ADLN Perpustakaan Universitas Airlangga
BAB IV HASIL PENELITIAN DAN PEMBAHASAN
4.1 Rancangan Antarmuka (interface) Program Rancangan antarmuka (interface) program terdiri dari form cover, form testing dan form training (untuk programer). 4.1.1 Form Cover
Gambar 4.1 Antarmuka (interface) cover program Pada Gambar 4.1 adalah tampilan awal atau cover untuk masuk ke perangkat lunak deteksi ischemia. Dimana pada form ini ada tombol tool pada kiri atas form yakni : 1. Training untuk masuk ke form training data. 2. Testing untuk masuk ke form testing data. 3. Exit untuk keluar dari form.
61 Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
62
4.1.2 Form Training
Gambar 4.2 Antarmuka (interface) training program Pada
Gambar
4.2
merupakan
form
pelatihan
(traininig)
untuk
pembelajaran pola grafik potensial sinyal ECG untuk nantinya hasilnya menjadi masukan pada form testing deteksi ischemia pada citra sinyal ECG. Pengguna (programer) bisa memberi masukan yang bervariasi pada hidden layer dan epoch. Output yang ditampilkan pada form training adalah bobot dan bias baru untuk hidden dan input.Dimana pada form ini ada tombol tool pada kiri atas form yakni: A. Tombol Proses, berisi training untuk mengolah citra sinyal ECG agar bisa menghasilkan citra yang sesuai keinginan. B. Tombol File, berisi exit untuk keluar dari form.
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
63
4.1.3 Form Testing
Gambar 4.3 Antarmuka (interface) testing program Pada Gambar 4.3 adalah form uji (testing) untuk deteksi ischemia pada citra grafik sinyal ECG, dimana pada form ini output yang ditampilkan yaitu hasil pengolahan citra dari proses grayscale, gamma corection, segmentasi,morfologi citra dan hasil visualisasi ekstraksi fitur citra ECG yang diujikan. Form ini ada beberapa tombol tool pada kiri atas form yakni: A. Tombol File, terdiri dari: 1. Browse untuk mengambil data citra sinyal ECG pada directory. 2. Exit untuk keluar dari form. B. Tombol Proses, terdiri dari: 1. Olahcitra untuk mengolah citra sinyal ECG agar bisa menghasilkan citra proses grayscale, gamma corection, segmentasi, morfologi (proses dilasi dan erosi) serta proses ektraksi fitur.
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
2. Deteksi
Ischemia
untuk
menganalisis
64
hasil
olahcitra
dan
menampilkan hasil diagnosa penyakit. 4.2 Persiapan Data Tahap awal yang dilakukan adalah persiapan data yakni melakukan pemotongan citra sinyal ECG pada lead III. Penggunaan lead III dikarenakan menurut referensi dari dokter kelainan myocardial ischemia muncul pada lead III, sedangkan pemotongan citra sinyal ECG pada lead III memiliki lebar sebesar 157 pixel. Pengambilan nilai 157 pixel berdasarkan visual dari lead yang direferensikan oleh dokter. Banyak data citra sinyal ECG terdiri dari 66 data training dan 26 data testing, dimana masing-masing data terdiri dari data jantung normal, ischemia dan abnormal variasi jantung. Gambar hasil pemotongan citra sinyal ECG untuk normal jantung, ischemia dan abnormal variasi jantung disajikan pada Gambar 4.4
(a)Normal
(b) Ischemia
(c) Abnormal Variasi
Gambar 4.4 Hasil pemotongan Citra ECG Setelah persiapan data selesai, mulai pengolahan citra, pengujian proses jaringan saraf tiruan serta pembuatan rancangan antarmuka (interface) program.
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
65
4.3 Hasil Pengolahan Citra 4.3.1 Proses Preprosesing Tahap pertama dilakukan proses grayscale dimana mengubah citra ECG berwarna menjadi citra abu-abu (gray). Tahap ketiga adalah proses gamma correction. Gamma correction sangat penting dalam upaya menampilkan citra secara akurat. Citra yang tidak diperbaiki dengan benar sering menampilkan tampilan yang tidak sesuai, dan yang sering adalah gambar teralalu gelap. Gambar hasil grayscale citra sinyal ECG untuk normal jantung, ischemia dan abnormal variasi jantung disajikan pada Gambar 4.5, dan untuk hasil gamma corection disajikan pada Gambar 4.6.
