in Lotus corniculatus upon lactation performance in ewes rearing twin lambs. In: Phd. Thesis. Massey University. New Zealand. Yang, C.M.J., D. J. Schingoethe, and D. P. Casper. 1986. Protected methionine and heattreated soybean meal for high producing dairy cows. J. Dairy Sci. 69:2348. Yitnosumarto, S. 1991. Percobaan Perancangan (Analisis dan Interpretasi-nya). Gramedia Pustaka Utama. Jakarta Casper, D. P., and D. J. Schingoethe. 1988. Protected methionine supplementation to a barleybased diet for cows during earlylactation. J. Dairy Sci. 71:164–172. Casper, D. P., D. J. Schingoethe, C.-M. J. Yang, and C. R. Mueller.1987. Protected methionine supplementation with extruded blendof soybeans and soybean meal for dairy cows. J. Dairy Sci.70:321–330. Cheeke,P.R. 2005. Applied Animal Nutrition : Feeds and Feeding. 3rd Edition. Pearson Prentice Hall. Upper Saddle River. New Jersey. Cho.J. et al., 2007. Determining the Amount of Rumen-Protected Methionine Supplement That Corresponds to the Optimal Levels of Methionine in Metabolizable Protein for Maximizing Milk Protein Production and Profit on Dairy Farms. J. Dairy Sci. Vol. 90, No. 10, 2007. Champredon C.Debras E.,Mirand P.P. and Arnal M., , 2000. Methionine Flux and Tissue Protein Synthesis in Lactating and Dry Goats. American Inst. Of Nutr. 53:1006-1015 Feng Yu and R.A Leng. 1980. Effect on wool growth of sheep on roughage supplemented by condensed tannins treated Lupins. Department of Biochemistry, Microbiology and Nutrition. University of New England. Armidale. Australia. Rulquin, H., B. Graulet, L. Delaby, and J. C. Robert. 2006. Effect ofdifferent forms of methionine on lactational performance of dairycows. J. Dairy Sci. 89:4387–4394. Sirait, M.M. 2004. Degradasi in sacco protein kasar serta kecernaan HCL-pepsin beberapa bahan pakan penyusun konsentrat komersial untuk sapi perah yang beredar di kabupaten Malang danPasuruan. Skripsi. Fakultas Peternakan. Universitas Brawijaya. Sun, Z. H., Z. L. Tan, J. H. Yao, Z. R. Tang, J. G. Shan, J. P. Hu, S.X. Tang, and Y. M. Jiang. 2007. Effects of intra-duodenal provisonof limiting amino acids on serum concentrations of immunoglobulinsand tissue concentrations of DNA and RNA in growing goats fed a maize stover-based diet. Small Rumin. Res.69:159–166. Sun, Z. H., Z. L. Tan, S.M. Liu,G.O.Tayo, B.Lin, B.Teng,S.X.Tang, W.J.Wang, Y.P. Liao, Y.F.Pan,J.R Wang, X.G. Zhao and Y.Hu. 2007. Effects of dietary methionine and lysine sources on nutrient digestion, nitrogen utilization, and duodenal amino acids flow in growing goat. Waghorn, G.C., A.Jhon, W.T. Jones and I.D. Shelton. 1987. Nutritive value of Lotus corniculatus containing low and medium concentrations of condensed tannins for sheep. Proceeding of New Zealand Society of Animal Production. 52:89. Wang, Y. 1995. The effects of condensed tannins in Lotus corniculatus upon lactation performance in ewes rearing twin lambs. In: Phd. Thesis. Massey University. New Zealand. Yang, C.M.J., D. J. Schingoethe, and D. P. Casper. 1986. Protected methionine and heattreated soybean meal for high producing dairy cows. J. Dairy Sci. 69:2348.