LA - WB (Lembar Aktivitas Warga Belajar)
LOGIKA MATEMATIKA
Oleh: Hj. ITA YULIANA, S.Pd, M.Pd
MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
Created By Ita Yuliana
37
Logika Matematika Kompetensi Dasar 1. 2. 3. 4.
Memahami pernyataan dalam matematika dan ingkaran atau negasinya Menentukan nilai kebenaran dari suatu pernyataan majemuk dan pernyataan berkuantor Merumuskan pernyataan yang setara dengan pernyataan majemuk atau pernyataan berkuantor yang diberikan Menggunakan prinsip logika matematika yang berkaitan dengan pernyataan majemuk dan pernyataan berkuantor dalam penarikan kesimpulan dan pemecahan masalah
Indikator 1. Warga belajar dapat menentukan pernyataan dan ingkaran dari suatu pernyataan 2. Warga belajar dapat menentukan nilai kebenaran dari disjungsi, konjungsi, dan ingkarannya 3. Warga belajar dapat menentukan nilai kebenaran dari implikasi, konvers, invers, dan kontraposisi beserta ingkarannya 4. Warga belajar dapat menjelaskan arti kuantor universal dan eksistensial beserta ingkarannya 5. Warga belajar dapat merumuskan pernyataan majemuk yang ekuivalen beserta ingkarannya 6. Warga belajar dapat menarik kesimpulan dari modus ponens, modus tolens, dan silogisme 7. Warga belajar dapat membuktikan sifat matematika dengan bukti tak langsung (kontraposisi dan kontradiksi) 8. Warga belajar dapat membuktikan sifat dengan induksi matematika Kasus Para eksekutif, guru, tutor, pelajar, dan pengusaha biasanya tidak mau ketinggalan berita di koran. Mereka selalu menyempatkan diri untuk membaca berita di berbagai koran, dari berita olahraga, ekonomi, pendidikan, hingga iklan. Coba kamu perhatikan kalimat-kalimat pada potongan koran tersebut, adakah yang aneh? Dalam matematika kita juga akan mempelajari tentang kalimat, salah satunya dalam bab Logika Matematika. Di mana hubungan antara kalimat-kalimat itu dengan materi Logika Matematika ? Kamu akan mendapatkan jawabannya.
Ringkasan Materi A. Kalimat Terbuka, Pernyataan, dan Ingkaran 1. Kalimat Terbuka Kalimat terbuka adalah suatu kalimat yang masih mengandung variabel. Suatu kalimat terbuka akan menjadi sebuah pernyataan jika variabelnya diganti dengan konstanta tertentu Created By Ita Yuliana
38
Contoh : a. 3x – 1 = 5 b. Benda dalam kotak itu sangat mahal c. Hari ini akan terjadi angin puting beliung Ketiga contoh di atas belum dapat ditentukan kebenarannya. Kebenarannya baru dapat ditentukan jika variabel “x” dan kata “benda” itu diganti. Untuk 3x – 1 = 5, jika x diganti dengan 2 maka menghasilkan kalimat yang tidak benar, sedangkan jika x diganti dengan 2 maka akan mengahsilkan kalimat yang benar. Kalimat matematika seperti itu disebut kalimat terbuka. 2. Pernyataan Pernyataan adalah suatu kalimat yang telah mempunyai nilai. Nilai tersebut mungkin bernilai benar saja atau salah saja, tetapi bukan keduanya. Contoh: a. Matahari terbit dari ufuk barat (pernyataan salah) b. 3 – 1 = 2 (pernyataan benar) c. Semarang adalah ibu kota provinsi Jawa Tengah (pernyataan benar) 3. Ingkaran (Negasi) Ingkaran suatu pernyataan adalah pernyataan baru yang bernilai salah jika pernyataan semula benar atau bernilai benar jika pernyataan semula salah. Pernyataan “p” ingkarannya “tidak p” yang dilambangkan dengan atau . Tabel kebenaran: p Keterangan B S B = Benar S B S = Salah Contoh: a. Pernyataan p maka b. Pernyataan p maka c. Pernyataan p maka
: 3 adalah merupakan bilangan ganjil : Tidak benar 3 adalah bilangan ganjil atau 3 bukan bilangan ganjil :7–3=5 : Tidak benar 7 – 3 = 5 atau 7 – 3 5 : Hari ini hari sabtu : Tidak benar hari ini hari sabtu atau hari ini bukan hari sabtu
Aktivitas 1 1. Tuliskan a. 3 pernyataan yang bernilai benar b. 3 pernyataan yang bernilai salah
Created By Ita Yuliana
39
2.
