BAB 08
ANALISIS VARIAN
Sebagaimana yang sudah dijelaskan sebelumnya bahwa salah satu statistik parametrik yang sering digunakan dalam penelitian pendidikan yaitu Analisis Varian. Oleh karena itu pada bagian ini (Analisis Varian) akan dibahas secara rinci tentang; analisis varian satu jalan, penggunaan hasil analisis satu jalan, analisis varian dua jalan, dan penggunaan hasil analisis dua jalan.
8.1 ANALISIS VARIAN SATU JALAN Analisis varian atau analysis of variance (Anova) biasa digunakan untuk menguji perbandingan. Peneliti yang ingin menguji hipotesis komparasi (perbandingan) pada umumnya menggunakan alat uji analisis varian. Karena itu analisis varian digunakan untuk menguji hipotesis komparasi rata‐rata k sampel. Sesuai dengan namanya, analisis varian yaitu teknik analisis yang digunakan untuk menentukan apakah perbedaan atau variasi nilai suatu variabel terikat itu disebabkan oleh atau tergantung pada perbedaan (variasi) nilai pada variabel bebas. Perlu dipahami bahwa dalam analisis varian terdapat dua komponen varian nilai yang harus dipisah‐pisahkan karena memiliki makna yang berbeda, yaitu (1) komponen varian antara kelompok (between groups) yang benar‐benar disebabkan oleh perbedaan varian nilai variabel bebas dan (2) komponen varian dalam kelompok (within groups) yang tidak disebabkan oleh perbedaan varian nilai variabel bebas. Varian antara kelompok (between groups) yang benar‐benar disebabkan oleh perbedaan varian nilai variabel bebas biasa disebut dengan istilah “Explained 299
300 variance” atau “sumbangan efektif”. Varian dalam kelompok (within groups) yang tidak disebabkan oleh perbedaan varian nilai variabel bebas biasa disebut dengan istilah “Unexplained variance”. Untuk melakukan analisis varian dapat menggunakan rumus sebagai berikut:
Y
μ
τ
ε
Penjelasan: Y µ τ ε
= = = =
Sekor sebenarnya variabel terikat untuk semua subyek Rata‐rata sekor variabel terikat untuk semua subyek Perbedaan (variasi) sekor variabel terikat antara kelompok Perbedaan (variasi) sekor variabel terikat dalam kelompok
Untuk memperoleh pemahaman yang lebih konkrit tentang bagaimana penerapan atau aplikasi analisis varian dalam penelitian pendidikan dapat diberikan contoh atau ilustrasi sebagai berikut.
Kasus 8.1 Seorang guru ingin melakukan pengujian terhadap perolehan hasil belajar siswa yang disebabkan oleh penggunaan waktu belajar siswa. Dalam pengujian ini sebagai variabel terikat (Y) adalah hasil belajar. Sebagai variabel bebasnya (X) adalah lama waktu belajar (dalam jam) yang dikelompokkan menjadi empat yaitu 2 jam, 3 jam, 4 jam, dan 5 jam. Jumlah responden untuk masing‐masing kelompok sebanyak 4 orang dan tingkat kesalahan yang dipilih yaitu 5%. Setelah dilaksanakan tes kepada seluruh responden maka diperoleh data sbb: Tabel 8.1 Sekor hasil tes belajar siswa berdasarkan lama belajarnya Responden 1. 2. 3. 4.
2 79,30 83,80 82,00 82,50
Lamanya Belajar (jam) 3 4 85,50 84,00 87,20 86,80 87,50 83,10 87,00 87,80
5 83,30 84,00 82,80 82,50
1) Menginput Data Satu hal yang perlu diperhatikan bahwa kesalahan pada saat menginput data maka akan mengakibatkan kesalahan hasil analisis data. Oleh karena
301 itu perlu diperhatikan baik‐baik ketika menginput data yang akan diolah menggunakan statistik analisis varian. Berdasarkan data di atas perlu ditetapkan bahwa variabel bebas (X) yaitu lama belajar dan variabel terikat (Y) hasil belajar. Pada variabel bebas lama belajar terdiri atas 2, 3, 4, dan 5 masing‐masing sebanyak 4 responden. Pada variabel bebas diisikan dengan sekor hasil tes yang dicapai oleh masing‐masing responden sesuai dengan lamanya waktu yang digunakan untuk belajar. Masing‐masing waktu terdiri atas 4 responden sehingga 2 jam ada 4 responden, 3 jam ada 4 responden. Demikian juga untuk lama belajar 4 dan 5 jam masing‐masing 4 responden. Berdasarkan penyajian data yang ada maka input ke program SPSS yang harus dilakukan ditunjukkan sbb. (1) Tampilkan Variable View yang terdapat pada jendela SPSS Statistics Data Editor sehingga muncul kotak dialog sbb.
Gambar 8.1 Kotak dialog Variable View pada SPSS Statistic Data Editor untuk menseting variabel penelitian
302
Penjelasan: a. Pada kolom Name: isikan dengan nama variabel, misalkan X. Pengisian nama ini tidak boleh terlalu panjang. b. Kolom Type boleh dibiarkan atau tidak diubah. Pada kolom ini terdapat 8 option yang dapat dipilih salah satu. c. Kolom Width boleh diubah boleh tidak. d. Kolom Decimals dapat diubah menjadi tanpa desimal, satu desimal, dua desimal, atau lebih. e. Kolom Label: isikan dengan keterangan yang diperlukan. Misalkan variabel X adalah lama belajar, maka pada kolom Label dapat diisikan dengan keterangan Lama Belajar. f. Pada kolom Values: isikan dengan nilai dan labelnya. Misalkan 1 untuk mewakili 2 jam, maka pada kotak ValueI: di isi 1 dan pada kotak Label: di isi dengan 2 jam. Apabila data yang diinput berupa nilai atau sekor yang tidak memerlukan penjelasan maka tidak perlu mengubah pada kolom ini. g. Pada kolom Columns digunakan untuk mengatur lebar kolom yang diinginkan. h. Kolom Align digunakan untuk mengatur posisi data yang akan diinput yaitu rata kiri, rata kanan, dan ditengah. i.
Kolom Measure digunakan untuk menentukan atau memilih jenis skala pengukuran yang digunakan. Pada kolom ini terdapat tiga pilihan yang berupa Scale, Ordinal, dan Nominal.
Perubahan‐perubahan tersebut berlaku untuk satu baris pada baris kedua dan seterusnya perlu pengaturan tersendiri. Karena itu setiap pengaturan pada kolom yang ditampilkan oleh Variable View hanya akan berpengaruh pada satu baris tida seluruh baris pada kolom tersebut. Apabila seting untuk variabel yang digunakan untuk menginput data telah selesai maka kotak dialog Gambar 8.1 di atas akan berubah tampilan dan tampak sbb.
303
Gambar 8.2 Kotak dialog Variable View pada SPSS Statistic Data Editor setelah variabel penelitian diseting Apabila diperhatikan, pada baris pertama digunakan untuk menseting variabel bebas (X) yang berupa lama belajar. Pada baris kedua digunakan untuk menseting variabel terikat (Y) yaitu hasil belajar siswa yang berupa sekor hasil tes. Pada kolom tertentu untuk baris pertama, kedua, dan seterusnya dapat berbeda satu dengan lainnya akan tetapi pada kolom tertentu kemungkinan akan diseting sama. Pengaturan tersebut tidak ada keharusan untuk sama antara baris pertama dan baris berikutnya. Setiap baris yang terdapat pada Variable View merupakan kolom ketika berada pada jendela Data View. Meskipun semua variabel telah diseting ke dalam program, maka yang ditampilkan pada layar monitor hanya nama variabelnya saja yang lainnya tidak ditampilkan pada layar monitor. Setingan lain akan terlihat efeknya ketika data masing‐masing variabel diinput.
304 (2) Apabila pensetingan terhadap variabel penelitian dianggap telah selesai, selanjutnya Pilih dan klik pada Data View sehingga akan menampilkan kotak dialog sbb.
