BIDANG ILMU PERTANIAN
LAPORAN HASIL PENELITIAN DISERTASI DOKTOR TAHUN ANGGARAN 2011
Pengaruh Residual Biochar terhadap Hasil Tanaman Pada Sistem Tumpangsari Berbasis Tanaman Ubikayu
Ir. Titiek Islami, MS
Dibiayai Oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan Nasional, melalui DIPA Universitas Brawijaya REV.1 Nomor: 0636/023-04.2.16/15/2011 R, tanggal 30 Maret 2011 dan berdasarkan Surat Keputusan Rektor Nomor: 214/SK/2011 tanggal 2 Mei 2011
UNIVERSITAS BRAWIJAYA NOVEMBER 2011
RINGKASAN Tanaman ubikayu (Manihot esculenta crantz) merupakan tanaman yang mempunyai berbagai macam pemanfaatan, dapat tumbuh pada berbagai kondisi agroekologi, bahkan pada kondisi agroekologi yang marginal, dan mudah dibudidayakan. Oleh karena itu sangat tepat kesimpulan utama Simposium tiga tahunan ke 14 Internasional Society for Tuber and Root Crops (ISTRC) yang diselenggarakan di Trivandurm, India, pada bulan Nopember 2006 menyatakan bahwa tanaman ubi-ubian, terutama ubikayu, adalah tanaman masa depan. Pemerintah Indonesia telah memilih tanaman ubikayu sebagai salah satu tanaman utama yang perlu dikembangkan dalam rangka diversivikasi pangan untuk meningkatkan ketahanan pangan. Disamping itu dengan peraturan pemerintah No.5/2006, telah menetapkan tanaman ubikayu sebagai tanaman penghsil energi untuk menggantikan bahan bakar minyak. Untuk itu pemerintah Indonesia mentargetkan bahwa pada tahun 2025 Indonesia akan menghasilkan 60 juta ton, dari produksi saat ini 20-25 juta ton. Salah satu kendala dalam budidaya tanaman ubikayu karena sebagian besar tanaman ubikayu tumbuh pada lahan marjinal dan bahkan telah terdegradasi. Kedalaman efektif tanah sangat dangkal, kandungan bahan organik tanah rendah dan mengakibatkan rendahnya kesuburan tanah, baik kesuburan fisik, kimiawi maupun biologis. Dengan demikian strategi untuk mendapatkan produktivitas tinggi dan berkelelanjutan pada tanah terdegradasi adalah peningkatan kandungan bahan organik. Permasalahan utama dalam pengelolaan bahan organik tanah adalah dosis yang diberikan harus tinggi, dan di dalam tanah, pelapukan bahan organik berjalan sangat cepat. Dengan demikian pemberian bahan organik harus diberikan secara berulang setiap musim. Pada fihak lain, ketersediaan dan akses petani ubikayu terhadap bahan organik sangat terbatas. Dengan demikian, adanya bahan organik tahan dekomposisi semacam ”biochar” akan sangat berharga sebagai sumber bahan organik untuk pertanian. Hasil penelitian tahun pertama menunjukkan bahwa penggunaan biochar dalam sistim tumpangsari berbasis tanaman ubikayu memberikan hasil yang positif. Jika biochar memang tahan dekomposisi, maka pada masa tanam kedua dan selanjutnya pengaruh positif biochar diharapkan masih dapat dipertahankan. Dengan demikian penelitian yang dibahas dalam laporan ini bertujuan untuk: (1) Mempelajari pengaruh susulan (residual) biochar terhadap pertumbuhan dan tanaman pada sistim tumpangsari berbasis tanaman ubikayu, (2) mempelajari kecepatan perombakan bahan organik tanah, khususnya biochar dan pengaruhnya terhadap kesuburan tanah. Dengan dicapainya tujuan tersebut, maka diharapkan hasil penelitian dapat digunakan untuk membantu petani dalam penyusunan teknologi budidaya tanaman ubikayu yang mampu memberi hasil tinggi secara berkelanjutan. Teknologi yang dikembangkan didasarkan pada pengelolaan bahan organik tanah, dengan masukan bahan organik yang tahan dekomposisi. Untuk keperluan tersebut dilakukan penelitian di kebun percobaan Universitas Brawijaya di Jatikerto. Tanah percobaan mempunyai kedalam efektif tanah kurang dari 30 cm, kandungan bahan organik dan kandungan unsur N dan P rendah. Percobaan ini merupakan kelanjutan percobaan tahun pertama (2009/2010), tanaman ubikayu