(a)Normal
(b) Ischemia
(c) Abnormal Variasi
Gambar 4.5 Hasil Grayscale Citra ECG
(a)Normal
(b) Ischemia
(c) Abnormal Variasi
Gambar 4.6 Hasil Gamma Corection Citra ECG
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
66
4.3.2 Proses Segmentasi Pada proses segmentasi, menentukan nilai threshold (T) adalah dengan membuat histogram citra. Nilai T dapat dipilih secara manual atau dengan teknik yang otomatis. Nilai ambang T dipilih sedemikian sehingga galat yang diperoleh sekecil mungkin. Gambar hasil threshold untuk disajikan pada Gambar 4.7.
(a)Normal
(b) Ischemia
(c) Abnormal Variasi
Gambar 4.7 Hasil threshold Citra ECG 4.3.3 Proses Morfologi Citra Dalam proses morfoologi dilakukan 2 operasi pengolahan citra yakni operasi dilasi dan operasi erosi. A. Proses Dilasi Proses dilasi adalah “penumbuhan” atau “penebalan” dalam citra biner. Proses ini merupakan proses perbaikan citra ECG akibat dari proses threshold, pengertian penebalan ini dikontrol oleh bentuk strel yang digunakan, dimana strel yang digunakan pada pengolahan citra ini adalah strel jenis square (bujur sangkar). Gambar hasil dilasi citra sinyal ECG untuk normal jantung, ischemia dan abnormal variasi jantung disajikan pada Gambar 4.8.
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
(a)Normal
(b) Ischemia
67
(c) Abnormal Variasi
Gambar 4.8 Hasil dilasi Citra sinyal ECG B. Proses Erosi Proses erosi citra, dimana proses ini mengecilkan atau menipiskan obyek citra biner, berbeda dengan dilasi yang melakukan penumbuhan/penebalan. Proses erosi dapat dianggap sebagai operasi morphological filtering dimana detail citra yang lebih kecil dari strel akan difilter (dihilangkan) dari citra. Pada proses ini menggunakan strel jenis square (bujur sangkar). Gambar hasil erosi citra sinyal ECG untuk normal jantung, ischemia dan abnormal variasi jantung disajikan pada Gambar 4.9.
(a)Normal
(b) Ischemia
(c) Abnormal Variasi
Gambar 4.9 Hasil Erosi Citra sinyal ECG 4.3.4 Proses Ekstraksi fitur Data citra biner sinyal ECG hasil proses morfologi (proses erosi) akan diolah dalam proses ini dimana menggunakan ekstraksi fitur bentuk sehingga
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
68
didapatkan ordinat potensial citra sinyal ECG yang kemudian dijadikan sebagai masukan untuk proses training JST. Setelah didapatkan ordinat potensial grafik sinyal ECG, dibuat visualisasi potensial citra ECG untuk mengetahui hasil dari pengolahan citra sama dengan gambar aslinya. Gambar visualisasi fitur potensial citra ECG untuk normal jantung, ischemia dan abnormal variasi jantung disajikan pada Gambar 4.10.
(a)Normal
(b) Ischemia
(c) Abnormal Variasi
Gambar 4.10 Visualisasi Fitur Potensial Citra ECG 4.4 Pengujian Proses Jaringan Saraf Tiruan (backpropagation) Pengujian ini dilakukan pada proses-proses yang terdapat dalam aplikasi jaringan saraf tiruan.
4.4.1 Hasil Pelatihan (Training) Pada Model Jaringan Saraf Tiruan (backpropagation) Hasil pelatihan (training) menggunakan metode trial dan error dalam pengujian ini. Dimana variabel hidden layer selama pelatihan berubah-ubah. Pengaruh jumlah hidden layer terhadap lamanya pelatihan, hubungan Jumlah hidden layer, epoch dan MSE disajikan pada Tabel 4.1.
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
69
Tabel 4.1 Hubungan Jumlah hidden layer, epoch dan MSE. Epoch
MSE
11000
0,405
Akurasi (%) 74,2424
6
11000
0,0231
98,4848
3.
9
11000
3,25 x 10-5
100
4.
11
8731
9,98 x 10-6
100
5.
22
904
9,93 x 10-5
100
6.
40
1558
9,86 x 10-5
100
7.
50
1328
9,97 x 10-6
100
8.
60
6328
9,97 x 10-6
100
9.
80
5682
9,98 x 10-6
100
10.
100
3415
9,91 x 10-6
100
No. 1. 2.
