Inpassing hernieuwbare energie i lokale in l k l netten. tt Excursie BioEnergy Lommel16 juni 2011 A i kD Annick Dexters t
INHOUD 1 Achtergrond 1. A ht d 1.1 1.2 1.3 1.4
202020 Energie-efficiëntie in verbruik EnergieEnergieproductie met hogere rendementen Hernieuwbare energie
2. 2 Aansluitbaarheid hernieuwbare bronnen 3. Slimme netten 4. 4 INFRAX concreet
2
1. Achtergronden g 1.1 202020 Stijgende behoefte aan primaire energie voor: elektriciteitsproductie / transport / warmte- en koudeproductie p Oplossingen 1. Rationeel EnergieGebruik 2. Energieproductietechnieken verbeteren 3. Inzet van hernieuwbare energie en biomassa Randvoorwaarden 1. Leveringszekerheid 2. Milieuaspecten / Klimaatverandering 3. Liberalisering v/d elektriciteitsmarkt 20/20/20 0/ 0/ 0 tegen ege 2020 0 0
3
SmartGrids
1. Achtergronden g 1.2 EnergieEnergie-efficientie = T Terugdringen d i van de d primaire i i energievraag i zonder d comfortverlies of kwaliteitsverlies van geleverde diensten of producten. Zes technologieën of toepassingen werden als zeer doeltreffend geïdentificeerd door Eurelectric voor EE. 1 1. Efficiëntere verlichting voor huizen, huizen kantoren, kantoren bedrijven en wegen. 2. Efficiëntere systemen voor residentiële en commerciële verwarming en koeling 3. Efficiëntere DC DC--voedingen en “stand by verbruik” verbruik” voor home entertainment, communicatie en kantooruitrusting. 4 4. Effi ië t Efficiëntere elektrische l kt i h aandrijvingen d ij i 5. Spoorwegen van en naar voorsteden + hoge snelheidstreinen 6. PHEVs & EVs
4
SmartGrids
1. Achtergronden g 1.3 Energieproductie met hogere η bv. STEG’s
5
SmartGrids
1. Achtergronden g 1.3 Energieproductie met hogere η bv. WKK’s - WKK = technologie voor een gelijktijdige opwekking van warmte en elektriciteit m.b.v m b v fossiele of biobrandstof. biobrandstof - Serieuze primaire energiebesparing mogelijk (10 tot 25 %) vergeleken g met BBT voor afzonderlijke j opwekking p g van warmte en elektriciteit. - WKK voor gebouwen wordt op basislast gedimensioneerd ≠ perfecte match voor energiebehoeften openbaar elektriciteitsnet + buffervat en/of backupketel blijven nodig - In Vlaanderen worden jaarlijks 150.000 ketels vervangen als 10 % µWKK jaarlijks 1,5 MW geïnstalleerd
6
SmartGrids
1. Achtergronden g 1.3 Energieproductie met hogere η WKK’s Capstone: 30 kWe / ηel = 26%
7
SmartGrids
1. Achtergronden g 1.3 Energieproductie met hogere η Residentiële WKK STEGS en WKK’ WKK’s Dachs 5,5 kWe /12,5 kWth LION 2 kWe /16 kWth
EC-power p 15,2 , kWe /30kWth /
Microgen 1 kWe / 4 kWth ….40 kWth
Sunmachine 3 kWe /10,5 kWth 8
SmartGrids
1. Achtergronden g 1.4 Hernieuwbare energie
Wind 9
SmartGrids
INHOUD 1 Achtergrond 1. A ht d 2. Aansluitbaarheid hernieuwbare bronnen 2.1 Kenmerken van hernieuwbare bronnen 2.1.1 Gelijktijdigheidsfactor 2.1.2 Gebruiksduur 2.1.3 Synchronisme tussen productie en afname 2.2 Problemen die ontstaan op het net 2.2.1 Congestie o g s 2.2.2 Spanningsprofiel 2.2.3 Groot E-verbruik van warmtepompen en EVs
3. 3 Slimme netten 4. INFRAX concreet
10
2.1 Kenmerken van hernieuwbare bronnen 2.1.1 Gelijktijdigheidsfactor afname Formule van Rusck:
S max n
1 g n S max1 g n Gelijktijdigheidsfactor G
G 1 G=1
| 11 |
G=0.35
G=0.29
G=0.26
2.1 Kenmerken van hernieuwbare bronnen 2.1.2 Gelijktijdigheidsfactor HEB Gelijktijdigheidsfactor G lijktijdi h id f t G = 1 locaal l l bekeken b k k Bij zonne-energie sterke correlatie met moment van lage afname. Opletten p bijj zon- en feestdagen g --> BAU: NET moet gedimensioneerd op piekvermogen
• •
2.1.3 Gebruiksduur Gebruiksduur = aantal vollastturen die evenveel energie leveren als de jaarproductie van een installatie. • Gebruiksduur wind windturbine = 2000 uren/jaar • Gebruiksduur PV PV-installatie = 800 uren/jaar • Gebruiksduur WKK WKK-installatie installatie = >4000 >4000/jaar 12
2.1 Kenmerken van hernieuwbare bronnen 2.1.3 Synchronisme In I vergelijking lijki mett klassieke kl i k centrales, t l vertonen t de d meeste t hernieuwbare energie producties een schommelend productiepatroon, nauwelijks stuurbaar Windmolens Zonnepanelen Warmtegestuurde W t t d WKK Mede t.g.v. de 20/20/20 doelstelling worden meer en meer kleinere intermitterende bronnen in de elektriciteitsnetten, zowel op MS als op LS aangesloten.
