05
Analisis Kestabilan Sistem Pengendalian Umpan Balik
Tujuan: Tujuan Mhs mampu menganalisis kestabilan sistem pengendalian umpan balik
Materi: Materi 1. Konsep Kestabilan Sistem Loop Tertutup (Stability Concept of The Closed Loop System) 2. Persamaan Karakteristik (Characteristic Equation) 3. Kestabilan Berdasarkan Ultimate Response 4. Kriteria Kestabilan Routh-Hurwitz 5. Analisis Kestabilan dengan Root Locus
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 1
5.1 Konsep Kestabilan Sistem Loop Tertutup • Designing a FBC (i.e. selecting its components and tuning its controller) seriously affects its stability characteristics. • The notion of stability and the stability characteristics of closed loop systems is therefore considered to be useful. Notion of Stability Ξ Pemahaman Kestabilan Stability Characteristic Ξ Karakteristik Kestabilan 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 2
5.1 Konsep Kestabilan Sistem Loop Tertutup
The Notion of Stability
(Pemahaman Kestabilan) • How to define about stable and unstable? Æ A dynamic system is considered to be stable IF every bounded input produces bounded output
• Bounded : input that always remains between an upper and a lower limit Æ sinusoidal, step, but not the rump
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 3
5.1 Konsep Kestabilan Sistem Loop Tertutup
Gambar 5.1.1. Bounded Input Input
Upper Limit
m(t) step
sinusoidal
Lower Limit
time
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 4
5.1 Konsep Kestabilan Sistem Loop Tertutup
Gambar 5.1.2. Tanggapan (response) stabil dan tidak stabil y
Unstable
Stable Desired value Unstable
time 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 5
5.1 Konsep Kestabilan Sistem Loop Tertutup
Transfer Function
y ( s ) = G ( s ) m( s )
• m = input, and y = output • If G(s) has a pole with positive real part, it gives rise to a term C1ept which grows continuously with time Æ unstable If TF of dynamic system has even one pole with positive real part, the system is UNSTABLE ∴ all poles of TF must be in the left-hand part of a complex plane, for the system to be STABLE 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 6
5.1 Konsep Kestabilan Sistem Loop Tertutup
Gambar 5.1.3. Complex Plane Imaginary
Stable
Unstable Real
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 7
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.1: Stabilization of an unstable process with P Control Let’s consider a process with the following response:
10 5 y(s) = m( s ) + d (s) s −1 s −1 Pole has positive root
s – 1 = 0 Æ s = +1
y(t) = C1 et Open loop unstable response 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 8
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.1 (Continued) Gambar 5.1.4. Tanggapan sistem tak-terkendali terhadap perubahan satu unit gangguan dengan fungsi tahap 40
unstable
y
30 20 10 0
0
0.5
1 Time
1.5
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
2
INDALPRO / 9
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.1 (Continued)
The closed loop response: 10 K c 5 y( s) = y sp ( s ) + d ( s) s − (1 − 10 K c ) s − (1 − 10 K c )
The transfer function: 5 Gload ( s ) = s − (1 − 10 K c )
and
10 K c Gsp ( s ) = s − (1 − 10 K c )
The closed loop will have negative pole if
1 Kc > 10
STABLE
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 10
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.1 (Continued)
Gambar 5.1.5. Penerapan FBC
Note: P only controller with Kc = 1 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 11
5.1 Konsep Kestabilan Sistem Loop Tertutup
Gambar 5.1.6. Tanggapan dinamik sistem terkendali terhadap perubahan satu unit gangguan dengan fungsi tahap 1 0.8
Stable
y
0.6 0.4
offset 0.2 0
0
0.5
1 Time
1.5
2
Note: Regulatory problem; with Kc = 1 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 12
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.2: Destabilization of a stable process
with PI Control
Gambar 5.1.7. Tanggapan stabil loop terbuka terhadap perubahan satu unit gangguan dengan fungsi tahap
• process with 2nd order TF:
1 Gp ( s ) = 2 s + 2s + 2 0.6
• System has two complex poles:
0.4
y
p1 = -1 + j p2 = -1 − j
0.5
0.3 0.2 0.1
• Therefore, System is stable
0 0
2
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
4
6
8
10
