Oktatáskutató és Fejlesztő Intézet Matematika fejlesztő feladatok szakiskolások számára
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN A feladatsor jellemzői Tárgy, téma Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör és középpontja. Előzmények Kör, egyenes, szög, szögtartomány fogalma; távolság, távolságok mérése; csúcsszögek, váltószögek, egyállású szögek; paralelogramma tulajdonságai; körző és vonalzó használata. Cél A geometriai szemlélet fejlesztése gyakorlati feladatokon keresztül, papírhajtogatás segítségével. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben Tájékozódás az időben Tájékozódás a világ mennyiségi viszonyaiban Tapasztalatszerzés Képzelet Emlékezés Gondolkodás Ismeretek rendszerezése Ismerethordozók használata
+
+ + + +
Ismeretek alkalmazása Problémakezelés és -megoldás Alkotás és kreativitás Kommunikáció Együttműködés Motiváltság Önismeret, önértékelés A matematika épülésének elvei
+ + + + + +
Felhasználási útmutató A feladatsor megoldásához szükséges A4-es méretű géppapír, olló, körző és vonalzó. Az 1., 2., 6., 8., feladatok a tanár döntése szerint elhagyhatók, a feladatsor ezek nélkül is teljes. Gyenge alapokkal rendelkező csoportban azonban nem árt a manuális tapasztalatszerzés megerősítő hatása miatt elvégeztetni. A 7. feladatnál érdemes az osztályt csoportokra bontani, hegyesszögű, tompaszögű, illetve derékszögű háromszöget rajzolókra. Ezekben a feladatokban nem törekszünk a bizonyításokra, a tanulóknak arra kell ráérezniük, hogy mi miért van. A feladatok után mondjuk ki a tételeket, akár többször visszautalva a hajtogatós feladat eredményeire. Hívjuk fel a figyelmet többször is arra, hogy pontosan dolgozzanak! Figyeljük, hogy pont és egyenes távolságának mérésekor hogyan tartják a tanulók a vonalzót! (Megfelelő kézügyesség esetén nem szükséges merőlegest állítani.) Érdemes megbeszélni feladatonként az eredményeket, már csak azért is, mert sokszor nem precíz bizonyítást várunk. A feladatsor elvégzése után azt várjuk, hogy a tanulók tudják, mi a különbség a szögfelezők, oldalfelező merőlegesek, magasságvonalak között, lássák, hogy szerkesztésükkel hogyan néz ki az ábra, legyenek képesek közelítőleg pontos szabadkézi vázlatot rajzolni.
VI. Síkgeometria
VI.1. Nevezetességek Háromszögországban
1.oldal/6
Oktatáskutató és Fejlesztő Intézet Matematika fejlesztő feladatok szakiskolások számára
Érdemes a feladatsort kiegészíteni néhány „közel gyakorlati” feladattal, az itt észrevettek alkalmazására. Például három falu közös iskolája helyének megszerkesztése a térképen úgy, hogy mindenhonnan ugyanolyan messze legyen. Az is kérdés, hogy négy pont vagy négy egyenes esetén mit mondhatunk a pontok egy körön való elhelyezkedésének lehetőségéről/szükségességéről, illetve a négy egyenes mindegyikét érintő kör létezéséről, s ez vezethet a húrnégyszög és az érintőnégyszög fogalmához. Érdekes, hogy négy pont/egyenes esetén általában már nincsenek ilyen körök.
VI. Síkgeometria
VI.1. Nevezetességek Háromszögországban
2.oldal/6
Oktatáskutató és Fejlesztő Intézet Matematika fejlesztő feladatok szakiskolások számára
NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Feladat sor Végy legalább négy A4-es papírt és egy ollót. (Ezeket használd az 1., a 2., a 6. és a 8. feladatoknál.) Legyen még körződ, vonalzód, ceruzád, és végezd el a következő feladatokat! Dolgozz minél pontosabban! H A JT Á SV AD Á SZ 1.