Hidden Layer 3
Dari Tabel 4.1 jumlah hidden layer dari 3 sampai 100, berpengaruh pada nilai MSE dimana semakin banyak jumlah hidden layer maka nilai MSE semakin mendekati nilai konstan (kovergen). Dari hasil variasi hidden layer tersebut didapatkan hasil nilai MSE mendekati nilai konstan pada hidden layer sebanyak 11 dengan tingkat akurasi mencapai 100 %, sehingga arsitektur jaringan ini akan menjadi masukan pada proses testing. Hasil proses training data pada jumlah hidden layer 11 dapat dilihat pada Gambar 4.11.
Gambar 4.11 Grafik MSE terhadap Epoch pada hidden layer 11
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
70
4.4.2 Hasil Testing Model Jaringan Saraf Tiruan (Backpropagation) Uji validasi yang dilakukan adalah bobot baru hasil dari proses training dibuat sebagai masukan (input) untuk proses testing, kemudian dengan target data testing yang telah ditentukan. Data diolah pada jaringan saraf tiruan (JST), output menghasilkan diagnosa dari citra ECG tersebut. Hasil deteksi citra ECG oleh jaringan saraf tiruan backpropagation dibandingkan dengan identifikasi hasil medis, kemudian dari perbandingan tersebut akan diketahui apakah data tersebut sudah sesuai dengan hasil medis. Hasil testing data disajikan pada Tabel 4.2 dengan nilai target 1 untuk kondisi ischemia, nilai target 0 untuk kondisi normal, dan nilai target -1 untuk kondisi abnormal variasi jantung. Tabel 4.2 Hasil uji software dibandingkan dengan hasil identifikasi medis. No.
Citra ECG
Kondisi
Target
Hasil Medis
Hasil Software
Ischemia
1
Ischemia
Terdeteksi
Normal
0
Normal
Terdeteksi
Ischemia
1
Ischemia
Gagal
Abnormal Variasi
-1
Abnormal Variasi
Terdeteksi
Ischemia
1
Ischemia
Terdeteksi
1
2
3
4
5
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
6
71
Abnormal Variasi
-1
Abnormal Variasi
Terdeteksi
Normal
0
Normal
Terdeteksi
Normal
0
Normal
Terdeteksi
Ischemia
1
Ischemia
Terdeteksi
Normal
0
Normal
Terdeteksi
Ischemia
1
Ischemia
Terdeteksi
Normal
0
Normal
Terdeteksi
Ischemia
1
Ischemia
Terdeteksi
Normal
0
Normal
Gagal
7
8
9
10
11
12
13
14
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
72
15 Abnormal Variasi
-1
Abnormal Variasi
Terdeteksi
Normal
0
Normal
Terdeteksi
Abnormal Variasi
-1
Abnormal Variasi
Gagal
Normal
0
Normal
Terdeteksi
Abnormal Variasi
-1
Abnormal Variasi
Terdeteksi
Normal
0
Normal
Terdeteksi
Abnormal Variasi
-1
Abnormal Variasi
Terdeteksi
Normal
0
Normal
Terdeteksi
Abnormal Variasi
-1
Abnormal Variasi
Terdeteksi
16
17
18
19
20
21
22
23
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi
ADLN Perpustakaan Universitas Airlangga
Kesalahan deteksi software adalah 3 kali
73
kesalahan dari 26 data yang diuji
cobakan terhadap sistem, dengan kata lain tingkat akurasinya mencapai 89 %.
akurasi
jumlah total data jumlah data tidak valid x 100 % total jumlah data
akurasi
26 3 x 100% 26
akurasi
23 x 100% = 88,461 % 26
Pada penelitian Febrianty (2007) hasil performansi akurasi JST resilient propagation didapatkan akurasi pengenalan data latih sebesar 100% sedangkan akurasai pengenalan data uji sebesar 84,21%. Pada penelitian ini didapatkan kinerja perangkat lunak jaringan saraf tiruan backpropagation dimana akurasi pelatihan mencapai 100 % serta MSE mendekati nilai konstan (konvergen), akurasi pengenalan data uji sebesar
88,461 %. Dengan demikian kinerja
perangkat lunak JST backpropagation lebih baik dibandingkan JST resilient propagation dikarenakan proses pembelajaran JST backpropagation melakukan beberapa kali pelatihan pada setiap data latih dimana error yang dihasilkan dipropagasikan (balik) kembali ke unit-unit dibawahnya untuk untuk melakukan pembaharuan bobot sehingga JST backpropagation termasuk baik dalam pengenalan pola sinyal ECG iraman myocardial ischemia.
Skripsi
Deteksi Sinyal ECG Irama Myocardial Ischemia dengan Jaringan Saraf Tiruan
Muchammad Taufiq Bachrowi