Érettségi feladatok: Statisztika
1/13
2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával támasztották alá. Az egyes években a lakásépítésre fordított pénzösszegek: 2000-ben
12 millió peták
2001-ben
12,96 millió peták
2002-ben
14,4 millió peták
10 millió a) Miért megtévesztő a fenti oszlopdiagram? Valaki nem érzi meggyőzőnek ezt a statisztikát, és további adatokat keres. Kiderült, hogy 2000-ben 1 m2 új lakás építése átlagosan 1000 petákba került, 2001-ben az építési költségek 20%-kal emelkedtek, 2002-ben pedig az előző évi ár 1/3-ával növekedtek a költségek. b) Hogyan változott a három év során az egyes években újonnan megépített bérlakások összalapterülete? c) Lehet-e az új adatok alapján olyan oszlopdiagramot készíteni, amelyből a kormány jelentésével ellentétes következtetés is levonható? Ha igen, akkor készítse el! d) Több lakást építettek-e 2002-ben, mint 2001-ben? Válaszát indokolja! 2004. Próba 6. Adott a következő kilenc szám: 1; 2; 2; 2; 3; 3; 4; 5; 6. Válassza ki a helyes állítást az alábbiak közül! A) Az adatsor átlaga 2. B) Az adatsor módusza 2. C) Az adatsor mediánja 2. 17. Egy középiskola 120 érettségiző tanulója a szabadon választható érettségi tantárgyat a következő megoszlásban választja: 54 tanuló földrajzból, 30 biológiából, 24 informatikából és 12 kémiából fog vizsgázni. Számítsa ki, hogy az egyes tantárgyakból a tanulók hány százaléka tesz érettségi vizsgát, és ábrázolja kördiagramon a százalékos megoszlásokat! 2005. május 10. 15. Egy dolgozatnál az elérhető legmagasabb pontszám 100 volt. 15 tanuló eredményeit tartalmazza a következő táblázat: 100 95 91 80 65 31 17 8 5 Pontszám 3 2 1 2 1 2 2 1 1 Dolgozat a) Határozza meg az összes dolgozat pontszámának átlagát, móduszát és mediánját! b) A dolgozatok érdemjegyeit az alábbi táblázat alapján kell megállapítani! Pontszám 80 – 100 60 – 79 40 – 59 20 – 39 0 – 19
Osztályzat jeles jó közepes elégséges elégtelen
Ennek ismeretében töltse ki a következő táblázatot! Osztályzat jeles jó Dolgozatok száma
közepes
elégséges
elégtelen
c) Készítsen kördiagramot az osztályzatok megoszlásáról! Adja meg az egyes körcikkekhez tartozó középponti szögek értékét is!
Érettségi feladatok: Statisztika
2/13
2005. május 28. 17. Egy teherautóval több zöldségboltba almát szállítottak. Az egyik üzletbe 60 kg jonatánt, 135 kg starkingot, 150 kg idaredet és 195 kg golden almát vittek. A jonatán és az idared alma kilóját egyaránt 120 Ft-ért, a starking és a golden kilóját 85 Ft-ért árulta a zöldséges. a) Hány százalékkal volt drágább a jonatán alma kilója a goldenéhez képest? b) Mennyi bevételhez jutott a zöldséges, ha a teljes mennyiséget eladta? c) A zöldségeshez kiszállított árukészlet alapján számítsa ki, hogy átlagosan mennyibe került nála 1 kg alma! d) Ábrázolja kördiagramon a zöldségeshez érkezett alma mennyiségének fajták szerinti megoszlását! A jonatán alma mérete kisebb, mint az idaredé, így abból átlagosan 25%-kal több darab fér egy ládába, mint az idaredből. Rakodásnál mindkét fajtából kiborult egy-egy tele láda alma, és tartalmuk összekeveredett. e) A kiborult almákból véletlenszerűen kiválasztva egyet, mekkora a valószínűsége annak, hogy az jonatán lesz?