Rajzolj két 180°-nál kisebb szöget! (Lehet mindkettőt egy lapra.) Először az egyik szöggel dolgozunk. a) Szúrd a szög csúcsába a körzőt, és a szögszárakon jelölj ki egy-egy pontot ugyanazzal a körzőnyílással! Jelöljük ezeket a pontokat P-vel és Q-val! b) Vágd ki a szögtartományt, és hajtsd ketté úgy, hogy P és Q egymásra essenek! c) Jelölj ki néhány (például négy darab) tetszőleges pontot a hajtásvonalon, és kösd össze mindegyiket P-vel és Q-val! (Ezt rajzolhatod vastag vonallal, hogy átüssön a papíron!) d) Mutasd meg a hajtás segítségével, hogy mindegyik pont ugyanolyan távol van P-től, mint Q-tól! e) Most a másik szöget is hajtsd ketté az előző módon, és rajzolj a hajtásvonalra ismét négy pontot! f) Mérd meg, hogy ezek a pontok milyen távol vannak a szögszáraktól! Mit tapasztalsz?
2.
Rajzolj egy háromszöget! (Lehet akármilyen nagy, ami ráfér a papírra.) a) Az egyik csúcsba szúrd a körzőt, és a két szomszédos oldalon jelölj ki egy-egy pontot ugyanazzal a körzőnyílással! Ezt az eljárást végezd el a másik két csúcsból is! b) Hajtsd ketté a háromszöget az egyik csúcsa mentén úgy, hogy az ugyanazzal a körrel kimetszett pontok egymásra essenek! c) Végezd el a hajtást a másik két csúcsa mentén is! d) Mit tapasztalsz a hajtásvonalak egymáshoz viszonyított helyzetéről? e) Mérd le, hogy a hajtásvonalak metszéspontja milyen távol van az oldalaktól! Mit tapasztalsz? Vajon véletlen?
VI. Síkgeometria
VI.1. Nevezetességek Háromszögországban
3.oldal/6
Oktatáskutató és Fejlesztő Intézet Matematika fejlesztő feladatok szakiskolások számára
3.
Rajzolj egy háromszöget! (Lehet akármilyen nagy, ami ráfér a papírra.) a) Szerkeszd meg a szögfelezőit! b) Jelölj ki mindhárom szögfelezőn egy-egy pontot (kb. a szögfelezők metszéspontja és a csúcsok között félúton), és járj el mindhárom ponttal a következő feladatokban leírt módon! c) Mérd meg, hogy a pont milyen távol van a felezett szög két szárának megfelelő oldalaktól! d) Rajzolj olyan kört ebből a pontból, mely érinti mindkét szomszédos oldalt! e) Mekkora a kör sugara? f) Végezd el a másik két ponttal is a c) – e) feladatokat! g) Képzeld el, hogy a körök középpontjait eltoljuk a szögfelezőkön, egyre távolabb a csúcsoktól! Rajzold meg a legnagyobb olyan kört, amely a feltételeknek megfelel, vagyis érinti a szomszédos oldalakat, de még minden pontja a háromszög belsejében van!
4.
Rajzolj egy háromszöget! Jelöljük az oldalait a, b, c-vel, és a szögfelezők metszéspontját Q-val! a) Kösd össze a háromszög csúcsait a Q ponttal! Az így kapott összekötő szakaszok három kis háromszögre bontják az eredeti háromszöget. Rajzolj egy olyan kört, melynek középpontja a Q pont, és az eredeti háromszög minden oldalát érinti! b) Jelöljük a kör sugarát r-rel! Írd fel a kis háromszögek területeit r és a, b, c segítségével! c) Írd fel az eredeti háromszög területét a kis háromszögek területeinek segítségével!
AZ
I GA Z SÁ GOS KÚ T
5.
Rajzolj vonalzóval egy 6 cm hosszú AB szakaszt az oldal közepére! a) Szerkessz olyan pontokat, amelyek A-tól és B-től is 10; 9; 8; 7; 6; 5; 4; 3; 2; 1 cm-re vannak! Mindegyik távolságra tudtál megfelelő pontot szerkeszteni? b) Hány pontot tudtál az egyes távolságokhoz szerkeszteni? c) Mit tapasztalsz a pontok helyzetéről?
6.
Rajzolj egy hegyesszögű háromszöget, és vágd ki! a) Hajtsd össze a háromszöget úgy, hogy valamelyik két csúcsát egymásra illeszted! b) Jelölj ki néhány (pl. 4 db) pontot a hajtásvonalon, ezeket kösd össze a két adott csúccsal, és mutasd meg a hajtás segítségével, hogy mindegyik kijelölt pont ugyanolyan távol van az adott két csúcstól! c) Végezd el az a) – b) feladatot a másik két-két csúccsal is! d) Mit tapasztalsz a hajtásvonalak egymáshoz viszonyított helyzetéről? e) Mérd meg, hogy a hajtásvonalak metszéspontja milyen távol van a csúcsoktól!