Tentukan nilai kebenaran a. Kuda adalah hewan berkaki empat b. HP dari x2 – 6x + 9 = 0 adalah {3} c. Semua bilangan genap habis dibagi 2 d. 2 bukan termasuk bilangan prima e. 3 + (-5) – 7 + 8 = 3
B. Konjungsi dan Disjungsi 1. Konjungsi Konjungsi adalah pernyataan majemuk dengan menggunakan kata hubung “dan” dilambangkan “ ” Tabel kebenaran p q Keterangan p q B B B B = Benar B S S S = Salah S B S S S S Contoh: Tentukan nilai kebenaran konjungsi berikut. Pernyataan p : Bilangan 9 habis dibagi 3 (Benar) Pernyataan q : Bilangan 9 merupakan bilangan genap (Salah) p q : Bilangan 9 habis dibagi 3 dan 9 merupakan bilangan genap (Salah) B S =S 2. Disjungsi Disjungsi adalah pernyataan majemuk dengan menggunakan kata hubung “atau” dilambangkan “ ” Tabel kebenaran p q Keterangan p q B B B B = Benar B S B S = Salah S B B S S S Contoh: Tentukan nilai kebenaran disjungsi berikut. Pernyataan p : 4 adalah bilangan genap (Benar) Pernyataan q : 4 adalah bilangan prima (Salah) p q : 4 adalah bilangan genap atau 4 adalah bilangan prima (Benar) B S =B Created By Ita Yuliana
40
Aktivitas 2 1. Tentukan nilai kebenaran dari konjungsi berikut ini a. 4 + 3 = 7 dan kaki kuda berjumlah 4 b. -3 adalah bilangan bulat dan 3 adalah bilangan genap c. 4 dan 5 adalah faktor dari 30 2. Tentukan nilai kebenaran dari disjungsi berikut ini a. √ = 4 atau =3 b. – 4 = 0 atau 3 + 4 = 12 c. 8 faktor dari 32 atau 6 faktor dari 46 3. Diketahui : p : Bangunan sekolah rusak q : Sekolah libur Nyatakan dengan kalimat pernyataan berikut ini. a. p q b. p q c. p q d. p q
4. Salin dan lengkapi tabel berikut p q p q B B B S S B S S
p q
(p q)
(p q)
C. Implikasi dan Biimplikasi 1. Implikasi Implikasi adalah pernyataan majemuk dengan kata hubung “jika ... maka ...” dilambangkan “” atau “” Implikasi p q dapat juga dibaca p hanya jika q q jika p p syarat cukup bagi q q syarat perlu bagi p Pada p q, p disebut antiseden atau hipotesis dan q disebut konklusi
Created By Ita Yuliana
41
Tabel kebenaran p q pq B B B B S S S B B S S B
Keterangan B = Benar S = Salah
Contoh: Tentukan nilai kebenaran implikasi berikut Pernyataan p : Roni anak ramah (Benar) Pernyataan q : Roni mempunyai banyak teman (Benar) pq : Jika Roni ramah maka Roni mempunyai banyak teman (Benar) B B =B 2. Biimplikasi / Ekuivalen Biimplikasi adalah pernyataan majemuk dengan kata hubung “...jika dan hanya jika ...” dilambangkan “” atau “” Biimplikasi dapat juga dibaca Jika p maka q dan jika q maka p p syarat perlu dan cukup bagi q q syarat perlu dan cukup bagi p Tabel kebenaran p q pq B B B B S S S B S S S B
Keterangan B = Benar S = Salah
Contoh: Tentukan nilai kebenaran biimplikasi berikut Pernyataan p : 5 + 3 = 8 (Benar) Pernyataan q : 4 x 2 8 (Salah) pq : 5 + 3 =8 jika hanya jika 4 x 2 8 B S
(Salah) =S
Aktivitas 3 1. Tentukan nilai kebenaran dari implikasi berikut a. Jika 2 bilangan genap maka 7 bilangan ganjil b. Jika 3 x 4 = 16 maka 16 bilangan prima c. Jika 5 faktor dari 30 maka 5 faktor dari 16
Created By Ita Yuliana
42