ditanam bersama tanaman jagung dan tanaman kacang tanah pada bulan September 2010. Tanaman jagung dan kacang tanah ditanam pada bulan Januari 2011 dan tanaman ubikayu dipanen pada bulan Juli 2011. Perlakuan yang diuji dalam percobaan ini adalah: 1. Tumpangsari ubikayu + jagung tanpa pemberian bahan organik (UJ) 2. Tumpangsari ubikayu + jagung diberi pupuk kandang 10 t/ha, diberikan sekali pada tahun pertama (UJPk) 3. Tumpangsari ubikayu + jagung diberi pupuk kandang 10 t/ha, diberikan setiap tahun tanam (UJPk1) 4. Tumpangsari ubikayu+jagung diberi biochar pupuk kandang 7,5 t/ha (UJBpk) 5. Tumpangsari ubikayu+jagung diberi biochar batang ubikayu 7,5 t/ha (UJBuk) 6. Tumpangsari ubikayu+Kctanah tanpa pemberian bahan organik 10 t/ha (UK) 7. Tumpangsari ubikayu+kacang tanah diberi pupuk kandang 10 t/ha, diberikan sekali pada tahun pertama (UKPk) 8. Tumpangsari ubikayu+kacang tanah diberi pupuk kandang 10 t/ha, diberikan setiap tahun (UKPk1) 9. Tumpangsari ubikayu+kacang tanah diberi biochar pupuk kandang 7,5 t/ha (UKBpk) 10. Tumpangsari ubikayu+kacang tanah diberibiochar batang ubikayu 7,5 t/ha (UKBuk) Kesepuluh perlakuan tersebut diatur dalam Rancangan Acak Kelompok dengan 3 ulangan. Petak percobaan yang digunakan berukuran 6,25 X6,0 m dan tanaman ubikayu ditanam pada jarak 1,25 X 1,0 m. Hasil penelitian menunjukkan bahwa sampai panen tahun kedua, perbaikan pertumbuhan dan kenaikkan hasil tanaman pada pola tanam tumpang sari ubikayu + jagung dan ubikayu + kacang tanah, karena pemberian biochar masih bertahan. Baik tanaman sela jagung dan kacang tanah maupun tanaman ubikayu, pada tanah yang diberi biochar pada tahun sebelumnya, mempunyai pertumbuhan yang lebih baik dengan hasil yang lebih tinggi bila dibandingkan dengan tanaman pada perlakuan tanpa bahan organic maupun perlakuan pupuk kandang diberikan sekali pada tanaman sebelumnya. Hasil ubi pada perlakuan biochar bervariasi dari 21 Mg ha-1 sampai 23 Mg ha-1, sedang pada perlakuan tanpa pupuk kandang hanya 14 Mg ha-1 pada pola tanam ubikayu + jagung. Jika menggunakan tanaman kacang tanah sebagai tanaman sela, hasil ubi yang diperoleh 19 Mg ha-1. Pada perlakuan pupuk kandang yang diberikan sekali pada tanaman sebelumnya, pertumbuhan dan hasil tanaman tahun kedua tidak berbeda nyata dengan pertumbuhan dan hasil pada perlakuan tanpa pupuk kandang. Agar pengaruh positifnya masih bertahan, pupuk kandang harus diberikan setiap musim tanam. Jika hal ini dilakukan hasil ubikayu yang diperoleh tidak berbeda nyata dengan perlakuan biochar, bahkan pada pola tanam ubikayu + kacang tanah dapat memberi hasil lebih tinggi ( 24,80 Mg ha-1). Ditinjau dari efisiensi penggunaan lahan dan pendapatan petani, sampai tahun kedua biochar masih mampu meningkatkan efisiensi penggunaan lahan (yang ditandai dengan NPL lebih tinggi) serta pendapatan kotor petani. NPL tertinggi (1,75) diperoleh perlakuan biochar dari ppuk kandang pada pola tanam ubikayu + jagung dengan
pendapatan kotor Rp. 24,24 juta. Perlakuan tanpa bahan organic pada pola tanam ubikyu + jagung mempunyai NPL dengan pendapatan kotor Rp. 15,46 juta. Pemberian biochar telah terbukti dapat meningkatkan hasil tanaman sela, tanaman ubikayu, efisiensi penggunaan lahan dan pendapatan kotor. Pengaruh positif biochar masih bertahan sampai tanaman tahun kedua. Walaupun demikian, sebelum memberikan anjuran perlu dilakukan analisis ekonomi. Mengingat biocahar diharapkan dapat memberi pengaruh positif dalam waktu yang lama, untuk dapat melakukan analisis dengan benar percobaan perlu diteruskan untuk jangka waktu yang lebih lama, sampai pengaruh positif biochar hilang.