Gambar 8.3 Kotak dialog Data View pada SPSS Statistic Data Editor sebelum data masing‐masing variabel penelitian diinput Berdasarkan kotak dialog Gambar 8.3 di atas, maka data hasil tes pada Tabel 8.1 dapat diinput ke program SPSS sbb. a. Inputkan angka 1 di kolom X pada baris 1—4, angka 2 di baris 5—8, angka 3 di baris 9—12, dan angka 4 di baris ke 13—16. b. Inputkan sekor hasil tes yang terdapat di kolom 2 pada Tabel 8.1 ke baris 1—4 pada kolom variabel terikat (Y). c. Inputkan sekor hasil tes yang terdapat di kolom 3 pada Tabel 8.1 ke baris 5—8 pada kolom variabel terikat (Y).
305 d. Inputkan sekor hasil tes yang terdapat di kolom 4 pada Tabel 8.1 ke baris 9—12 pada kolom variabel terikat (Y). e. Inputkan sekor hasil tes yang terdapat di kolom 5 pada Tabel 8.1 ke baris 13—16 pada kolom variabel terikat (Y). (3) Setelah selesai menginput seluruh data, maka kotak dialog Gambar 8.3 di atas akan berubah menjadi sebagaimana terlihat pada Gambar 8.4.
Gambar 8.4 Kotak dialog Data View pada SPSS Statistic Data Editor setelah data masing‐masing variabel penelitian diinput Pasangan data sebagaimana ditunjukkan pada Gambar 8.4 di atas dapat dibaca bahwa: (1) Siswa yang lama belajarnya 2 jam mendapatkan sekor hasil belajar 79,30; 83,80; 82,00; dan 82,50.
306 (2) Siswa yang lama belajarnya 3 jam mendapatkan sekor hasil belajar 85,50; 87,20; 87,50; dan 87,00. (3) Siswa yang lama belajarnya 4 jam mendapatkan sekor hasil belajar 84,00; 86,80; 83,10; dan 87,80. (4) Siswa yang lama belajarnya 5 jam mendapatkan sekor hasil belajar 83,30; 84,50; 82,80; dan 82,50. 2) Menganalisis data Berdasarkan data yang ada, untuk menganalisis menggunakan Analisis Varian dapat dilakukan sbb. (1) Pilih dan klik pada menu Analyze yang akan memunculkan submenu baru kemudian pilih pada Compare Means kemudian pilih dan klik pada bagian One‐Way ANOVA sehingga akan muncul kotak dialog sbb.
Gambar 8.5 Kotak dialog untuk penetapan variabel dependent dan variabel faktor pada analisis One‐Way ANOVA sebelum diisi
307 Cara pengisian: (a) Pilih dan klik pada variabel Hasil Belajar (Y) kemudian klik pada tanda panah ke kanan yang terdapat di sebelah kanan kotak Dependent list. (b) Pilih dan klik pada variabel Lama Belajar (X) kemudian klik pada tanda panah ke kanan yang terdapat di sebelah kanan kotak Factor. Dengan pengisian tersebut karena hanya ada dua variabel maka pada kotak yang terdapat di sebelah kiri menjadi kosong. Variabel Hasil Belajar dipindahkan ke kotak Dependent list dan variabel lama belajar dipindahkan ke kotak Factor. (c) Setelah penetapan variabel terikat dan variabel faktor, maka tampilan kotak dialog Gambar 8.5 akan berubah menjadi sbb.
Gambar 8.6 Kotak dialog penetapan variabel dependent dan variabel faktor pada analisis One‐Way ANOVA setelah diisi (2) Berdasarkan pada kotak dialog Gambar 8.6 pilih dan klik bagian Post Hoc...sehingga muncul kotak dialog sbb.
308
Gambar 8.7 Kotak dialog pemilihan besaran hasil analisis yang dikehendaki pada analisis One‐Way ANOVA: Post Hoc Multiple Comparisons (3) Pilih dan klik pada Tukey sehingga kotak kecil yang terdapat di depannya akan terisi tanda cek lis (√), kemudian pilih dan klik pada bagian Continue sehingga sistem akan menampilkan kotak dialog seperti pada Gambar 8.8.
Gambar 8.8 Kotak dialog penetapan variabel dependent dan variabel faktor pada analisis One‐Way ANOVA setelah pengisian Post Hoc...
309 Kotak dialog Gambar 8.6 dan Gambar 8.8 tampak tidak ada perbedaan sama sekali, hal ini karena Post Hoc...merupakan bagian dari dialog One‐Way ANOVA sehingga tampak tidak ada perbedaan. Berdasarkan kedua gambar tersebut apabila masing‐masing diklik pada bagian OK akan memberikan hasil analisis yang berbeda. Pada Gambar 8.8 akan memberikan out put yang lebih lengkap jika dibandingkan dengan out put yang dihasilkan oleh Gambar 8.6. (4) Berdasarkan pada Gambar 8.8 pilih dan klik pada bagian OK sehingga akan memberikan out put (hasil) analisis sbb.
Oneway ANOVA Hasil Belajar
Sum of Squares
Mean Square
Df
Between Groups
57.265
3
19.088
Within Groups
30.415
12
2.535
Total
87.680
15
F
Sig.
7.531
.004
Post Hoc Tests Multiple Comparisons Hasil Belajar Tukey HSD Mean (I) Lama (J) Lama Difference Std. Error Belajar Belajar (I‐J) 2 jam
95% Confidence Interval Sig. Lower Bound Upper Bound
3 jam
‐4.90000*
1.12574
.004
‐8.2422
‐1.5578
4 jam
‐3.52500*
1.12574
.038
‐6.8672
‐.1828
5 jam
‐1.37500
1.12574
.626
‐4.7172
1.9672
310 3 jam
4 jam
5 jam
2 jam
4.90000*
1.12574
.004
1.5578
8.2422
4 jam
1.37500
1.12574
.626
‐1.9672
4.7172
5 jam
3.52500*
1.12574
.038
.1828
6.8672
2 jam
3.52500*
1.12574
.038
.1828
6.8672
3 jam
‐1.37500
1.12574
.626
‐4.7172
1.9672
5 jam
2.15000
1.12574
.275
‐1.1922
5.4922
2 jam
1.37500
1.12574
.626
‐1.9672
4.7172
3 jam
‐3.52500*
1.12574
.038
‐6.8672
‐.1828
4 jam
‐2.15000
1.12574
.275
‐5.4922
1.1922
*. The mean difference is significant at the 0.05 level.
Homogeneous Subsets Hasil Belajar Tukey HSDa Lama Belajar
Subset for alpha = 0.05 N 1
2 jam
4
81.9000
5 jam
4
83.2750
4 jam
4
3 jam
4
Sig.
2
3
83.2750 85.4250
.626
85.4250 86.8000
.275
.626
Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4,000. Berdasarkan out put di atas maka menunjukkan bahwa analisis varian telah selesai dilakukan permasalah selanjutnya yaitu bagaimana menggunakan besaran‐
311 besaran statistik dalam kaitannya dengan penelitian yang dilakukan. Untuk memahami dengan baik bagaimana memanfaatkan besaran statistik yang dihasilkan pada analisis varian dapat diikuti pada pembahasan di bagian 8.2 berikut.
8.2 PENGGUNAAN HASIL ANALISIS SATU JALAN Berdasarkan hasil (out put) analisis varian tersebut di atas menunjukkan tiga komponen utama yang berupa: (1) ANOVA, (2) Post Hoc Test yang berupa Multiple Comparisons, dan (3) Homogeneous Subsets. Di sisi lain, penggunaan analisis varian terdapat tiga hal pokok yang perlu diperhatikan dan dipenuhi dalam penerapan penelitian yang berupa: 1) Penentuan signifikansi umum 2) Penentuan signifikansi perpasangan (multiple comparisons) 3) Penentuan komponen varian Masing‐masing komponen yang diperlukan pada analisis varian tersebut dapat dijelaskan sbb.
PENENTUAN SIGNIFIKANSI UMUM Sebagaimana pada penelitian umumnya, penentuan signifikansi sangat berkaitan dengan pembuktian hipotesis. Oleh karena itu, sebelum menentukan signifikansi terlebih dahulu dirumuskan hipotesis sbb. Ho = Tidak ada perbedaan hasil belajar siswa antarlama belajar siswa (2, 3, 4, dan 5 jam) H1 = Terdapat perbedaan hasil belajar siswa antarlama belajar siswa (2, 3, 4, dan 5 jam) Hasil analisis menggunakan program SPSS menunjukkan bahwa besaran statistik yang ditampilkan pada Tabel ANOVA dapat disajikan sbb.