13
2.1 Kenmerken van hernieuwbare bronnen 2.1.3 Synchronisme Afname en p productie verlopen p niet synchroon y
kWh
Productie Afname
0 1 2 3 4 5 6 7 8 9 1011 12 1314 15 1617 1819 20 2122 23 2425 26 2728 29 3031 1 maand
14
2.2 Problemen veroorzaakt door HEB 1. Spanningsprofielen Spanning 110%
100%
90%
Blauwe curve: belasting maximaal, geen injectie Rode curve: belasting minimaal, geen injectie Groene curve: belasting minimaal, maximale injectie
LS net
Binnenhuis A Aansl l
15
Omvo or merr
MS net
2.2 Problemen veroorzaakt door HEB 2. Congestieproblemen De nominale stromen moeten in alle ll omstandigheden d h d b binnen de technische parameters van de netmaterialen blijven. Transfo’s en leidingen Ook O k iin n-1 1 moet deze d situatie kunnen behouden blijven.
16
Indicatief op basis van aangevraagde studies!!!!!
17
2.2 Problemen veroorzaakt door HEB 3. Netvervuiling De spanningskwaliteit moet binnen de norm blijven: Harmonischen: lager dan de immuniteitsniveaus van de verbruikers -> van toepassing bij omvormers owv wisselrichters Flicker Flicker: binnen de EN 50160 limieten -> opletten bij windturbines owv variërend koppel aan paal Spanningsvariaties Spanningsvariaties: (deel)inschakelingen en deelafschakelingen mogen max. max een bruuske ΔU van 3% van de nominale spanning veroorzaken (Synergrid C10/11) -> van toepassing bij PV bij lichte bewolking
18
Vaststellingen Optransformatie naar het transportnet is gelimiteerd en afhankelijk van de afname. Op bepaalde plaatsen in het net is de onthaalcapaciteit nog erg beperkt. Op verschillende plaatsen zijn problemen met PV PVinvertoren die door te hoge spanning uitschakelen Klassieke oplossing = netversterking Smart Grids = slim omgaan met de bestaande assets en de aangesloten g bronnen bronnen,, lasten en opslag. opslag p g. De energieproductie moet liefst lokaal kunnen geabsorbeerd worden door belastingen.
19
INHOUD 1 Achtergrond 1. A ht d 2. Aansluitbaarheid hernieuwbare bronnen 3. Slimme li netten 3.1. Visie 3.2. Concepten p 3.3. Kerntechnologieen
4. INFRAX concreet
20
3. Kenmerken slimme netten 3.1. Visie “The future trans-European grids must provide all consumers with a highly reliable, cost-effective power supply, fully exploiting the use of both large centralized generators and smaller distributed power sources throughout Europe.”