2005. május 29. 18. Anna, Béla, Cili és Dénes színházba megy. Jegyük a bal oldal 10. sor 1., 2., 3., 4. helyére szól. a) Hányféle sorrendben tudnak leülni a négy helyre? b) Hányféleképpen tudnak leülni a négy helyre úgy, hogy Anna és Béla egymás mellé kerüljenek? c) Mekkora annak a valószínűsége, hogy Anna és Béla jegye egymás mellé szól, ha a fenti négy jegyet véletlenszerűen osztjuk ki közöttük? A színház 1200 személyes. A szombati előadásra az összes jegy elkelt. Az eladott jegyek 40%-a 800 Ft-os, 25%-a 1000 Ft-os, 20%-a 1200 Ft-os, 15%-a 1500 Ft-os jegy volt. d) Ábrázolja kördiagramon az eladott jegyek jegyárak szerinti százalékos megoszlását! e) Számítsa ki, hogy átlagosan mennyibe kerül egy színházjegy! 2005. október 15. A fizika órai tanulókísérlet egy tömegmérési feladat volt. A mérést 19 tanuló végezte el. A mért tömegre gramm pontossággal a következő adatokat kapták: 37, 33, 37, 36, 35, 36, 37, 40, 38, 33, 37, 36, 35, 35, 38, 37, 36, 35, 37. a) Készítse el a mért adatok gyakorisági táblázatát! b) Mennyi a mérési adatok átlaga gramm pontossággal? c) Mekkora a kapott eredmények mediánja, módusza? d) Készítsen oszlopdiagramot a mérési eredményekről!
Érettségi feladatok: Statisztika
3/13
2006. február 16. Egy osztály történelem dolgozatot írt. Öt tanuló dolgozata jeles, tíz tanulóé jó, három tanulóé elégséges, két tanuló elégtelen dolgozatot írt. a) Hányan írtak közepes dolgozatot, ha tudjuk, hogy az osztályátlag 3,410-nál nagyobb és 3,420-nál kisebb? b) Készítsen gyakorisági táblázatot, és ábrázolja oszlop-diagrammal az osztályzatok gyakoriságát! 2006. május 4. Az alábbi adatok március első hetében mért napi hőmérsékleti maximumok (az adatokat °C-ban mérték):
Mennyi volt ezen a héten a hőmérsékleti maximumok átlaga? 15. A 12. évfolyam tanulói magyarból próba érettségit írtak. Minden tanuló egy kódszámot kapott, amely az 1, 2, 3, 4 és 5 számjegyekből mindegyiket pontosan egyszer tartalmazta valamilyen sorrendben. a) Hány tanuló írta meg a dolgozatot, ha az összes képezhető kódszámot mind kiosztották? b) Az alábbi kördiagram a dolgozatok eredményét szemlélteti: Adja meg, hogy hány tanuló érte el a szereplő érdemjegyeket! Válaszát foglalja táblázatba, majd a táblázat adatait szemléltesse oszlopdiagramon is! 2006. május (idegen nyelvű)
2006. október 4. Egy márciusi napon öt alkalommal mérték meg a külső hőmérsékletet. A kapott adatok átlaga 1 °C, mediánja 0 °C. Adjon meg öt ilyen lehetséges hőmérséklet értéket! 14. Egy tanulmányi verseny döntőjében 8 tanuló vett részt. Három feladatot kellett megoldaniuk. Az első feladat maximálisan elérhető pontszáma 40, a másodiké 50, a harmadiké 60. A nyolc versenyző feladatonkénti eredményeit tartalmazza az alábbi táblázat: a) Töltse ki a táblázat hiányzó adatait! A százalékos teljesítményt egészre kerekítve adja meg!