SUMMARY Cassava is an incredible crop, it can grow in any agroecology condition and the crop can be utilized for many purposes; from human food, animal feeding, to be raw materials for many kinds of industry, and lately as fuel. Potentially, increasing world cassava production is still high. Therefore, International Society for Tuber and Root Crops, in their 2006 congress had proclaimed cassava as the future crops. Indonesian government, through their decree no. 5/2006, decided that as the third food crops and raw material for bio energy, Indonesia should produce 60 millions tone tubers by the year of 2025. The main limitation to achieve this goal is that cassava is mostly planted in marginal or degraded land with very low productivity. The soil usually has a very low soil organic matter with consequence of low plant nutrient and un-favorable condition for crop growth. Since the main limitation of these soils are its low soil organic matter content, therefore the easiest way to increase their fertility and productivity is by adding organic materials. However, under wet tropical condition such as Indonesia, these organic materials decompose rapidly, and hence the practice of applying organic materials should be done at every planting time. Application rate of organic material is usually very high, therefore it is becoming uneconomic, and hence, farmers reluctant to do this work. Therefore, the invention of recalcitrant organic materials such as “biochar” give a bright prospect. The result of the first experiment had shown that application of biochar produced from farm yard manure and unused cassava stem into cassava based cropping system improved soil fertility status, and increase the yield of the intercrops (maize and peanuts, as well as the yield of cassava. If it is true that biochar is resistant to decomposition, then its positive effect would still occurs in the next crops. To test this hypothesis, an experiment on the residual effect of biochar on crop yield in cassava based cropping was carried out in Jatikerto field experimental station of Brawijaya University from September 2010 to July 2011. The experiment was a continuation of the previous (2009/2010) experiment, and the treatments were two intercropping systems: cassava + maize and cassava + peanuts with 5 treatments of organic amendment application, i.e. (1) farm yard manure (FYM) applied once at the start of the experiment, (2) FYM applied every year, (3) biochar from FYM, and (4) biochar from cassava stem (CS), and (5) without FYM as the control. Then, the treatment combinations were: (1) cassava + maize with
FYM applied once at the start of the experiment, (2) cassava + maize with FYM applied every year (3) cassava + maize with FYM biochar, (4) cassava + maize with CS biochar (5) cassava + maize without organic amendment, (6) cassava + peanuts with FYM applied once at the start of the experiment, (7) cassava + peanuts with FYM applied every year , (8) cassava + peanuts with FYM biochar, (9) cassava + peanuts with CS biochar, and (10) cassava + peanuts without organic amendment. These treatments were arranged in a randomized block design with three replications in plots of size 6.25 x 6.0 m. The results of the experiment show that application of inorganic fertilizer alone could not maintain the crop yield planted in cassava based cropping system in a marginal or degraded soil of Jatikerto, Malang, Indonesia. It is absolutely important to apply organic amendments both for improving soil fertility status, increasing and stabilising crop yields. However, similar to inorganic fertilizer, application of farm yard manure (FYM) fail to stabilized the crop yield. In order to maintain the high yield, FYM should be applied every planting season. The stability of organic-C from FYM can be increased by processing FYM to be biochar. Cassava stem is also potential feedstuff for biochar. Biochar application also increase and stabilized land use eficiensy, and increasing gross farmers income.