21
SmartGrids
3. Kenmerken slimme netten 3.1 Visie
22
3. Kenmerken slimme netten 3.1. Visie De opbouw en controle van Europese elektriciteitsnetten moeten afgestemd zijn op de noden van de gebruikers (user(user-centric). Dit vereist de volgende eigenschappen: -
-
-
23
Toegankelijk voor elke netwerkgebruiker, netwerkgebruiker vooral de hernieuwbare energiebronnen en de lokale generatoren met hoge conversierendementen en lage CO2- emmissies. emmissies Betrouwbaar en robust: robust de levering en kwaliteit van de voedingspanning verzekeren en verbeteren rekening houdend met de vereisten e eisten van an het digitale tijdperk. tijdpe k Herstelvermogen He stel e mogen bij storingen. Flexibel Flexibel:: kunnen ingaan op de veranderingen en de uitdagingen di gaan komen. die k (b S (bv. Smartt Metering) M t i ) Kostenefficiënte uitbating: uitbating door innovatie, energiemanagement, Geïntegreerd Geïntegreerd: interne marktwerking ook voor de kleinste deelnemer ondersteunen
3. Kenmerken slimme netten 3.1 Visie SmartGrids
= netwerken die al de voorgaande eigenschappen waarmaken. gebruik van intelligente g managementtools g dan door Dit kan eerder door het g het installeren van vermogencomponenten. vermogencomponenten Dit vereist de implementatie van de modernste meetmeet-, communicatiecommunicatie-, g . controle-- en informaticatechnologieën. controle informaticatechnologieën Informatie nodig om het net te controleren moet altijd beschikbaar zijn niettegenstaande fouten, black outs of onderhoud. Moest de communicatie het niet doen dan moeten de netten stabiel blijven j en de veiligheid gegarandeerd worden. Dit kan door lokaal intelligentie en controle in te bouwen in ieder onderdeel van het netwerk (lasten, generatoren, beveiligingen, opslageenheden,)
SmartGrids ≈ Internet ≈ intelligente netten
Niet alleen een elektriciteitsflow maar ook een dataflow in 2 richtingen tussen de leverancier en de gebruiker
24
3. Kenmerken slimme netten 3.2 Concepten Elektriciteit zal blijven geleverd worden door bulkcentrales EN gedistribueerde generatoren. (DG-RES-storage-DSM) Grote bulkcentrales worden onderling verbonden via een “supergrid supergrid”. ”. O d Om de controle t l van de d gedistribueerde di t ib d generatoren t gemakkelijker kk lijk te t maken worden ze in een “virtueel virtueel elektriciteitscentrale” elektriciteitscentrale gebundeld of in een “microgrid microgrid”. Dit vereenvoudigt niet alleen hun integratie in het elektriciteitsnet maar ook in de energiemarkt. energiemarkt
25
SmartGrids
3. Kenmerken slimme netten 3.2 Concepten Supergrids Voordelen?
- Om de interne markten te versterken - Om de leveringszekerheid te verhogen - De grote hoeveelheden waterkracht in Noorwegen en andere bergachtige streken in Europa kunnen gebruikt worden voor real time balancing voor die streken in Europa waar veel RES geïnstalleerd is. Wat is nodig? - versterking ki van de d cross border b d transmissienetten i i - betere flowcontrole via FACTS (flexible alternating current transport systems), phase shifter transformatoren, WAMS(Wide area measurement systems, …) - HVDC links tussen bv. landen als verbinding via de zee (EU naar UK, Skandinavie en Noord-Afrika)
26
3. Kenmerken slimme netten 3.2 Concepten “The European Supergrid”
Hydro power Solar power Wind power DC cable transmission
27
SmartGrids
3. Kenmerken slimme netten 3.2 Concepten Virtuele elektriciteitscentrales
CVPP - TVPP Geen eilandwerking. eilandwerking Centrales of lasten kunnen fysisch ver uit mekaar liggen gg en aangestuurd g worden. Interessant om volume te creëren en toe te treden tot de energiemarkten.
28
3. Kenmerken slimme netten 3.2 Concepten Microgrids
gekoppelde werking (invoer-uitvoer energie) eiland werking (volledige – gedeeltelijke voeding)
PCC
Bron: KUL KUL-Electa Electa
29
SmartGrids
3. Kenmerken slimme netten 3.2 Concepten Microgrids og d Wat? Een MicroGrid is een deelnet (1MW) dat zich bv. bevindt aan de secundaire zijde van de MS/LS- transfo van bv. een wijk of winkelcentrum. Er is dus slechts 1 PCC met het distributienet. Het kan zowel g gekoppeld pp met het distributienet maar ook in eilandbedrijf uitgebaat worden. Het bestaat uit WKK’s, fotovoltaïsche systemen, brandstofcellen,… maar ook uit toestellen voor energieopslag brandstofcellen zoals vliegwielen, supercaps en batterijen. Het omvat tevens regelbare lasten omdat ook in eilandbedrijf evenwicht gecreëerd moet worden tussen het geleverde vermogen en het gevraagde vermogen.