312 ANOVA Hasil Belajar
Sum of Squares
Mean Square
Df
Between Groups
57.265
3
19.088
Within Groups
30.415
12
2.535
Total
87.680
15
F
Sig.
7.531
.004
Kriteria yang digunakan: (1) Menggunakan harga koefisien F a. Apabila F hitung lebih besar daripada F tabel, maka Ho ditolak. b. Apabila F hitung lebih kecil daripada F tabel, maka Ho diterima. (2) Menggunakan harga probabilitas atau koefisien Significance a. Apabila hargha probabilitas atau koefisien significance lebih kecil daripada alpha (α), maka Ho ditolak. b. Apabila hargha probabilitas atau koefisien significance lebih besar daripada alpha (α), maka Ho diterima. Berdasarkan hasil analisis yang disajikan pada tabel ANOVA menunjukkan bahwa taraf signifikansi hasil hitungan sebesar 0,004 yang berarti lebih kecil dari tingkat kesalahan (alpha) yang ditetapkan yaitu 0,05. Sesuai dengan ketentuan yang berlaku dalam pengetesan hipotesis maka dapat disimpulkan bahwa hipotesis nihil (Ho) yang menyatakan “tidak ada perbedaan hasil belajar siswa antarlama belajar siswa” (2, 3, 4, dan 5 jam) ditolak yang berarti bahwa hasil pembuktian menerima hipotesis alternatif (H1) yang menyatakan terdapat perbedaan hasil belajar siswa secara signifikan (meyakinkan) antarlama belajar siswa (2, 3, 4, dan 5 jam). Apabila menggunakan harga koefisien F maka kita harus mencari besarnya F tabel terlebih dahulu untuk alpha 5% dengan dk pembilang 3 dan dk penyebut 12 sehingga diperoleh harga koefisien F tabel sebesar 3,49. Hasil analisis menunjukkan harga koefisien F hitung sebesar 7,531. Hasil analisis tersebut menunjukkan bahwa F hitung > F tabel sehingga Ho yang menyatakan “tidak ada perbedaan hasil belajar siswa antarlama belajar siswa” (2, 3, 4, dan 5 jam) ditolak. Hasil analisis tersebut membuktikan bahwa ada perbedaan hasil belajar siswa antarlama belajar siswa (2, 3, 4, dan 5 jam).
313 Kesimpulan pada signifikansi umum ini menunjukkan bahwa setidak‐tidaknya terdapat satu pasang (dua kelompok) yang berbeda secara signifikan (nyata). Kesimpulan signifikansi umum pada analisis varian tersebut tidak dapat diartikan bahwa setiap pasangan pasti berbeda secara signifikan (nyata).
PENENTUAN SIGNIFIKANSI PER PASANGAN (MULTIPLE COMPARISONS) Meskipun telah diuji signifikansinya secara umum masih diperlukan pengujian signifikansi untuk setiap pasangan. Hasil pengujian signifikansi secara umum pada analisis varian meskipun menyatakan ada perbedaan secara signifikan (nyata), maka tidak dapat diartikan bahwa setiap pasangan pasti berbeda secara signifikan (nyata). Hasil pembuktian tersebut hanya dapat dinyatakan setidak‐tidaknya ada satu pasang (dua kelompok) yang berbeda secara signifikan (nyata). Oleh karena itu perlu adanya pengujian per pasangan untuk menentukan pasangan mana yang berbeda secara signifikan dan pasangan mana yang tidak berbeda. Untuk mengetahui pasangan‐pasangan mana yang berbeda secara signifikan dan pasangan‐pasangan mana yang tidak berbeda diperlukan adanya uji signifikansi per pasangan. Untuk memudahkan dalam menentukan pasangan‐pasangan yang berbeda secara signifikan dan pasangan‐pasangan yang tidak berbeda dapat dilihat pada output hasil analisis yang disajikan pada tabel Multiple Comparisons berikut ini. Multiple Comparisons Hasil Belajar Tukey HSD Mean (I) Lama (J) Lama Difference Std. Error Belajar Belajar (I‐J) 2 jam
95% Confidence Interval Sig. Lower Bound Upper Bound
3 jam
‐4.90000*
1.12574
.004
‐8.2422
‐1.5578
4 jam
‐3.52500*
1.12574
.038
‐6.8672
‐.1828
314
3 jam
4 jam
5 jam
5 jam
‐1.37500
1.12574
.626
‐4.7172
1.9672
2 jam
4.90000*
1.12574
.004
1.5578
8.2422
4 jam
1.37500
1.12574
.626
‐1.9672
4.7172
5 jam
3.52500*
1.12574
.038
.1828
6.8672
2 jam
3.52500*
1.12574
.038
.1828
6.8672
3 jam
‐1.37500
1.12574
.626
‐4.7172
1.9672
5 jam
2.15000
1.12574
.275
‐1.1922
5.4922
2 jam
1.37500
1.12574
.626
‐1.9672
4.7172
3 jam
‐3.52500*
1.12574
.038
‐6.8672
‐.1828
4 jam
‐2.15000
1.12574
.275
‐5.4922
1.1922
* The mean difference is significant at the 0.05 level. Berdasarkan tabel Multiple Comparisons menunjukkan bahwa terdapat beberapa pasangan yang berbeda secara nyata (signifikan). Salah satu ciri yang sangat mudah untuk dikenali bahwa pasangan tersebut berbeda secara signifikan (nyata) yaitu nilai pada kolom Mean Difference (i‐j) diberi tanda bintang. Beberapa pasangan yang berbeda secara nyata untuk hasil analisis di atas dapat ditunjukkan sbb. a. Pasangan 2—3 jam, dengan Mean Difference sebesar ‐4.90000 dan signifikansi hitung sebesar 0,004 (0,004 < 0,05). b. Pasangan 2—4 jam, dengan Mean Difference sebesar ‐3.52500 dan signifikansi hitung sebesar 0,038 (0,038 < 0,05). c. Pasangan 3—5 jam, dengan Mean Difference sebesar 3.52500 dan signifikansi hitung sebesar 0,038 (0,038 < 0,05). Beberapa pasangan yang lainnya berdasarkan hasil analisis menunjukkan tidak ada perbedaan, yaitu a. Pasangan 2—5 jam, dengan Mean Difference sebesar ‐1.37500 dan signifikansi hitung sebesar 0,626 (0,626 > 0,05). b. Pasangan 3—4 jam, dengan Mean Difference sebesar 1.37500 dan signifikansi hitung sebesar 0,626 (0,626 > 0,05).
315 c. Pasangan 4—5 jam, dengan Mean Difference sebesar 2.15000 dan signifikansi hitung sebesar 0,275 (0,275 > 0,05). Cara lain untuk menentukan pasangan‐pasangan mana yang berbeda secara signifikan dapat juga dilihat pada tabel Homogeneous Sabsets hasil belajar. Tabel ini menyajikan pasangan‐pasangan yang dinyatakan tidak berbeda, yaitu dapat ditunjukkan sbb. Hasil Belajar Tukey HSDa Lama Belajar
Subset for alpha = 0.05 N 1
2
3
2 jam
4
81.9000
5 jam
4
83.2750 83.2750
4 jam
4
85.4250
85.4250
3 jam
4
86.8000
Sig.
.626
.275
.626
Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4,000. Penjelasan: Isi tabel Homogeneous Sabsets hasil belajar dapat dibaca sbb. a. Pasangan 2—5 jam dinyatakan tidak berbeda karena signifikansi hitung lebih besar dari alpha (0,626 > 0,05). b. Pasangan 5—4 jam dinyatakan tidak berbeda karena signifikansi hitung lebih besar dari alpha (0,275 > 0,05). c. Pasangan 4—3 jam dinyatakan tidak berbeda karena signifikansi hitung lebih besar dari alpha (0,626 > 0,05). Berdasarkan hasil analisis dapat dinyatakan bahwa terdapat tiga pasangan yang tidak berbeda. Dengan demikian pasangan‐pasangan selebihnya dapat dinyatakan berbeda secara signifikan (nyata).