Érettségi feladatok: Statisztika
4/13
Melyik sorszámú versenyző nyerte meg a versenyt, ki lett a második, és ki a harmadik helyezett? c) Egy tanuló betegség miatt nem tudott megjelenni a döntőn. Másnap megkapta, és megoldotta a feladatokat. Eredményét később összehasonlította a nyolc döntős versenyző eredményével. Észrevette, hogy az első feladatot a versenyzők I. feladatra kapott pontszámainak a mediánjára teljesítette (egészre kerekítve), a második feladatot pedig a nyolc versenyző II. feladata pontszámainak a számtani közepére (szintén egészre kerekítve). A III. feladatot 90%-ra teljesítette. Mennyi lett ennek a tanulónak az összpontszáma? Ezzel hányadik helyen végzett volna? 2007. május 10. Máté a tanév során 13 érdemjegyet kapott matematikából. Ezek időrendben: 4, 4, 3, 4, 4, 2, 5, 4, 3, 1, 3, 3, 2. Adja meg a jegyek móduszát és mediánját! 17. Egy gimnáziumban 50 diák tanulja emelt szinten a biológiát. Közülük 30-an tizenegyedikesek és 20-an tizenkettedikesek. Egy felmérés alkalmával a tanulóktól azt kérdezték, hogy hetente átlagosan hány órát töltenek a biológia házi feladatok megoldásával. A táblázat a válaszok összesített eloszlását mutatja. A biológia házi feladatok megoldásával hetente eltöltött órák száma* Órák száma 0-2 2-4 4-6 6-8 8-10 Tanulók száma 3 11 17 15 4 * A tartományokhoz az alsó határ hozzátartozik, a felső nem. a) Ábrázolja oszlopdiagramon a táblázat adatait! b) Átlagosan hány órát tölt a biológia házi feladatok megoldásával hetente ez az 50 tanuló? Az egyes időintervallumok esetében a középértékekkel (1, 3, 5, 7 és 9 órával) számoljon! 2007. május (idegen nyelvű)
2007. október 11. Öt szám átlaga 7. Az öt szám közül négyet ismerünk, ezek az 1, a 8, a 9 és a 12. Határozza meg a hiányzó számot! Válaszát számítással indokolja! 2008. május (idegen nyelvű)
Érettségi feladatok: Statisztika
5/13
2008. október 6. Rozi irodalomból a tanév során a következő jegyeket kapta: 2; 4; 3; 5; 2; 4; 5; 3; 5. Mi lenne az év végi osztályzata, ha az a kapott jegyek mediánja lenne? 9. A kézilabda edzéseken 16 tanuló vesz részt, átlagmagasságuk 172 cm. Mennyi a magasságaik összege? 12. Egy iskolában 120 tanuló érettségizett matematikából. Nem volt sem elégtelen, sem elégséges dolgozat. Az eredmények eloszlását az alábbi kördiagram szemlélteti: Hányan kaptak jeles, jó, illetve közepes osztályzatot?
Érettségi feladatok: Statisztika
6/13
2009. május
2009. október / 9. Melyik az a legnagyobb szám az alábbi 12 szám közül, amelynek elhagyásával a megmaradt 11 szám mediánja 6? 6; 4; 5; 5; 1; 10; 7; 6; 11; 2; 6; 5 2010. május 12. Egy 17 fős csoport matematika témazáró dolgozatának értékelésekor a tanár a következő információkat közölte: Mind a 17 dolgozatot az 1-es, a 2-es, a 3-as, a 4-es és az 5-ös jegyek valamelyikével osztályozta. A jegyek mediánja 4, módusza 4, terjedelme 4 és az átlaga (két tizedes jegyre kerekítve) 3,41. Döntse el, hogy az alábbi állítások közül melyik igaz, illetve hamis! A: A dolgozatoknak több mint a fele jobb hármasnál. B: Nincs hármasnál rosszabb dolgozat.
Érettségi feladatok: Statisztika
2010. május (idegen nyelvű)
7/13
Érettségi feladatok: Statisztika
8/13
2010. október
2011. május 3. Az alábbi táblázat egy nagy divatáru üzletben eladott pólók számát mutatja méretek szerinti bontásban: A pólók mérete XS S M L XL XXL
Eladott darabszám 60 125 238 322 198 173
a) Mennyi az eladott M-es méretű pólók relatív gyakorisága? b) Melyik az egyes pólók méretéből álló adatsokaság módusza? c) Méretenként hány darabot adnának el ugyanekkora forgalom esetén, ha mindegyik méretből ugyanannyi kelne el?