DAFTAR PUSTAKA Adeniyan, O.N. & Ayoola, O.T. 2006. Growth and yield performance of some improved soybean varieties as influenced by intercropping with maize and cassava in two contrasting locations in Southwest Nigeria. African Journal of Biotechnology 5: 1886-1889. Amanullah,M., Vaiyapuri, K.,Satyamoorthi,K. Pazhanivelan S., & Alagesan, A. 2007.Nutrient uptake and tuber yield of cassava (Manihot esculenta) and soil fertility as influenced by organic manure. Journal of Agronomy 6: 183-187. Ardjasa, W .S. Ando, H., Kimura. M., 2001, “Yield and Soil Erosion among CassavaBased Cropping Patterns in South Sumatra,” Soil Sci Plant Nutr. 47: 101 -112 Baldock, J.A. & Smernik, R.J. 2002. Chemical composition and bioavailability of Bot,A., & Benites,J. 2005. The importance of soil organic matter: Key to droughtresistant soil and sustained food production. FAO soil Bull. 2005. No. 80. Rome : FAO Bowman, R.A., Vigil, M.F., Nielsen, D.C. & Anderson, R.L. 1998 Soil rganic Matter Changes in Intensively Cropped Dry land Systems. Soil Sci. Soc. Amer. J. 63: 186-191 Braddy, N.C. & Weil, R.R. 2002. The Nature and Properties of Soils. 13th ed. Prentice Hall Ltd. New York. Braunack, M.V. & Dexter, A.R. 1989. Soil aggregation in seed bed, 2: Effect of aggregate size on plant growth. Soil & tillage Res. 14: 281-298. Chan, K.Y., van Zwieten, B.L., Meszaros, I., Downie, D. & Joseph, S. .2007. Agronomic values of greenwaste biochars as a soil amendments. Australian Journal of Soil Research 45, 437–444 Chan, K.Y., van Zwieten, B.L., Meszaros, I., Downie, D., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437–444 Chirinda, N., Olesen. J.L. & Porter, J..R. 2008. Effect of soil organics matter inputs on soil microbial properties and crop yields in conventional and organic cropping th
systems. Paper presented at 16 IFOAM Organic word Congress, Modena, Italy. 16- 20 Juni 2008. Dapaah, H.K, Asafu-Agyei, J.N, Ennin, S,A. & Yamoah C. 2003. Yield stability of Cassava, maize, soya bean and cowpea intercrops. Journal of Agricultural Science, Cambridge 140: 73-82. Duxbury, J.M., Smith, M.S. & Doran, J.W. 1989. Soil organic matter as a source and sink of plant nutrients. In D.C. Coleman, J.M. Oades & G. Uehara, eds. Dynamics of soil organicmatter in tropical ecosystem, pp. 33–67. USA, University of Hawaii Press. Glaser, B., Lehmann, J. & Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biol Fertil Soils., 35, 219–230
Glaser, B., Haumaier, L., Guggenberger, G. & Zech W. 2001. The Terra Preta phenomenon: a model for sustainable agriculture in the humic tropics. Die Naturwissenschaften 88: 37–41. Harris, R.F., Chesters, G. & Allen, O.N. 1966. Dynamics of soil aggregation. Advances in Agronomy 18: 108–169 Howeler, R.H. 1991. Long term effect of cassava cultivation on soil productivity. Field Crops Research 26: 1-18. Howeler, R.H. 1994. Integrated soil and crop management to prevent environmental degradation in cassava based-cropping system in Asia. In Upland agriculture in Asia, Bottema JWT, Stoltz DR. (Eds.). CGPRT: Bogor, Indonesia: 195-224. Howeler, R.H., Sieverding, E. and Saif, S. 1987. Practical aspects of mycorhizal technology for some tropical crops and pastures. Plant Soil 100: 249-283 Iijima, M., Izumi, Y., Yuliadi, E., Sunyoto & Arjasa, S.B. 2004. Cassava based cropping system in Sumatra in Indonesia: Productivity, soil erosion and rooting zone. Plant Production Science. 7: 347 – 355. Irawanto, D.W. & Utomo. W.H. 2004. Peran teknologi dalam ketahanan pangan. Makalah pada Seminar Nasional Ketahanan Pangan, Universitas Gajah Mada, Yogyakarta. Irawanto, D.W., Yuniwati E.D., Utomo W.H., Kanto, S, & Howeler R. H. 2011. Land Husbandry: A better aproach for achieving sustainable cassava production 1. Farmers’ based technology development: The main key of land husbandry. International Journal of Applied Agricultural Research (to be published) Islami, T., Guritno, B. & Utomo, W.H. 2011a. Performance of Cassava (Manihot esculenta Crantz) Based Cropping Systems and Associated Soil Quality Changes in the Degraded Tropical Uplands of East Java, Indonesia. Journal of Tropical Agriculture 49: 33-40 Islami, T., Utomo,W.H. & Wargiono, J. 2006. Cassava production in Indonesia: Strategy for increasing cassava production in the 21st century. Paper presented at the th
14 Triennial Symposium of International Society for Root Tuber and Root Crops. November 2006. Trivandurm, India ,
Islami, T. Guritno B., Basuki, N. & Suryanto, A. 2011b. Biochar for cassava based cropping system in the degraded lands of East Java, Indonesia. Journal of Tropical Agriculture 49: 40-46 ,