316
PENENTUAN KOMPONEN VARIAN Out put atau hasil olahan komputer dan hasil olahan secara manual untuk analisis varian atau yang lain, pada dasarnya memiliki tujuan yang sama. Pada analisis varian yang utama adalah digunakan untuk menghitung komponen varian sebagaimana yang dinyatakan pada rumus;
Y
μ
τ
ε
Komponen‐komponen yang terdapat pada rumus di atas berupa; jumlah kuadrat total (sum of squares total), jumlah kuadrat antara kelompok (sum of squares between groups), dan jumlah kuadrat dalam kelompok (sum of squares within groups). Hasil analisis ini terdapat pada tabel ANOVA yang terdiri atas enam kolom dan tiga baris. Untuk memberikan apa makna dari angka‐angka statistik yang dihasilkan perlu ditunjukkan kembali tabel ANOVA sbb. ANOVA Hasil Belajar Between Groups Within Groups Total
Sum of Squares 57.265 30.415 87.680
Df 3 12 15
Mean Square 19.088 2.535
F 7.531
Sig. .004
Berdasarkan hasil analisis yang ditampilkan pada tabel ANOVA maka dapat dihitung besarnya komponen varian masing‐masing dengan cara sbb. a. Persentase komponen varian antarkelompok (between groups) sebesar 57,265 x 100% 87,680
65,31%
b. Persentase komponen varian dalam kelompok (within groups) sebesar 30,415 x 100% 87,680
34,69%
Hasil perhitungan tersebut berarti bahwa sebesar 65,31% varian pada variabel terikat (hasil belajar siswa) disebabkan oleh variasi atau perbedaan pada nilai
317 variabel bebas yang berupa lamanya siswa belajar (jam). Selebihnya sebesar 34,69% tidak diketahui sebabnya. Berdasarkan pembahasan tersebut menunjukkan bahwa pada analisis varian terdapat tiga hal pokok yang harus dilakukan. Ketiga hal pokok yang harus dilakukan pada analisis varian yaitu berupa: 1) Analisis signifikansi secara umum Pada analisis ini digunakan untuk menguji hipotesis secara umum tanpa harus melihat per pasangan. Berdasarkan hasil perhitungan di atas, meskipun pada hasil analisis secara umum menyatakan ada perbedaan secara signifikan (nyata) maka kita dapat menyatakan bahwa setidak‐ tidaknya terdapat satu pasangan (dua kelompok) yang berbeda secara signifikan (nyata). Hasil tersebut tidak dapat diartikan bahwa setiap pasangan pasti berbeda secara signifikan (nyata). 2) Analisis signifikansi per pasangan Analisis signifikansi per pasangan ini digunakan untuk memberikan penjelasan atas analisis signifikansi secara umum. Pada bagian analisis ini dapat digunakan untuk menunjukkan pasangan‐pasangan mana yang berbeda secara signifikan dan pasangan‐pasangan mana yang tidak berbeda. Output hasil analisis yang dapat digunakan yaitu ditampilkan pada tabel Multiple Comparisons. 3) Besarnya komponen varian Bagian ini dimaksudkan untuk menghitung berapa besarnya setiap komponen varian (yaitu komponen penjelas dan bukan penjelas). Berdasarkan pada contoh di atas, maka besarnya Komponen penjelas varian dihitung berdasarkan pada Sum of Square pada baris Between groups. Besarnya Komponen bukan penjelas varian dihitung berdasarkan pada Sum of Square pada baris Within groups dari total Sum of Square.
8.3 ANALISIS VARIAN DUA JALAN Sebagaimana telah dibahas sebelumnya pada analisis varian satu jalan, analisis varian dua jalan merupakan teknik analisis yang digunakan untuk menentukan apakah perbedaan atau variasi nilai suatu variabel terikat disebabkan oleh atau tergantung pada perbedaan (variasi) nilai pada dua variabel bebas. Pada analisis varian dua jalan terdapat empat komponen varian nilai yang harus
318 dipisah‐pisahkan karena memiliki makna yang berbeda, yaitu (1) komponen explained varian untuk seluruh variabel bebas (X1 + X2), (2) komponen explained varian variabel bebas X1 saja, (3) komponen explained varian variabel bebas X2 saja, dan (4) komponen unexplained varian. Dengan demikian pada analisis varian dua jalan tidak kita temukan istilah varian antar kelompok (between groups) dan varian dalam kelompok (within groups). Untuk melakukan analisis menggunakan analisis varian dua jalan tahapannya tidak jauh berbeda dengan analisis varian satu jalan. Karena itu besaran angka yang dihasilkan oleh SPSS digunakan untuk: 1) Menentukan signifikansi secara umum. 2) Menentukan signifikansi per pasangan. 3) Menentukan besaran masing‐masing komponen varian. Sebagai bahan penjelasan secara rinci diberikan contoh kasus yang disajikan pada bagian berikut.
Contoh 8.2 Seorang guru ingin melakukan pengujian terhadap perolehan hasil belajar siswa yang disebabkan oleh penggunaan waktu belajar siswa. Dalam pengujian ini sebagai variabel terikat (Y) adalah hasil belajar. Sebagai variabel bebas pertama (X1) adalah lama waktu belajar (dalam jam) yang dikelompokkan menjadi empat yaitu 2 jam, 3 jam, 4 jam, dan 5 jam. Sebagai variabel bebas kedua (X2) yaitu kemampuan awal siswa yang dikelompokkan menjadi tinggi dan rendah. Jumlah responden untuk masing‐masing kelompok sebanyak 4 orang dan tingkat kesalahan yang dipilih yaitu 5%. Setelah dilaksanakan tes kepada seluruh responden maka diperoleh data sbb: Tabel 8.2 Sekor hasil tes belajar siswa berdasarkan lama belajarnya dan tingkat kemampuan awal siswa
Tinggi Kemampuan Awal Rendah
2 79.30 83.80 82.00 82.50 80.30 81.80 80.00 82.50
Lamanya Belajar (jam) 3 4 85.50 84.00 87.20 86.80 87.50 83.10 87.00 87.80 84.00 83.30 86.80 83.00 83.10 82.80 87.80 81.50
5 83.30 84.00 82.80 82.50 85.50 85.20 84.50 83.00
319 Berdasarkan data di atas maka variabel bebas lama belajar terdiri atas 2, 3, 4, dan 5 masing‐masing sebanyak 8 responden yang terdiri atas kemampuan awalnya tinggi 4 responden dan kemampuan awalnya rendah 4 responden. Pada variabel bebas diisikan dengan sekor hasil tes yang dicapai oleh masing‐ masing responden sesuai dengan lamanya waktu yang digunakan untuk belajar. Dengan demikian masing‐masing lama waktu belajar terdiri atas 8 responden. Berdasarkan penyajian data yang ada maka input ke program SPSS yang harus dilakukan ditunjukkan sbb. (1) Tampilkan Variable View yang terdapat pada jendela SPSS Statistics Data Editor sehingga muncul kotak dialog sebagaimana terlihat pada Gambar 8.9.