Time (second)
INDALPRO / 13
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.2 (Continued) • Implementation of PI Control • Assume that Gm = Gf = 1 • The closed loop response for servo problem
y( s) =
⎛ 1 ⎞ ⎟⎟ GC ( s ) = K C ⎜⎜1 + ⎝ τIs ⎠
G p Gc 1 + G p Gc
y sp ( s ) = Gsp ( s ) ysp ( s )
K c (τ I s + 1) 1 τ I s +1 Kc 2 τIs τI s + 2s + 2 = Gsp ( s ) = 1 τ I s +1 Kc 3 2 1+ 2 Kc s + 2 s + (2 + K c )s + τIs s + 2s + 2 τI
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 14
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.2 (Continued)
• Let Kc = 100 and τI = 0.1 • Poles of Gsp: s3 + 2s2 + (2+100)s + 100/0.1 • P1 = -7.18 ; p2 = 2.59 + 11.5j ; P3 = 2.59 – 11.5j Gambar 5.1.8. Tanggapan tidak stabil dari loop tertutup 10
y
5
0
-5
-10 0
0.2
0.4
0.6
0.8
1
Time (second) 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 15
5.1 Konsep Kestabilan Sistem Loop Tertutup
Example 5.1.2 (Continued) Gambar 5.1.9. Tanggapan stabil loop tertutup 1.8 1.6
Kc = 10 and τI = 0.5
1.4 1.2
y
1 0.8 0.6 0.4 0.2 0
0
5
10
15
20 25 Time (second)
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
30
35
40
INDALPRO / 16
5.2 The Characteristic Equation The closed loop response of FBC : G p G f Gc
Gd y sp ( s ) + d ( s) y ( s) = 1 + G p G f Gc Gm 1 + G p G f Gc Gm
y ( s ) = Gsp ( s ) ysp ( s ) + Gload ( s )d ( s )
denominator
The characteristic equation : 1 + GpGfGcGm = 0 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 17
5.2 Persamaan Karakteristik
Let p1, p2, …, pn be the n roots of the Characteristic Equation
1 + GpGfGcGm = (s – p1) (s – p2) … (s – pn) Stability criterion of a closed loop system
A FBC system is stable if all the roots of its characteristic equation have negative real part (i.e. are to the left of the imaginary axis) 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 18
5.2 Persamaan Karakteristik
Example 5.2.1: Stability analysis of FBC based on characteristic equation Again, consider Ex. 5.1.1
10 Gp = s −1
Gf =1
Gm = 1
Gc = K c
characteristic equation:
⎛ 10 ⎞ 1 + G p G f Gc Gm = 1 + ⎜ ⎟(1)(K c )(1) = 0 ⎝ s −1 ⎠ Which has the root: p = 1 – 10Kc ∴ The system is stable IF p < 0 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
1 Kc > 10 INDALPRO / 19
5.2 Persamaan Karakteristik
Example 5.2.1 (Continued) Again, consider Ex. 5.1.2
1 Gp = 2 s + 2s + 2
⎛ 1 ⎞ ⎟⎟ ; G f = 1 ; Gm = 1 ; Gc = K c ⎜⎜1 + ⎝ τIs ⎠
characteristic equation:
⎛ K cτ I s + K c ⎞ 1 ⎛ ⎞ ⎟⎟ = 0 1 + G p G f Gc Gm = 1 + ⎜ 2 ⎟ (1) (1)⎜⎜ τIs ⎝ s + 2s + 2 ⎠ ⎝ ⎠
s + 2 s + (K c + 2)s + 3
2
Kc
τI
=0
Which has three roots, Æ Kc and τI affect the value of roots (i.e. positive or negative) 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 20
5.3 Kestabilan Berdasarkan Ultimate Response Pada bagian ini kita akan membahas batasan kestabilan berdasarkan respon kritis (ultimate response). Ingat kembali! Respon stabil jika akar-akar denominator pada FT adalah negatif (di sebelah kiri sumbu imaginer pada bidang kompleks). Metode Substitusi Langsung Metode ini sangat mudah untuk mencari parameter-parameter pengendalian yang mana dapat menghasilkan respon stabil. Jika pers. karakteristik mempunyai satu atau dua akar yang terletak tepat pada sumbu imaginer, maka menghasilkan respon kritis (osilasi terjaga). Ultimate Gain, Kcu: gain pengendali yang mana dapat menghasilkan respon kritis. 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 21
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.3.1 respon loop tertutup dengan Kc = Kcu Tu
c(t)
1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 0 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1
5
10
15
20
C (t ) = sin (ωu t + θ ) Tu =
2π
ωu
25
30
t
Ultimate period
ωu = ultimate frequency 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 22
5.3 Kestabilan Berdasarkan Ultimate Response
Persamaan Karakteristik loop tertutup: denominator dari FT loop tertutup
1 + G p (s )G f (s )Gc (s )Gm (s ) = 0
... (5.3.1)
Substitusi langsung: s = i ωu Bagian real =0 Bagian imaginer = 0
Penyelesaian secara simultan menghasilkan ultimate gain, Kcu
Contoh 5.3.1: mencari Kcu dan ωu untuk pengendali suhu pada HE To set (t), oC
Steam M(t), %CO Ws(t), kg/s
TC
C(t), %TO TT
Process fluid Ti(t), oC
To(t), oC
W(t), kg/s Condensate
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 23