30
3. Kenmerken slimme netten 3.2 Concepten Microgrids Voordelen:
Doordat het microgrid met zijn generatoren en lasten naadloos kan overgaan van netgekoppelde naar eilandwerking en vice versa is het in staat het distributienet te ontlasten in tijden van zware belasting en te helpen bij het herstel na een fout. Ten opzichte van het openbare distributienet gedraagt het MicroGrid zich als een decentraal gecontroleerde entiteit = generator of last. Laat grootschalige implementatie van DER en DG toe. toe Hierdoor is uitstel van versterking distributie distributie-- en transmissienetten mogelijk. mogelijk. Opgelet dat door gebruik van WKK’s het gasnet niet overbelast geraakt!!! geraakt!!! Lokale productie vermijdt verliezen in transmissie (voor 100%) in distributienetten (< 100%)
31
3. Kenmerken slimme netten 3.3 Kerntechnologieën 1. Storage De elektriciteit geleverd door windturbines, PV en WKK is fluctuerend afhankelijk van de aanwezigheid van wind, zon of een warmtevraag. leveringzekerheid van elektrische energie is minder zeker. Levering en vraag van elektrische energie moeten echter in evenwicht zijn > back up centrales voorzien. Energie-opslag helpt dit evenwicht instellen.Er bestaan technologieen voor kleine, medium en grootschalige opslag. pompcentrales,, gecomprimeerde lucht pompcentrales lucht,, batterijen, batterijen, supercaps, supercaps, vliegwielen,, supergeleidende spoelen (SMES) … vliegwielen Dure technologieën maar men moet niet het aantal kWh maar wel de mogelijkheid tot peakafvlakking honoreren.
32
3. Kenmerken slimme netten 3.3 Kerntechnologieën 2. PHEV of plug in hybride electrical vehicles
-
33
Batterij van auto wordt geladen als goedkoop en in overvloed. Batterij van auto wordt ontladen als energie duur. Is extra belasting voor huishoudelijke PV of µWKK Persoonlijk vervoer is voor 80% < 60 km
3. Kenmerken slimme netten 3.3 Kerntechnologieën 3. Demand side management Om de grootte van de opslagsystemen te beperken moet de last ook op regelbaar zijn om elektrische consumptie te vermijden of uit te stellen in de tijd Demand side management Koel en verwarmingstoepassingen hebben een zekere traagheid en zijn daarom goed geschikt voor DSM. - Door opslagvaten p g of temperatuurregeling p g g kan men de elektriciteitsvraag van warmtepompen en de elektriciteitsproductie van µWKK’s in de tijd verschuiven en regelen. - was- en droogprocessen - vries- en koeleenheden
34
3. Kenmerken slimme netten 3.3 Kerntechnologieën 4. Controle
Het is onmogelijk miljoenen actieve connectiepunten (generatoren opslag, (generatoren, opslag lasten) op te nemen in de SCADA SCADAsystemen die de dag van vandaag gebruikt worden om een nationaal elektriciteitsnet te sturen. Het SCADA systeem moet ondersteund worden door een gedistribueerd controle systeem. systeem. Virtuele netten of microgrids clusteren groepen generatoren, t opslageenheden l h d en lasten. l t Bi Binnen d dergelijke lijk eenheden moet een lokale controle gebeuren Voor de bovenliggende SCADA gedragen deze clusters zich als een enkele entiteit nl.generator of last. 35
3. Kenmerken slimme netten 3.3 Kerntechnologieën 5. Smart metering / communicatie - slimme meter = elektriciteits- of gasmeter met t tweewegscommunicatie. i ti - Eisen liggen nog niet vast Smart meters ≠ Smart grids grids.. Smart meters is een enabler van smart grids
36
3.1 Kenmerken slimme netten 3.3 Kerntechnologieën 8. Vermogenelectronica De controle van SmartGrids steunt voor een groot deel op digitaal gecontroleerde vermogenelektronica. vermogenelektronica Praktisch iedere generator, last en opslageenheid zal via een vermogenelektronische interface met het elektrisch net verbonden worden. Deze interfaces staan in voor d spanningsregeling de spanningsregeling, i li , PQPQ-regeling, regeling li , beveiliging b ili i enz… Momenteel worden die mogelijkheden nog te weinig benut.
9. Predictiesoftware en automatische trading platforms Zowel voor de vraag als het aanbod zullen predicties gemaakt worden Op basis hiervan wordt door de trading platforms met de worden. agents onderhandeld wie wanneer zal leveren of afnemen en tegen welke prijs. Dit gebeurt volstrekt automatisch.