Gambar 8.9 Kotak dialog Variable View pada SPSS Statistic Data Editor untuk menseting variabel penelitian
320 Cara Pengisian: a) Pada baris pertama kolom Name isikan dengan nama X1 sebagai variabel bebas pertama (lama belajar). Dalam membuat nama variabel usahakan sesingkat mungkin (tidak perlu terlalu panjang). b) Pada baris pertama kolom Label isikan nama secara lengkap dari variabel bebas pertama yang sebagai penjelasan X1, yaitu Lama Belajar. Hal ini apabila diperlukan untuk menjelaskan nama variabel yang telah dtetapkan sebelumnya. Nama yang dicantumkan pada kolom Label ini akan ditampilkan pada output hasil analisis. c) Pada baris pertama untuk kolom Value buatlah label dengan ketentuan sbb. (a) Value: 1 untuk label 2 jam; (b) Value: 2 untuk label 3 jam; (c) Value: 3 untuk label 4 jam; dan (d) Value: 4 untuk label 5 jam. d) Pada baris kedua untuk kolom Name isikan nama variabel bebas kedua (kemampuan awal) dengan nama X2. Sebagaimana pada variabel sebelumnya, dalam membuat nama variabel usahakan sesingkat mungkin (tidak perlu terlalu panjang). e) Pada baris kedua untuk kolom Value buatlah label dengan ketentuan sbb. Value: 1 untuk label kemampuan awal tinggi, dan Value: 2 untuk label kemampuan awal rendah. f) Pada baris kedua kolom Label isikan nama lengkap variabel bebas kedua yang sebenarnya sebagai penjelasan X2, yaitu Kemampuan Awal siswa. Nama variabel yang tertulis pada kolom Label ini ditampilkan pada saat memilih variabel yang akan dianalisis dan juga pada out put hasil analisis. g) Pada baris ketiga kolom Name Isikan nama variabel terikat yang berupa hasil belajar dengan nama Y. Penulisan nama variabel usahakan sesingkat mungkin (tidak perlu terlalu panjang). h) Pada baris ketiga untuk kolom Label Isikan nama variabel terikat secara lengkap yang sebenarnya sebagai penjelasan Y, yaitu Hasil Belajar siswa. Nama variabel yang tertulis pada kolom Label ini ditampilkan pada saat memilih variabel yang akan dianalisis dan juga pada out put
321 hasil analisis. Penulisan nama pada kolom ini (Label) bisa ditulis dengan panjang sebagaimana nama variabel yang sebenarnya. Setelah informasi yang berkaitan dengan variabel penelitian diseting sesuai dengan kebutuhan maka hasilnya akan tampak pada Gambar 8.10 berikut ini.
Gambar 8.10 otak dialog seting variabel‐variabel penelitian pada jendela SPSS Statistics Data Editor ‐ Variable View (2) Berdasarkan pada tampilan Gambar 8.10 tersebut menunjukkan bahwa variabel penelitian yang akan dianalisis telah selesai dan siap menerima input data. Variabel yang telah diseting yaitu X1 berupa lama belajar, X2 berupa kemampuan awal siswa, dan Y adalah hasil belajar. Sesuai dengan kotak dialog Gambar 8.10 pilih dan klik pada bagian Data View sehingga tampilan Gambar 8.10 berubah menjadi sbb.
322
Gambar 8.11 Kotak dialog pengisian data untuk masing –masing variabel penelitian pada jendela SPSS Statistics Data Editor Cara menginput data masing‐masing variabel sbb. a. Pada kolom variabel bebas X1 (lama belajar) isikan angka‐angka sbb. a) Angka 1 pada baris pertama sampai baris kedelapan, yang berarti lama belajar 2 jam. b) Angka 2 pada baris kesembilan sampai baris keenam belas, yang berarti lama belajar 3 jam. c) Angka 3 pada baris ketujuh belas sampai baris kedua puluh empat, yang berarti lama belajar 4 jam. d) Angka 4 pada baris kedua puluh lima sampai baris ketiga puluh dua, yang berarti lama belajar 5 jam. b. Pada kolom variabel bebas X2 (kemampuan awal siswa) isikan angka‐ angka sbb.
323 a) Angka 1 pada baris pertama sampai baris keempat, yang berarti kemampuan awal tinggi. b) Angka 2 pada baris kelima sampai baris kedelapan, yang berarti kemampuan awal rendah. c) Angka 1 pada baris kesembilan sampai baris kedua belas, yang berarti kemampuan awal tinggi. d) Angka 2 pada baris ketiga belas sampai baris keenam belas, yang berarti kemampuan awal rendah. e) Angka 1 pada baris ketujuh belas sampai baris kedua puluh, yang berarti kemampuan awal tinggi. f) Angka 2 pada baris kedua puluh satu sampai baris kedua puluh empat, yang berarti kemampuan awal rendah. g) Angka 1 pada baris kedua puluh lima sampai baris kedua puluh delapan, yang berarti kemampuan awal tinggi. h) Angka 2 pada baris kedua puluh sembilan sampai baris ketiga puluh dua, yang berarti kemampuan awal rendah. c. Pada kolom variabel terikat Y isikan hasil belajar secara berurutan dari lama belajar 2 jam dengan kemampuan awal tinggi, kemmpuan awal rendah sampai lama belajar 5 jam dengan kemampuan awal tinggi sampai ke kemampuan awal rendah. Setelah selesai menginput data untuk semua variabel, maka tampilan layar monitor akan terlihat sebagaimana ditampilkan pada Gambar 8.12 pada halaman berikut ini. Pada kotak dialog Gambar 8.12 hanya tampak sebanyak 19 baris sedangkan data yang sebenarnya ada sebanyak 32 baris, yaitu 4 kelompok lama belajar dikalikan 8 responden. Perlu diperhatikan bahwa setiap kelompok lama belajar terdiri atas kemampuan awal tinggi dan rendah, sedangkan untuk kelompok kemampuan awal tinggi ada 4 responden dan kelompok kemampuan awal rendah ada 4 responden sehingga tiap satu kelompok lama belajar terdiri atas 8 responden. Selanjutnya, setelah selesai menginput seluruh data hasil penelitian dapat dilakukan analisis data dengan tahapan sbb.
324
Gambar 8.12 Kotak dialog SPSS Statistics Data Editor yang telah diisi data untuk masing–masing variabel penelitian Apabila kita melihat kondisi tampilan lembar kerja SPSS Statistics Data Editor sebagaimana terlihat pada Gambar 8.12 maka kita telah siap untuk melakukan berbagai analisis yang dikehendaki. Data yang telah diinput sebagaimana terlihat pada Gambar 8.12 sudah dapat dianalisis sesuai dengan disain yang dibuatnya. Untuk melakukan analisis varian dengan dua jalur atau analisis varian dengan klasifikasi ganda dapat dilakukan dengan cara sbb. (1) Berdasarkan pada jendela SPSS Statistics Data Editor – Data View, pilih dan klik pada menu Analyze sehingga ditampilkan submenu Analyze sbb.
325
Gambar 8.13 Kotak dialog tentang pemilihan alat analisis varian dua jalan yang akan digunakan untuk mengolah data (2) Pilih pada General Linear Model sehingga di sebelah kanannya muncul 4 submenu General Linear Model yang berupa Univariate, Multivariate, Repeated Measures, dan Variance Components sebagaimana terlihat pada Gambar 8.13. Berdasarkan empat submenu tersebut pilih dan klik pada bagian Univariate, sehingga akan menampilkan kotak dialog sebagaimana yang ditampilkan pada Gambar 8.14. Cara penetapan variabel yang akan di analisis sbb. a. Pilih dan klik pada variabel hasil belajar (Y) sehingga bagian tersebut menjadi diblok, kemudian pilih dan klik pada tanda panah ke kanan yang mengarah pada kotak Dependent Variable sehingga variabel hasil belajar (Y) berada pada kotak Dependent Variable.
326 b. Pilih dan klik pada variabel bebas untuk lama belajar (X1) sehingga bagian tersebut menjadi diblok, kemudian pilih dan klik pada tanda panah ke kanan yang mengarah pada kotak Fixed Factor(s) sehingga variabel lama belajar (X1) berada pada kotak Fixed Factor(s).
Gambar 8.14 Kotak dialog penetapan variabel dependen (terikat) dan variabel faktor tetap pada analisis varian dua jalan c. Pilih dan klik pada variabel bebas untuk kemampuan awal siswa (X2) sehingga bagian tersebut menjadi diblok, kemudian pilih dan klik pada tanda panah ke kanan yang mengarah pada kotak Fixed Factor(s) sehingga variabel kemampuan awal siswa (X2) berada pada kotak Fixed Factor(s).
327 Sampai pada tahap ini, setelah menentapkan variabel dependen (terikat) dan variabel vaktor maka tampilannya akan terlihat sbb.