Érettségi feladatok: Statisztika
2011. október 6. Adja meg a 2; 11; 7; 3; 17; 5; 13 számok mediánját!
9/13
Érettségi feladatok: Statisztika
10/13
2011. október / 14.
2012. május / 17. 17. Az alábbi táblázat András és Bea érettségi érdemjegyeit mutatja. a)
Számítsa ki András jegyeinek átlagát és szórását!
Cili érettségi eredményéről azt tudjuk, hogy jegyeinek átlaga András és Bea jegyeinek átlaga közé esik, továbbá Cili jegyeinek a szórása 0. b) Töltse ki a táblázatot Cili jegyeivel! Dávid is ebből az 5 tárgyból érettségizett, az 5 tárgy az ő bizonyítványában is a fenti sorrendben szerepel. Eredményeiről azt tudjuk, hogy jegyeinek mediánja 4, átlaga pedig 4,4 lett. c) Határozza meg Dávid osztályzatait és azt, hogy hányféleképpen lehetne ezekkel az osztályzatokkal kitölteni az érettségi bizonyítványát! Az ábra a 24 fős osztály érettségi eredményeinek megoszlását mutatja matematikából. Tudjuk, hogy jeles osztályzatot 4 tanuló ért el. d) Az osztály tanulói közül hányan érettségiztek közepes eredménnyel matematikából?
Érettségi feladatok: Statisztika
11/13
2012. május/ idegen nyelvű 14. Nekeresd város kórháza az alábbi adatokat hozta nyilvánosságra: a Nekeresden lakó 12 320 emberből az előző évben 1978 embert ápoltak hosszabb-rövidebb ideig a város kórházában. a) Mekkora az esélye, hogy egy véletlenül kiválasztott nekeresdi lakost az előző évben a város kórházában ápoltak? Két tizedesjegyre kerekítve adja meg a valószínűséget! Abban az évben a kórházban ápoltak közül 138 fő volt 18 év alatti, 633 fő 18 és 60 év közötti, a többi idősebb. A város lakosságának 24%-a 60 év feletti, 18%-a 18 év alatti. (A számítások során feltehetjük, hogy Nekeresden az ismertetett adatokban lényeges változás egy év alatt nem történt.) b) Készítsen kördiagramot a kórházban ápoltak korosztály szerinti megoszlásáról! A diagram elkészítéséhez szükséges számításokat írja le! c) Mennyivel kisebb vagy nagyobb az a)-ban kérdezett esély, ha a 60 év felettiek közül választunk ki valakit véletlenszerűen? 2012. október 4. Egy középiskolának 480 tanulója van. A diákok egy része kollégiumban lakik, a többiek bejárók. A bejárók és a kollégisták nemek szerinti eloszlását mutatja a kördiagram. Adja meg a kollégista fiúk számát! Válaszát indokolja!
18. Az egyik világbajnokságon részt vevő magyar női vízilabdacsapat 13 tagjának életkor szerinti megoszlását mutatja az alábbi táblázat. Életkor 17 18 19 Gyakoriság 2 1 1 a) Számítsa ki a csapat átlagéletkorát!