2. Tentukan nilai x agar implikasi bernilai benar a. x + 3 = 8 6 > 3 b. 3x – 6 = 3 2 > 7 c. 4 > 2 4x = 8 d. 3 bilangan ganjil 4x – 7 = 9 3. Diantara biimplikasi berikut, mana yang bernilai benar ? a. 3 adalah bilangan prima jika dan hanya jika 3 faktor dari 10 b. 2 x 10 = 12 jika dan hanya jika 12 habis dibagi 2 c. 3 x 4 = 7 jika dan hanya jika 7 bukan bilangan prima d. Manado ada di pulau Jawa jika dan hanya jika 2 bilangan genap 4. Tentukan x agar pernyataan berikut benar a. 2 < 3 3x = 12 b. 4x – 5 = 2 3 > 6 c. 2x + 4 = 8 4 bilangan genap
D. Hubungan Konvers, Invers, dan Kontraposisi suatu Implikasi Dari sebuah implikasi dapat diturunkan pernyataan yang disebut konvers, invers, dan kontraposisi. Jika diketahui implikasi p q maka akan berlaku sbb. 1. Konvers dari implikasi p q adalah q p 2. Invers dari implikasi p q adalah 3. Kontraposisi dari implikasi p q adalah q p Tabel kebenaran sbb. p q B B S S
B S B S
S S B B
S B S B
pq (implikasi) B S B B (1)
qp (konvers) B B S B (2)
p q (invers) B B S B (3)
(kontraposisi) B S B B (4)
Dari tabel di atas dapat disimpulkan 1. Suatu implikasi tidak ekuivalen dengan konversnya (kolom 1 dan 2) 2. Suatu implikasi tidak ekuivalen dengan inversnya (kolom 1 dan 3) 3. Suatu implikasi ekuivalen dengan kontraposisinya (kolom 1 dan 4) ditulis p q 4. Konvers dari suatu implikasi ekuivalen dengan inversnya (kolom 2 dan 3) ditulis q p
Created By Ita Yuliana
43
contoh: Tentukan konvers, invers, dan kontraposisi dari pernyataan implikasi berikut “Jika x = 1 maka x2 – 6x + 5 = 0” Jawab: Konvers : “ Jika x2 – 6x + 5 = 0 maka x = 1” Invers : “ Jika x 1 maka x2 – 6x + 5 0” Kontraposisi : “ Jika x2 – 6x + 5 0 maka x 1”
Aktivitas 4 Tentukan konvers, invers, dan kontraposisi dari pernyataan implikasi berikut 1. “Jika harga BBM naik maka harga kebutuhan sehari-hari naik” Konvers
:
Invers
:
Kontraposisi : 2. “Jika x > 2 maka x2 > 2” Konvers
:
Invers
:
Kontraposisi : 3.
“Jika x bilangan genap maka x2 habis dibagi 4” Konvers
:
Invers
:
Kontraposisi :
Created By Ita Yuliana
44
E. Pernyataan Berkuantor Pernyataan berkuantor adalah pernyataan yang melibatkan beberapa atau semua anggota semesta pembicaraan yang mengawali sistem atau keadaan. Ada dua macam pernyataan berkuantor yaitu kuantor universal dan kuantor eksistensial 1. Kuantor Universal Pernyataan berkuantor universal dilambangkan dengan “ ” dibaca “semua” atau “setiap” Contoh: a. Semua orang berkaca mata b. Jika untuk setiap x A maka berlaku 2x bilangan genap c. x B, 3x + 5 > 0 2. Kuantor Eksistensial Pernyataan berkuantor eksistensial dilambangkan “” dibaca “ada” atau “beberapa” atau “sebagian” yang mempunyai arti sekurang-kurangnya ada satu atau paling sedikit satu Contoh: a. Ada santri yang berkaca mata b. Beberapa siswa SMA menggunakan internet c. x A, 4x – 3 < 0
Aktivitas 5 1. Ubahlah setiap pernyataan berkuantor berikut ini ke bentuk simbolik yang melibatkan implikasi Contoh: Semua kucing berkaki 4 Jika x adalah kucing maka x berkaki 4 a. Ada bilangan prima yang genap b. Setiap bilangan prima lebih dari 2 adalah ganjil
2. Diantara setiap pasang pernyataan berkuantor universal dan implikasi berikut, mana yang ekuivalen? a. “Semua burung berbulu hitam” “Jika x adalah burung maka x berbulu hitam” b. “Semua bilangan asli adalah bilangan cacah” “Jika x adalah bilangan cacah maka x adalah bilangan asli”