Gambar 8.15 Kotak dialog penetapan variabel dependen (terikat) dan variabel faktor pada analisis varian dua jalan yang terisi Sebelum melaksanakan seting lebih lanjut perlu diamati dan dicermati dengan baik sehingga penempatan variabel‐variabel yang akan di analisis tidak keliru. Kesalahan menempatkan variabel pada kotak yang tidak sesuai akan mengakibatkan kesalahan besar pada out put yang ditampilkan. Pada analisis varian dua jalan ini hanya terdapat satu variabel terikat (dependent variable) yang dapat ditentukan oleh dua variabel bebas. Kedua variabel bebas tersebut ditempatkan secara bersama pada kotak Fixed Factor(s). Ini sebagai langkah awal penempatan variabel‐ variabel yang akan dianalisis. (3) Berdasarkan kotak dialog Gambar 8.15 pilih dan klik pada bagian Model sehingga ditampilkan kotak dialog sbb. (4) Berdasarkan pada Gambar 8.16 pilih dan klik pada bagian Custom untuk menspesifikasi model. Dengan menklik pada bagian Custom tersebut
328 maka mengakibatkan tampilan kotak Factors dan Covariates menjadi lebih terang.
Gambar 8.16 Kotak dialog penetapan model analisis varian dua jalan antara Full factorial atau Custom Apabila tidak dilakukan pengaturan untuk spesifikasi model analisis variannya maka out put hasil analisis yang ditampilkan oleh sesuai dengan yang diseting oleh program (default) yang kemungkinan tidak memenuhi apa yang menjadi harapan kita. Untuk melihat hasilnya sebagai pembuktian dapat dilakukan percobaan analisis guna melihat perbedaan out put yang ditampilkan. (5) Pilih dan klik pada bagian X1 dan X2 yang terdapat pada kotak Factors dan Covariates kemudian klik tanda panah ke kanan yang terdapat pada kotak Build Term(s) untuk memindahkan variabel X1 dan X2 ke kotak Model. Langkah ini menetapkan bahwa variabel X1 dan variabel X2 ditetapkan sebagai variabel yang akan menentukan variasi nilai pada variabel terikat.
329 (6) Pilih dan klik pada bagian Interaction yang terdapat pada bagian Build Term(s) dengan cara menklik pada tanda panah ke bawah yang terdapat di sebelah kanan Interaction sehingga muncul beberapa pilihan. Berdasarkan alternatif yang ada pilih pada alternatif: All 2 way. Alternatif yang ditawarkan oleh sistem yaitu ada 5 pilihan yang berupa: a. b. c. d. e.
Interaction. Main effects. All 2 way. All 3 way. All 4 way.
(7) Pada bagian Sum of Square yang terdapat di sebelah kiri bawah isiannya perlu gantikan dengan Type I. Setelah pengaturan seluruhnya selesai maka tampilan hasil seting kotak dialog Univariate: Model akan tampak sbb.
Gambar 8.17 Kotak dialog penetapan model analisis varian dua jalan yang telah diisi
330 (8) Berdasarkan kotak dialog Gambar 8.17 pilih dan klik pada bagian Continue sehingga kembali seperti pada tampilan Gambar 8.18.
Gambar 8.18 Kotak dialog penetapan variabel dependen (terikat) dan variabel faktor pada analisis varian dua jalan yang telah diseting modelnya Apa yang ditampilkan pada Gambar 8.18 kelihatan tidak ada beda dengan apa yang ditampilkan pada Gambar 8.15. Hal ini tidak berarti bahwa tidak perlu dilakukan seting model, karena tampilan tersebut apabila di berikan perintah untuk proses lebih lanjut maka keduanya akan menghasilkan out put yang sangat berbeda. Pada Gambar 8.18 telah dilakukan seting terhadap model sedangkan pada Gambar 9.15 belum dilakukan seting terhadap model. Dengan demikian kondisi keduanya sangat berbeda satu dengan lainnya. Pada analisis varian dua jalan sebenarnya terdapat banyak pilihan yang dapat ditampilkan pada out put hasil analisis. Beberapa pilihan yang terdapat pada analisis varian dua jalan tersebut berupa; Model, Contrasts, Plots, Post Hoc, save, dan ptions. Namun demikian sering kali tidak semua
331 pilihan tersebut diaktifkan atau diperlukan sehingga seting hanya dilakukan pada bagian tertentu yang memang benar‐benar diperlukan hasilnya. Bagian yang paling sering digunakan ketika menganalisis data dengan varian dua jalan yaitu Model dan Post Hoc. (9) Pilih dan klik pada bagian Post Hoc...yang terdapat disebelah kanan atas sehingga menampilkan kotak dialog sbb.
Gambar 8.19 Kotak dialog penentuan variabel Post Hoc Tests dan Equal Variances Assumed untuk analisis varian dua jalan Cara pengisian: a. Pilih dan klik pada factor(s) X1 kemudian pilih dan klik pada tanda panah ke kanan untuk memasukkan variabel X1 ke kotak Post Hoc Tests.
332 b. Pilih dan klik pada factor(s) X2 kemudian pilih dan klik pada tanda panah ke kanan untuk memasukkan variabel X2 ke kotak Post Hoc Tests. c. Pilih dan klik pada bagian Tukey yang terdapat pada kotak Equal Variances Assumed dengan cara menklik pada kotak kecil di sebelah kirinya. Pada analisis varian, baik satu jalan atau lebih perlu untuk melakukan tes terhadap Post Hoc Tests dan Tukey Test sehingga dapat menganalisis signifikansi per pasangan. (10) Pilih dan klik pada bagian Continue sehingga tampilan pada Gambar 9.19 akan berubah menjadi berikut ini.
Gambar 8.20 Kotak dialog penentuan Post Hoc Tests dan Equal Variances Assumed Tukey Test untuk analisis varian dua jalan
333 Pada kotak dialog Gambar 8.20 terdapat banyak Equal Variances Assumed yang dapat dipilih dan diaktifkan secara bersama saat analisis dilakukan. Namun demikian untuk analisis varian paling tidak harus mengaktifkan Tukey Test untuk Equal Variances Assumed. (11) Pilih dan klik pada bagian Continue sehingga muncul kotak dialog sbb.
Gambar 8.21 Kotak dialog penetapan variabel dependen (terikat) dan variabel faktor pada analisis varian dua jalan yang telah diseting model dan Post Hoc testnya (12) Pilih dan klik pada bagian OK yang terdapat di sebelah kiri bawah sehingga akan menghasilkan out put statistik sebagai berikut.
334
OUT PUT ANALISIS VARIAN DUA JALAN
Univariate Analysis of Variance Between-Subjects Factors Value Label Lama Belajar
N
1
2 jam
8
2
3 jam
8
3
4 jam
8
4
5 jam
8
Kemapuan Awal 1 2
KA Tinggi
16
KA Rendah
16
Tests of Between-Subjects Effects Dependent Variable:Hasil Belajar Source
Type I Sum of Squares
df
Mean Square
F
Sig.
225244,622a
5
45048,924
16809,881
,000
X1
225238,498
4
56309,624
21011,780
,000
X2
6,125
1
6,125
2,286
,142
Error
72,358
27
2,680
Total
225316,980
32
Model
a. R Squared = 1,000 (Adjusted R Squared = 1,000)
335
Estimated Marginal Means 1. Lama Belajar Dependent Variable:Hasil Belajar 95% Confidence Interval Lama Belajar
Mean
Std. Error Lower Bound
Upper Bound
2 jam
81,525
,579
80,337
82,713
3 jam
86,113
,579
84,925
87,300
4 jam
84,038
,579
82,850
85,225
5 jam
83,850
,579
82,662
85,038
2. Kemapuan Awal Dependent Variable:Hasil Belajar 95% Confidence Interval Kemapuan Awal
Mean
Std. Error
Lower Bound
Upper Bound
KA Tinggi
84,319
,409
83,479
85,158
KA Rendah
83,444
,409
82,604
84,283
Post Hoc Tests Lama Belajar Multiple Comparisons Hasil Belajar Tukey HSD (I) Lama
(J) Lama
Belajar
Belajar
2 jam
3 jam
Mean
Std.
Difference
Error
(I-J)
95% Confidence Interval Sig.