21 1
22 2
23 1
24 2
25 1
26 1
31 1
Jelölje A azt az eseményt, hogy a csapatból 7 játékost véletlenszerűen kiválasztva, a kiválasztottak között legfeljebb egy olyan van, aki 20 évnél fiatalabb. b) Számítsa ki az A esemény valószínűségét! A világbajnokság egyik mérkőzésén a magyar kezdőcsapat 6 mezőnyjátékosáról a következőket tudjuk: • a legidősebb és a legfiatalabb játékos életkorának különbsége 12 év, • a játékosok életkorának egyetlen módusza 22 év, • a hat játékos életkorának mediánja 23 év, • a hat játékos életkorának átlaga 24 év. c) Adja meg a kezdőcsapat hat mezőnyjátékosának életkorát! 2013. május 2. Egy kis cégnél nyolcan dolgoznak: hat beosztott és két főnök. A főnökök átlagos havi jövedelme 190 000 Ft, a beosztottaké 150 000 Ft. Hány forint a cég nyolc dolgozójának átlagos havi jövedelme? 3. Az ábra egy sütemény alapanyagköltségeinek megoszlását mutatja. Számítsa ki a „vaj” feliratú körcikk középponti szögének nagyságát fokban! Válaszát indokolja!
11. Réka év végi bizonyítványában a következő osztályzatok szerepelnek: 4; 2; 3; 5; 5; 4; 5; 5; 4. Adja meg Réka osztályzatainak móduszát és mediánját!
Érettségi feladatok: Statisztika
12/13
2013. május idegen nyelvű 9. Az ábrán látható kördiagram 720 megkérdezett személy internetezési szokásait szemlélteti: I. nem internetezők; II. rendszeresen internetezők; III. ritkán internetezők. Hányan tartoznak a megkérdezettek közül az egyes csoportokba?
15. Egy kutatólaboratóriumban technikusi végzettséggel vagy egyetemi diplomával lehet dolgozni. A laborban dolgozó 50 ember közül 42 főnek van technikusi oklevele és 28 főnek van egyetemi diplomája. a) Közülük hány dolgozónak van csak technikusi végzettsége? A labor 50 dolgozójának átlagkeresete 165 000 forint. Közülük a 30 év alattiak átlagkeresete 148 000 forint, a többieké 173 000 forint. b) Hány 30 év alatti dolgozója van a labornak? A hétvégén megrendezésre kerülő konferenciára 25 kutató szeretne elmenni, közülük 17 nő és 8 férfi. A kutatóintézet a 25 jelentkező 20%-ának tudja csak a részvételi díját kifizetni. c) Ha a vezetőség véletlenszerűen választaná ki, hogy kinek a költségeit fizeti, mekkora lenne a valószínűsége annak, hogy csak nőket választanak ki? Válaszát két tizedes jegyre kerekítve adja meg! 18.a) Az üzletvezető úgy kötött szerződést egy sütödével, hogy minden este zárás után megmondja, hogy mennyi kenyeret és mennyi péksüteményt kér másnapra. Minden alkalommal háromféle kenyeret (1 kg-os fehér kenyér, ½ kg-os fehér kenyér, rozskenyér) és kétféle péksüteményt (zsemle és kifli) rendelt. A 32. héten öt munkanapon keresztül (hétfőtől péntekig) feljegyezte, hogy a megrendelt pékáruból mennyi fogyott el, és mennyi maradt meg, amit vissza kellett küldenie. Az alábbi táblázatban az egyes napokról készült kimutatás látható:
b) Számítsa ki, hogy az üzletvezető az 5 nap alatt összesen hány darab kenyeret, illetve péksüteményt rendelt, és a megrendelt mennyiségnek hány százalékát küldte vissza a két árufajta esetén! c ) Az 5 napból véletlenszerűen megjelölünk 2 napot. Mekkora annak a valószínűsége, hogy két olyan napot jelölünk meg, amikor mindkét napon legalább 130 péksüteményt adtak el? Az egyes pékárukból a következő, 33. hét minden napján ugyanannyit rendelt a kereskedő, mégpedig mindhárom fajta kenyérből a 32. héten naponta eladott mennyiségeiknek egészre kerekített átlagát, zsemléből és kifliből pedig a 32. héten eladott mennyiségek móduszát. d) Mennyit rendelt ekkor naponta az egyes pékárukból?
Érettségi feladatok: Statisztika 2013. október 12. Egy gyümölcsárus háromféle almát kínál a piacon. A teljes készletről kördiagramot készítettünk. Írja a táblázat megfelelő mezőibe a hiányzó adatokat!
13/13