VI. Síkgeometria
VI.1. Nevezetességek Háromszögországban
4.oldal/6
Oktatáskutató és Fejlesztő Intézet Matematika fejlesztő feladatok szakiskolások számára
7.
Rajzolj egy hegyesszögű, egy tompaszögű, illetve egy derékszögű háromszöget! (A csoportbeosztásnak megfelelően.) a) Szerkeszd meg az oldalfelező merőlegeseit! Jelöljük ezek metszéspontját O-val! b) Mérd meg, hogy milyen távol van O a csúcsoktól! c) Rajzolj egy olyan kört, amely átmegy mindhárom csúcson! Hol lesz ennek a körnek a középpontja, és mekkora lesz a sugara?
„M A GA SSÁ GOS
V ONA L AI M !”
8.
Rajzolj egy hegyesszögű háromszöget! a) Az egyik csúcsból körzővel húzz egy körívet úgy, hogy a körívnek két közös pontja legyen a szemközti oldallal! b) Végezd el az a) feladatot a másik két csúcsból kiindulva is! c) Vágd ki a háromszöget! d) Hajtsd ketté úgy a háromszöget, hogy egy ívnek egy oldallal alkotott két metszéspontja egymásra essen! A hajtásvonal ekkor átmegy a szemközti csúcson. e) Mekkora szöget zár be a hajtásvonal az oldallal? f) Végezd el a d) és az e) feladatot a másik két oldallal is! g) Mit tapasztalsz a hajtásvonalak egymáshoz viszonyított helyzetéről?
9.
Rajzolj egy hegyesszögű háromszöget! a) Szerkessz minden csúcsból a szemközti oldalra merőleges egyenest! Mit tapasztalsz? b) Végezd el a fenti szerkesztést derékszögű és tompaszögű háromszög esetén is! Fogalmazd meg tapasztalataidat!
VI. Síkgeometria
VI.1. Nevezetességek Háromszögországban
5.oldal/6
Oktatáskutató és Fejlesztő Intézet Matematika fejlesztő feladatok szakiskolások számára
MEGOLDÁSOK cr br ; az ACQ háromszög területe: ; 2 2 ar a BCQ háromszög területe: . 2 a r b r c r a b c r K r c) T . 2 2 2 2 2
4. b) Az ABQ háromszög területe:
5. a)–b) 1-1 cm-re és 2-2 cm-re nincsen pont, 3-3 cm-re 1 db pont van, a többi megadott távolságra 2-2 megfelelő pont van. c) A pontok egy egyenesre illeszkednek. 6. d) A hajtásvonalak egy ponton mennek át. e) Ez a pont ugyanolyan messze van a csúcsoktól. A feladat megoldása kapcsán érdemes felvetni a probléma gyakorlati vonatkozásait. Például adott három tanya, és úgy szeretnénk kutat fúrni, hogy mindhárom tanyától egyforma távolságra legyen, így a vezetékek építésének költsége egyenlően oszlik meg a tulajdonosok között. (Erre utal a feladat címe is.) Az is felvethető, hogy amint három tanyához találtunk „igazságos” helyet a kútnak, vajon négyhez is találunk-e? Fel lehet ismertetni a diákokkal, hogy két tanya esetén végtelen sok ilyen hely van, s van egy a két tanyához legközelebbi pont; háromhoz pontosan egy ilyen helyet találunk, négyhez pedig általában már nincs ilyen pont. 7. c) A kör középpontja az oldalfelező merőlegesek metszéspontja, a sugara pedig ezen metszéspont és a csúcsok távolsága [vö. 6.e)]. 8. g) A hajtásvonalak egy ponton mennek át. 9. a) – b) A magasságvonalak egy ponton mennek át. Ez a pont, a magasságpont hegyesszögű háromszög esetében a háromszögön belül, derékszögű háromszögnél a derékszögű csúcsban, tompaszögű háromszögnél a háromszögön kívül van.
VI. Síkgeometria
VI.1. Nevezetességek Háromszögországban
6.oldal/6