Created By Ita Yuliana
45
F. Pernyataan Majemuk 1. Pernyataan majemuk yang ekuivalen Pernyataan majemuk yang ekuivalen adalah dua pernyataan yang mempunyai nilai yang sama. Ekuivalen dilambangkan dengan “” Berikut ini merupakan pernyataan-pernyataan yang ekuivalen p qq p p qq p p (q p) (p q) p p (q r) (p q) ( p r) p (q r) (p q) ( p r) p (q r) (p q) ( p r) pqp q p q (q p) (q p) pq q p 2. Negasi (ingkaran) dari pernyataan majemuk Jika akan membuat negasi pernyataan berkuantor maka harus berhati-hati dengan arti “beberapa” dan “semua” Berdasarkan pengertian pernyataan-pernyataan yang ekuivalen maka akan didapat rumus yang disebut dengan Hukum de Morgan sebagai berikut. (p q) p q (p q) p q (p q) p q (p q) (p q) ( p q) Contoh: Tentukan negasi dari pernyataan berikut ini a. Saya malas dan bodoh b. Dian sedang makan soto atau bakso c. Jika Amir rajin belajar maka ia pasti naik kelas d. Ulangan dibatalkan jika dan hanya jika ada kerja bakti Jawab: a. Saya tidak malas atau tidak bodoh b. Dian tidak makan soto dan bakso c. Amir rajin belajar dan ia naik kelas d. Ulangan dibatalkan dan tidak diadakan kerja bakti atau diadakan kerja bakti dan ulangan tidak dibatalkan 3. Tautologi Tautologi adalah sebuah pernyataan majemuk yang selalu benar untuk semua kemungkinan nilai kebenaran dari pernyataan-pernyataan komponennya.
Created By Ita Yuliana
46
Contoh: p B B S S
q B S B S
p q B B B S
p(p q) B B B B
Semuanya bernilai benar Jadi, p(p q) suatu tautologi
4. Kontradiksi Kontradiksi adalah sebuah pernyataan majemuk yang selalu salah untuk semua kemungkinan nilai kebenaran dari pernyataan komponennya. Contoh: p q B B B S S B S S
p S S B B
q S B S B
p S S S B
q ( p
q) S S S S
p
Semuanya bernilai salah Jadi, ( p q) p suatu kontradiksi
Aktivitas 6 1. Tulislah pernyataan yang ekuivalen dengan pernyataan berikut a. Saya pandai atau bodoh b. Jika saya tidak merokok, maka saya sehat c. Jika saya sakit maka saya tidak sekolah d. Saya rajin atau malas bekerja e. Jika saya malas maka saya tidak berhasil
2. Buatlah tabel kebenaran dari masing-masing pernyataan berikut, kemudian tentukan apakah termasuk tautologi, kontradiksi atau kontingensi a. (p q) (q r) c. (pq) ( q p) b. (p q) r d. [(pq) p] p
Created By Ita Yuliana
47
G. Penarikan Kesimpulan Pernyataan yang telah diketahui nilai kebenarannya disebut premis. Kumpulan semua premis disebut argumen, dan pernyataan yang merupakan kesimpulan disebut konklusi Penarikan kesimpulan di dalam logika matematika ada 3 cara yaitu: 1. Modus Ponens Jika p benar dan p q benar, dapat dinyatakan dengan: pq (benar) premis 1 p (benar) premis 2 Jadi, q (benar) kesimpulan Contoh: Jika Semarang kota di Pulau Jawa maka Makasar kota di Pulau Sulawesi Semarang kota di Pulau Jawa Jadi, Makasar kota di Pulau Sulawesi 2. Modus Tollens Jika p q benar dan benar, maka benar, dapat dinyatakan dengan: pq (benar) premis 1 (benar) premis 2 Jadi, (benar) kesimpulan Contoh: Jika suatu segitiga sama sisi maka semua panjang sisinya sama Panjang semua sisinya tidak sama Jadi, suatu segitiga itu bukan segitiga sama sisi 3. Prinsip Silogisme Jika p q benar dan q r benar, maka p r benar, dapat dinyatakan dengan: pq (benar) premis 1 qr (benar) premis 2 Jadi, p r (benar) kesimpulan Contoh: Jika hari hujan maka air sungai meluap Hari ini hujan Jadi, sungai meluap