Islami, T. Guritno B., Basuki, N. & Suryanto, A. 2011c. Maize yield and associated soil quality changes in cassava + maize intercropping system after 3 years of biochar application. Journal of Agriculture and Food Technology vol 1 (to be published) Lehman, J., da Silva Jr. J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343-357. Liang, B., Lehmann, J., Kinyangi, D., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizao, F.J., Peterson, J., & Neves, E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J., 70, 1719–1730
Masulili, A., Utomo, W.H. & Syekhfani, Ms. 2010. Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1. The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid Sulfate Soils and Rice Growth in West Kalimantan, Indonesia. Journal of Agricultural Science (Canada) 3: 25-33 Matson, S.C. & Leihner, D.E. 1988. Yield and lad use efficiency of cassava/cowpea intercropping system grown at different phosphorus rate. Field Crops Research 18: 215–226. Midmore D.J. 1993. Agronomic modification of resources use and intercrop productivity. Field Crops Research 34: 357 – 380. Olesen, J.E., Hansen, E.M., Askegaard, M. & Rasmussen, I.A. 2007. The value of catch crops and organic manures for spring barley in organic arable farming. Field Crops Res. 100:168-178. O¨ zcimen, D. & Karaosmanog˘lu, F. 2004. Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy 29 :779–787 Putthacharoen, S., Howeler, R.H., Jantawat, S., Vichukit, V., 1998, “Nutrient Uptake And Soil Erosion Losses In Cassava And Six Other Crops In A Psamment In Eastern Thailand,” Field Crops Research 57: 113–126 Rondon, M. A., Lehmann, J., Ramirez, J., & Hurtado, M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43, 699 -708. Schmidt, M.W.I. & Noack, A.G.. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles 14: 777–79 Schmidt, M.W.I., Skjemstad, J.O. & Ja¨ger, C. 2002. Carbon isotope geochemistry and nanomorphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochem. Cycles 16: 70-87. Steiner, C., Teixeira, W.G., Lehmann, J., Nehls, T., Macêdo, J.L.V., Blum, W.E.H., & Zech, W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291:275-290. Sukartono, Utomo, W.H., Kusuma, Z.& Nugroho, W. H. 2011. Soil fertility status and maize (Zea mays) yield after biochar application on sandy soils of North Lombok, Indonesia. Journal of Tropical Agriculture 49: 47-53 Tagoe, S.O., Takatsugu Horiuchi, T., & Matsui, T. 2008. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant Soil, 306, 211–220 Topoliantz, S., Ponge, J.F., & Ballof S. 2007. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol. Fertil. Soils, 41, 15–21 Unger, P.W. 1978. Straw-mulch rate effect on soil water storage and sorghum yield. Soil Sci. Soc. Am. J., 42: 486–491. Utomo, W.H. 1996. Erosi dan Konservasi Tanah. Penerbit IKIP Malang. Malang Wargiono. J. 2006. Teknologi Produksi Ubikayu: Mendukung Industri Bioethanol. Puslitbangtan, Balai Penelitian dan Pengembangan Pertanian, Bogor.
Wargiono, J., Kushartoyo, H. Suyamto and B. Guritno., 1998, “Recent Progress In Cassava Agronomy Research in Indonesia,” In: R.H. Howeler (Ed.). Cassava th
Breeding, Agronomy and Farmer Participatory Research in Asia. Proc. 5 Regional Workshop, held in Danzhou, Hainan, China. Nov 3-8, 1996. pp. 307330. Warnock, D.D., Lehmann, J., Kuyper, T.W. &. Rillig, M.C. 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil 300:9–20 Wisnubroto, E.I. & Utomo, W.H. 2007. Pengaruh penggunaan pupuk kandang terhadap Indeks Mutu Tanah dan hasil tanaman ubikayu. Prosiding Kongres dan Seminar Nasional MKTI ke 6, IPB, Bogor. Wisnubroto, E.I., Hedley, M., Hina, K. & Camps-Arbestain, M. 2010. The use of biochar from biosolids on Waitarere sandy soils: Effect on the growth of rye grass. Paper presented at the New Zealand Biochar Research Centre Workshop Massey University, Palmerton North, NZ. Yamato, M., Okimori,Y., Wibowo, I.F., Anshori, S., & Ogawa, M. 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Journal Soil Science and Plant Nutrition, 52, 489–495. Yuniwati, E.D., Wisnobroto, E.I., Utomo, W.H., Basuki, N. & Howeler, R.H. 2011. Land Husbandry: A better aproach for achieving sustainable cassava production 2.Combating land degradation by crop yield improvement.. International Journal of Applied Agricultural Research (to be published) Zhu, P., Ren, J., Wang, L., Zhang, X., Yang, X. & MacTavish, D. 2007. Long-term fertilization impacts on corn yields and soil organic matter on a clay-loam soil in Northeast China. J. Plant Nutr. Soil Sci. 170: 219–223 Zuofa K, Tariah NM, Isirimah NO. 1992. Effect of groundnut, cowpea and melon on weed control and yield of intercropped cassava and maize. Field Crops Research 28: 309-314.