Lower
Upper
Bound
Bound
3 jam
-4,5875
*
,81852
,000
-6,8274
-2,3476
4 jam
-2,5125*
,81852
,024
-4,7524
-,2726
5 jam
-2,3250
*
,81852
,040
-4,5649
-,0851
2 jam
4,5875
*
,81852
,000
2,3476
6,8274
4 jam
2,0750
,81852
,077
-,1649
4,3149
5 jam
*
,81852
,047
,0226
4,5024
2,2625
336 4 jam
5 jam
2 jam
2,5125*
,81852
,024
,2726
4,7524
3 jam
-2,0750
,81852
,077
-4,3149
,1649
5 jam
,1875
,81852
,996
-2,0524
2,4274
2 jam
2,3250
*
,81852
,040
,0851
4,5649
3 jam
-2,2625
*
,81852
,047
-4,5024
-,0226
4 jam
-,1875
,81852
,996
-2,4274
2,0524
Based on observed means. The error term is Mean Square(Error) = 2,680. *. The mean difference is significant at the ,05 level.
Homogeneous Subsets Hasil Belajar Tukey HSDa,b Lama Belajar
Subset
N
1
2
2 jam
8
5 jam
8
83,8500
4 jam
8
84,0375
3 jam
8
Sig.
3
81,5250 84,0375 86,1125 1,000
,996
,077
Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 2,680. a. Uses Harmonic Mean Sample Size = 8,000. b. Alpha = ,05.
337
8.4 PENGGUNAAN HASIL ANALISIS DUA JALAN Berdasarkan hasil (out put) analisis varian tersebut di atas menunjukkan tiga komponen utama yang berupa: (1) ANOVA, (2) Post Hoc Test yang berupa Multiple Comparisons, dan (3) Homogeneous Subsets. Di sisi lain, penggunaan analisis varian terdapat tiga hal pokok yang perlu diperhatikan dan dipenuhi dalam penerapan penelitian yang berupa: 1) Penentuan signifikansi umum 2) Penentuan signifikansi perpasangan (multiple comparisons) 3) Penentuan komponen varian Masing‐masing komponen yang diperlukan pada analisis varian tersebut dapat dijelaskan sbb.
338
PENENTUAN SIGNIFIKANSI UMUM Penentuan signifikansi pada penelitian umumnya berkaitan dengan pembuktian hipotesis. Oleh karena itu, sebelum menentukan signifikansi terlebih dahulu perlu dirumuskan hipotesis. Pada analisis varian dua jalan ini dapat dirumuskan 4 macam hipotesis pokok. Berdasarkan Contoh 8.2 di atas maka dapat dirumuskan empat macam hipotesis pokok sbb. 1) Efek Gabungan (Bersama‐sama) Hipotesis yang dapat dirumuskan untuk menyatakan efek gabungan antara lama belajar dan tingkat kemampuan awal sbb. Ho = Tidak ada perbedaan hasil belajar siswa antarlama belajar (2, 3, 4, dan 5 jam) dan antartingkat kemampuan awal siswa secara gabungan (bersama‐sama) H1 = Terdapat perbedaan hasil belajar siswa antarlama belajar (2, 3, 4, dan 5 jam) dan antartingkat kemampuan awal siswa secara gabungan (bersama‐sama) Kriteria uji: •
Jika nilai sig. Hitung (probabilitas) < 0,05 maka tolak Ho.
•
Jika nilai sig. Hitung (probabilitas) > 0,05 maka terima Ho.
Guna menguji hipotesis tersebut maka out put analisis yang dapat digunakan yaitu tabel Test of Between‐Subjects Effects yang dapat ditunjukkan sbb. Tests of Between-Subjects Effects Dependent Variable:Hasil Belajar Source
Type I Sum of Squares
df
Mean Square
F
Sig.
225244,622a
5
45048,924
16809,881
,000
X1
225238,498
4
56309,624
21011,780
,000
X2
6,125
1
6,125
2,286
,142
Error
72,358
27
2,680
Total
225316,980
32
Model
a. R Squared = 1,000 (Adjusted R Squared = 1,000)
339 Berdasarkan hasil analisis yang disajikan pada tabel Test of Between‐ Subjects Effects menunjukkan bahwa taraf signifikansi hasil hitungan untuk Model sebesar 0,000 yang berarti lebih kecil dari tingkat kesalahan yang ditetapkan yaitu 0,05. Sesuai dengan ketentuan yang berlaku dalam pengetesan hipotesis maka dapat disimpulkan bahwa hipotesis nihil (Ho) yang menyatakan “Tidak ada perbedaan hasil belajar siswa antar lama belajar (2, 3, 4, dan 5 jam) dan antar tingkat kemampuan awal siswa secara gabungan (bersama‐sama)” ditolak yang berarti bahwa hasil pembuktian menerima H1 yang menyatakan terdapat perbedaan hasil belajar siswa antar lama belajar (2, 3, 4, dan 5 jam) dan antar tingkat kemampuan awal siswa secara gabungan (bersama‐sama). Pada dasarnya untuk menyatakan menerima atau menolak Hipotesis nol (Ho) terdapat ukuran atau kriteria yang dapat digunakan: (1) Menggunakan harga koefisien F hitung. Apabila menggunakan harga koefisien F maka F hitung harus dibandingkan dengan harga koefisien F tabel, dengan ketentuan: a. Apabila F hitung > F tabel maka Ho ditolak b. Apabila F hitung < F tabel maka Ho diterima (2) Menggunakan harga koefisien probabilitas (Signifikansi). Apabila menggunakan harga koefisien probabilitas maka koefisien signifikansi harus dibandingkan dengan tingkat alpha (α) yang ditetapkan, dengan ketentuan: a. Apabila probabilitas > alpha yang ditetapkan maka Ho diterima b. Apabila probabilitas < alpha yang ditetapkan maka Ho ditolak Kesimpulan signifikansi umum pada analisis varian tersebut tidak dapat diartikan bahwa setiap pasang pasti berbeda secara signifikan (nyata). Kesimpulan pada signifikansi umum ini menunjukkan bahwa setidak‐ tidaknya terdapat satu pasang (dua kelompok) yang berbeda secara signifikan (nyata). 2) Efek Perlakuan Lama Belajar (2, 3, 4, dan 5 jam) Hipotesis yang dapat dirumuskan untuk menyatakan efek perlakuan lama belajar terhadap hasil belajar sbb. Ho = Tidak ada perbedaan hasil belajar siswa antar lama belajar (2, 3, 4, dan 5 jam)
340 H1 = Terdapat perbedaan hasil belajar siswa antar lama belajar (2, 3, 4, dan 5 jam) Kriteria uji: •
Jika nilai sig. Hitung (probabilitas) < 0,05 maka tolak Ho.
•
Jika nilai sig. Hitung (probabilitas) > 0,05 maka terima Ho.
Hasil analisis yang disajikan pada tabel Test of Between‐Subjects Effects menunjukkan bahwa taraf signifikansi hasil hitungan untuk X1 (lama belajar) sebesar 0,000 yang berarti lebih kecil dari tingkat kesalahan yang ditetapkan yaitu 0,05. Sesuai dengan ketentuan yang berlaku dalam pengetesan hipotesis maka dapat disimpulkan bahwa hipotesis nihil (Ho) yang menyatakan “Tidak ada perbedaan hasil belajar siswa antar lama belajar (2, 3, 4, dan 5 jam)” ditolak yang berarti bahwa hasil pembuktian menerima H1 yang menyatakan terdapat perbedaan hasil belajar siswa antar lama belajar (2, 3, 4, dan 5 jam). Sebagai bahan pertimbangan bahwa ada dua kriteria atau dasar yang dapat digunakan untuk menyatakan menerima atau menolak hipoteisi nol. (1) Menggunakan harga koefisien F hitung. Apabila menggunakan harga koefisien F maka F hitung harus dibandingkan dengan harga koefisien F tabel, dengan ketentuan: a. Apabila F hitung > F tabel maka Ho ditolak b. Apabila F hitung < F tabel maka Ho diterima (2) Menggunakan harga koefisien probabilitas (Signifikansi). Apabila menggunakan harga koefisien probabilitas maka koefisien signifikansi harus dibandingkan dengan tingkat alpha (α) yang ditetapkan, dengan ketentuan: a. Apabila probabilitas > alpha yang ditetapkan maka Ho diterima b. Apabila probabilitas < alpha yang ditetapkan maka Ho ditolak Kesimpulan signifikansi pada analisis varian untuk lama belajar tersebut tidak dapat diartikan bahwa setiap pasang pasti berbeda secara signifikan (nyata). Kesimpulan pada signifikansi ini menunjukkan bahwa setidak‐ tidaknya terdapat satu pasang (dua kelompok) yang berbeda secara signifikan (nyata).