Created By Ita Yuliana
48
Aktivitas 7 Buatlah kesimpulan dari pernyataan-pernyataan berikut ini 1. Semua warga belajar paket C berseragam putih abu-abu Fendi warga belajar paket C 2. Jika layang-layang maka diagonalnya berpotongan tegak lurus Diagonal AC dan BD tidak saling tegak lurus 3. Jika musim banjir maka harga beras mahal Jika harga beras mahal maka Jefri akan sering berpuasa 4. Buktikan kebenaran dari pernyataan berikut a. p q b. p q q r q Jadi, p Jadi, q
H. Metode Pembuktian 1. Bukti Langsung Bukti langsung yaitu membuktikan kebenaran suatu pernyataan secara langsung dengan menggunakan fakta-fakta yang tersedia. Modus ponens, modus tollens, dan silogisme termasuk pada cara pembuktian sifat matematika secara langsung. Contoh: a. b. c. d.
Jumlah sudut dalam segitiga adalah 1800 (B) Dua garis yang saling sejajar memiliki gradien yang sama (B) Hewan tidak pernah mati (S) Satu bulan terdiri dari 3 minggu (S)
2. Bukti Tak Langsung Bukti tak langsung adalah membuktikan kebenaran suatu pernyataan dengan menunjukkan bahwa ingkarannya salah. Contoh: Buktikan bahwa “Jika n2 bilangan bulat ganjil maka n bilangan ganjil” Jawab:
Created By Ita Yuliana
49
Misalkan, pernyataan p pernyataan q pq
: Jika n2 bilangan bulat ganjil : n bilangan ganjil : Jika n2 bilangan bulat ganjil maka n bilangan ganjil
untuk membuktikan p q benar, buktikan 2 pernyataan : n bukan bilangan bulat ganjil pernyataan : n bukan bilangan bulat ganjil : Jika n bukan bilangan bulat ganjil maka n2 bukan bilangan bulat ganjil Jelas bahwa
benar, sehingga p q juga benar
Jadi, “jika n2 bilangan bulat ganjil maka n bilangan bulat ganjil” merupakan pernyataan yang benar 3. Induksi Matematika Untuk membuktikan kebenaran suatu rumus yang berhubungan dengan bilangan asli n, digunakan induksi matematika. Langkah-langkah induksi matematika, yaitu a. tunjukkan bahwa rumus benar untuk n = 1 b. dianggap benar bahwa rumus berlaku untuk n = k c. rumus dibuktikan kebenarannya untuk n = k + 1 contoh: Dengan induksi matematika, buktikan bahwa 1 + 3 + 5 + 7 + . . . + (2n – 1) = n2 n suku
jawab: a. Untuk n = 1 maka berlaku 1 = 12 b. Rumus dianggap benar untuk n = k 1 + 3 + 5 + 7 + . . . + (2k – 1) = k2 k suku c. Untuk n = k + 1 Dibuktikan bahwa 1 + 3 + 5 + 7 + . . . + (2k – 1) + 2(k + 1) – 1 = (k + 1)2
k + 1 suku
Created By Ita Yuliana
50
ruas kiri 1 + 3 + 5 + 7 + . . . + (2k – 1) + 2(k + 1) – 1 = k2 + 2k + 2 – 1 = k2 + 2k + 1 = (k + 1)2 (ruas kanan) Ini berarti rumus berlaku untuk n = k + 1 Karena rumus berlaku untuk n = 1, n = k, dan n = k + 1 maka rumus berlaku untuk setiap bilangan asli n.
Aktivitas 8 Dengan induksi matematika buktikan bahwa pernyataan berikut benar 1. 1 + 2 + 22 + . . . + 2n-1 = 2n – 1 2. 1 + 4 + 7 + . . . + (3n – 2) = n (3n – 1)
Created By Ita Yuliana
51