37
3.1 Kenmerken slimme netten Besluit Smartgrids - Supergrids - virtuele centrales – microgrids Microgrids zijn in Vlaanderen niet rendeabel als men alleen maar naar hun mogelijkheid g j tot eilandwerking g kijkt. j Het net zal een cellulaire structuur krijgen. Een microgrid is zo’n zo n cel. De beheersing van de vermogenflow in een dergelijk systeem is de eerste stap tot de implementatie van Smart Grids. SMART GRIDS zullen eerst in steden uitgebouwd worden SMART CITIES
38
INHOUD 1 1. 2. 3. 4.
Achtergrond A ht d Aansluitbaarheid hernieuwbare bronnen Slimme li netten INFRAX concreet 4.1 METAMETA-PV 4.2 EVs en laadinfra
39
4.1 MetaPV Algemeen •
Groot demonstratieproject.
•
Start medio 2009
•
Duur : 4,5 jaar
•
Kostprijs:
•
•
project: 9 miljoen euro (deels gesubsidieerd)
•
zonnepanelen: l 30 miljoen ilj euro (i (investering t i d door particulieren via LRM)
Algemene doelstelling: PV--invertoren gebruiken voor netondersteuning. PV netondersteuning.
• 40
Website: www.metapv.eu www metapv eu
4.1 META META--PV Doelstellingen WAT? Verhogen van de absorptiecapaciteit voor DP met 50% tegen een additionele kost ~10% v/d vereiste netversterkingskost. netversterkingskost (moet nog bewezen worden)
HOE? Dit m.b.v. invertoren die de levering van actief en reactief vermogen regelen om de spanningsprofielen binnen de toegelaten grenzen te houden. houden Via opslag en bijsturen van actief vermogen om congestie te voorkomen. k Ook fault ride through en eilandwerking worden bekeken
41
4.1 METAPV Project Partners
42
4.1 METAPV A Aanpak k Fase 1 Demonstratie op grote schaal in Lommel 128 x 4kW (residentiëel) en 31 x 200 kW (industriëel) 10 % van de systemen uitgerust met opslagcapaciteit
43
4.1 MetaPV Aanpak Faze 1: Meetsytemen ingebouwd in 200 MV/LV stations Data-analyse D l om de d controlevereisten van de invertoren vast te leggen
44
Spanningshuishouding Voltage profile for the critical nodes (over-voltage)
Voltag ge (p.u.)
1.1
Rail 2 LOMM LOMM LOMM LOMM LOMM
1.08 1.06 1.04 1.02
WTP Umicore Fransen Comacc Bio Energy Hansen Oud
1 1
2
3
4
5
6 Month
7
8
9
10
11
12
Voltage profile for the critical nodes (under-voltage)
Voltage (p.u.)
1.1
LOMM Grensstraat
1.05
1
1
45
2
3
4
5
6 Month
7
8
9
10
11
12
Spanningshuishouding Voltage drop diagram at critical time @ 14.11.2009 | 19:00 1.08 1.07 1.06 1.05 Voltage (p.u.)) V
1.04 1.03 1.02 1 01 1.01 1 0.99 0.98 0.97
0
2
4 Wind
46
6 CHP
8
10 Distance (km) PV in LV
12
14
PV in MV
16
18
Critical nodes
20
4.1 METAPV Aanpak Faze 2: Ontwikkeling controle algoritmes van de slimme invertoren
47 47
St i Sturing reactief ti f ifv if lokale l k l spanning i Qset Qmax
K
U Umax-lin
-Qmax
48
Voorbeeld van de communicatie SUNNY PORTAL
Router
Rundsteuer Rundsteuerempfänger
POWER REDUCER BOX
dig Signale dig.
Ethernet (LAN)
SUNNY WEBBOX
T il l Teilanlage 1
49
Funksignal Anforderung einer Wirkleistungsbegrenzung oder Blindleistungsvorgabe
Switch
SUNNY WEBBOX
RS485
RS485
Netzbetreiber
T il l Teilanlage 2
SUNNY WEBBOX Eth Ethernett
T il l Teilanlage 3
Automatisering g MS-net Actief netwerk management: real-time controle van het net, Distribution management systeem op MS Automatisatie MS, A t ti ti van MS netten,… tt
Monitoring en meting: digitale beveiligingen, telegelezen kortsluitverklikkers,… 50
4.2 EVs en laadinfra
VOLVO C30
ION (PEUGEOT)
NISSAN LEAF
FLUENCE (RENAULT)
51
KANGOO (RENAULT)
ZERO (CITROEN)
4 2 Evs 4.2. E en laadinfra… l di f
Coulomb
EV-box
Langmatz verdeeld door INELTRA SYSTEMS
E N E-Novates t
Pl i C PluginCompany Schneider Electric voor TOTAL (snelladers)
52
Edock van P&V