341 3) Efek Kemampuan Awal (Tinggi dan Rendah) Untuk menguji efek tingkat kemampuan awal siswa terhadap hasil belajar dapat dirumuskan hipotesis sbb. Ho = Tidak ada perbedaan hasil belajar siswa antar tingkat kemampuan awal (tinggi dan rendah). H1 = Terdapat perbedaan hasil belajar siswa antar tingkat kemampuan awal (tinggi dan rendah). Kriteria uji: •
Jika nilai sig. Hitung (probabilitas) < 0,05 maka tolak Ho.
•
Jika nilai sig. Hitung (probabilitas) > 0,05 maka terima Ho.
Hasil analisis yang disajikan pada tabel Test of Between‐Subjects Effects menunjukkan bahwa taraf signifikansi hasil hitungan untuk X2 (kemampuan awal siswa) sebesar 0,142 yang berarti lebih besar dari tingkat kesalahan yang ditetapkan yaitu 0,05. Sesuai dengan ketentuan yang berlaku dalam pengetesan hipotesis maka dapat disimpulkan bahwa hipotesis nihil (Ho) yang menyatakan “Tidak ada perbedaan hasil belajar siswa antar tingkat kemampuan awal (tinggi dan rendah)” diterima yang berarti bahwa hasil pembuktian menolak H1 yang menyatakan terdapat perbedaan hasil belajar siswa antar tingkat kemampuan awal (tinggi dan rendah).
PENENTUAN SIGNIFIKANSI PER PASANGAN (MULTIPLE COMPARISONS) uji signifikansi secara umum telah dilakukan, selanjutnya yaitu diperlukan pengujian signifikansi untuk setiap pasangan. Hasil pengujian signifikansi secara umum pada analisis varian tersebut tidak dapat diartikan bahwa setiap pasang pasti berbeda secara signifikan (nyata). Peneliti perlu melakukan pengujian perbedaan per pasangan untuk menentukan pasangan mana yang berbeda secara signifikan dan pasangan mana yang tidak berbeda. guna memudahkan dalam menentukan pasangan‐pasangan yang berbeda secara signifikan dan pasangan‐pasangan yang tidak berbeda dapat dilihat pada tabel Multiple Comparisons berikut ini.
342 Multiple Comparisons Hasil Belajar Tukey HSD (I) Lama
(J) Lama
Belajar
Belajar
2 jam
5 jam
Difference
Error
(I-J)
95% Confidence Interval Sig.
Lower
Upper
Bound
Bound
-4,5875
,81852
,000
-6,8274
-2,3476
-2,5125
*
,81852
,024
-4,7524
-,2726
-2,3250
*
,81852
,040
-4,5649
-,0851
2 jam
4,5875
*
,81852
,000
2,3476
6,8274
4 jam
2,0750
,81852
,077
-,1649
4,3149
5 jam
2,2625
*
,81852
,047
,0226
4,5024
2 jam
2,5125
*
,81852
,024
,2726
4,7524
3 jam
-2,0750
,81852
,077
-4,3149
,1649
5 jam
,1875
,81852
,996
-2,0524
2,4274
2 jam
2,3250
*
,81852
,040
,0851
4,5649
3 jam
-2,2625*
,81852
,047
-4,5024
-,0226
4 jam
-,1875
,81852
,996
-2,4274
2,0524
3 jam
5 jam
4 jam
Std.
*
4 jam
3 jam
Mean
Based on observed means. The error term is Mean Square(Error) = 2,680. *. The mean difference is significant at the ,05 level.
Sesuai dengan out put pada tabel Multiple Comparisons tersebut menunjukkan bahwa terdapat beberapa pasangan yang berbeda secara nyata (signifikan). Salah satu ciri yang sangat mudah dikenali bahwa pasangan yang berbeda secara signifikan (nyata) maka nilai pada kolom Mean Difference (i‐j) diberi tanda bintang. Beberapa pasangan yang berbeda secara nyata untuk hasil analisis di atas dapat ditunjukkan sbb. a. Pasangan 2—3 jam, dengan koefisien Mean Difference sebesar 4.5875 dan signifikansi hitung sebesar 0,000. b. Pasangan 2—4 jam, dengan koefisien Mean Difference sebesar 2.5125 dan signifikansi hitung sebesar 0,024.
343 c. Pasangan 2—5 jam, dengan koefisien Mean Difference sebesar 2.3250 dan signifikansi hitung sebesar 0,040. d. Pasangan 3—4 jam, dengan koefisien Mean Difference sebesar 2.0750 dan signifikansi hitung sebesar 0,077. e. Pasangan 3—5 jam, dengan koefisien Mean Difference sebesar 2.2625 dan signifikansi hitung sebesar 0,047. f. Pasangan 4—5 jam, dengan koefisien Mean Difference sebesar 0.1875 dan signifikansi hitung sebesar 0,996. Pasangan‐pasangan yang lainnya (Pasangan 4—5 jam) berdasarkan hasil analisis menunjukkan tidak ada perbedaan. Lima pasangan dalam model menunjukkan adanya perbedaan yang nyata (signifikan).
PENENTUAN KOMPONEN VARIAN Bagian lain yang ditampilkan oleh hasil analisis varian dua jalan menggunakan SPSS besarnya varian tiap‐tiap komponen. Komponen‐komponen yang terdapat pada out put analisis varian dua jalan berupa; jumlah kuadrat model (sum of squares explained model), jumlah kuadrat pada variabel bebas X1 (sum of squares variabel bebas X1), jumlah kuadrat pada variabel bebas X2 (sum of squares variabel bebas X2), dan jumlah kuadrat Residual/Error (sum of squares Residual/Error). Untuk memberikan apa makna dari angka‐angka statistik yang dihasilkan perlu ditunjukkan kembali tabel ANOVA sbb. Tests of Between-Subjects Effects Dependent Variable:Hasil Belajar Source
Type I Sum of Squares
df
Mean Square
Sig.
225244,622a
5
45048,924
16809,881
,000
X1
225238,498
4
56309,624
21011,780
,000
X2
6,125
1
6,125
2,286
,142
Error
72,358
27
2,680
Total
225316,980
32
Model
a. R Squared = 1,000 (Adjusted R Squared = 1,000)
F
344 Berdasarkan out put hasil analisis SPSS yang ditampilkan pada tabel ANOVA untuk sumber variasi (Source of Variations) menunjukkan bahwa: a. Persentase komponen varian antar model (expalined: model) diperoleh sebesar 225244,622 x 100% 225316,980
99,97%
Ini merupakan efek gabungan (bersama‐sama) antara variabel lamanya belajar dan tingkat kemampuan awal siswa terhadap hasil belajar. b. Persentase komponen varian antar kelompok variabel bebas X1 diperoleh sebesar 225238,497 x 100% 225316,980
99,97%
Ini merupakan efek variabel bebas lamanya belajar terhadap hasil belajar secara sendiri tanpa memperhitungkan kemampuan awal siswa. c. Persentase komponen varian antar kelompok variabel bebas X2 diperoleh sebesar 6,125 x 100% 225316,980
0,003%
Ini merupakan efek variabel bebas tingkat kemampuan awal terhadap hasil belajar secara sendiri tanpa memperhitungkan lama belajar. d. Persentase komponen varian yang tidak dapat dijelaskan oleh model (unexplained varian) diperoleh sebesar 72,358 x 100% 0,03% 225316,980 Hasil perhitungan tersebut berarti bahwa sebesar 99,965% varian pada variabel terikat (hasil belajar siswa) disebabkan oleh variasi atau perbedaan pada nilai variabel bebas yang berupa lamanya siswa belajar (jam) dan tingkat kemampuan awal secara gabungan (bersama‐sama). Selebihnya sebesar 0,03% tidak diketahui sebabnya.