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.3.2. Diagram blok pengendali suhu pada HE W(s) Gw(s)
kg/s set (t), oC
To
Ksp
R(s) +
E(s)
%TO
%TO
M(s) Gc(s)
%CO
Gv(s)
+
Ws (s)
GS(s)
kg/s
+
To(t), oC
− C(s), %TO
Gm(s)
dimana: o 50 C ( ) GS s = 30 s + 1 kg / s
0.016 kg / s Gv (s ) = 3s + 1 %CO
1 %TO Gm (s ) = 10s + 1 o C
%CO Gc (s ) = K c %TO
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
P Control
INDALPRO / 24
5.3 Kestabilan Berdasarkan Ultimate Response
Persamaan Karakteristik loop tertutup:
1 + Gm (s )GS (s )Gv (s )Gc (s ) = 0 ⎛ 1 ⎞⎛ 50 ⎞⎛ 0.016 ⎞ 1+ ⎜ ⎟⎜ ⎟⎜ ⎟Kc = 0 ⎝ 10 s + 1 ⎠⎝ 30 s + 1 ⎠⎝ 3s + 1 ⎠ Penyusunan kembali persamaan di atas diperoleh:
(10s + 1)(30s + 1)(3s + 1) + 0.80 K c = 0 900 s 3 + 420 s 2 + 43s + 1 + 0.80 K c = 0 Substitusi s = i ωu pada Kc = Kcu:
900i 3ωu3 + 420i 2ωu2 + 43iωu + 1 + 0.80 K c = 0 i2 = –1
(− 420ω
2 u
) (
)
+ 1 + 0.80 K c + i − 900ωu3 + 43ωu = 0 + i 0
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 25
5.3 Kestabilan Berdasarkan Ultimate Response
Bagian real dan imaginer harus sama dengan nol:
− 420ωu2 + 1 + 0.80 K c = 0
− 900ωu3 + 43ωu = 0 Kedua pers. di atas diselesaikan secara simultan, menghasilkan:
ωu = 0
Kcu = –1.25 %CO/TO
ωu = 0.2186 rad/sec
Kcu = 23.8 %CO/TO
relevant
Jadi diperoleh ultimate period:
2π Tu = = 28.7 sec 0.2186
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
Jika diinginkan respon STABIL, maka Kc < Kcu
INDALPRO / 26
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.3.3. Tanggapan kritis pengendali suhu terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1)
Temperature [degC]
Kc = Kcu = 23.8 1 0.5 0 -0.5
0
50
100 Time [sec]
150
200
0
50
100 Time [sec]
150
200
Steam [kg/sec]
0
-0.1
-0.2
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 27
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.3.4. Tanggapan stabil pengendali suhu terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1)
Temperature [degC]
Kc = 10 2 1 0 -1
0
50
100
150
200
150
200
Time [sec]
Steam [kg/sec]
0
-0.1
-0.2
0
50
100 Time [sec]
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 28
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.3.5. Tanggapan tidak stabil pengendali suhu terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.3.1)
Temperature [degC]
Kc = 30 5
0
-5
0
50
100 Time [sec]
150
200
0
50
100 Time [sec]
150
200
Steam [kg/sec]
0.5 0 -0.5 -1
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 29
5.4 Routh-Hurwitz Stability Criterion • Does not require calculation of actual values of the roots of the characteristic equation. • But, it only requires that we know if any root is to the right of imaginary axis • Make a conclusion as to the stability of closed loop system quickly without computing the actual values of the roots 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 30
5.4 Kriteria Kestabilan Routh-Harwitz
Expand the characteristic eq. into the following polynomial form 1 + GpGfGcGm ≡ ao sn + a1 sn-1 + … + an-1 s + an = 0 Let ao be positive, if it is negative, multiply both sides of equation by −1. First Test: If any of coefficients a1 , a2 , … , an-1 , an is negative; there is at least one root of the characteristic eq. which has positive real part Æ UNSTABLE Second Test: If all coefficients a1 , a2 , … , an-1 , an are positive; Then, from the 1st test we cannot conclude anything about the location of the roots. Form the following array (known as Routh array): 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 31
5.4 Kriteria Kestabilan Routh-Harwitz
Routh Array Row
1 2 3 4 5 . n+1
a0 a1
a2 a3
a4 a5
a6 a7
A1 B1 C1 . W1
A2 B2 C2 . W2
A3 B3 A3 . .
. . .
… … … … …
.
…
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 32
5.4 Kriteria Kestabilan Routh-Harwitz
Where a1a2 − a0 a3 A1 = a1
a1a4 − a0 a5 A2 = a1
A1a3 − a1 A2 B1 = A1
A1a5 − a1 A3 B2 = A1
B1 A2 − A1 B2 C1 = B1
B1 A3 − A1 B3 C2 = B1
a1a6 − a0 a7 A3 = a1
. . .
. . .
. . .
etc.
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 33
5.4 Kriteria Kestabilan Routh-Harwitz
Examine the elements of the first column of the array above
a0 a1
A1
B1
C1
...
W1
• If any of these elements is negative, we have at least one root to the right of the imaginary axis and the system is UNSTABLE • The number of sign changes in the elements of the first column is equal to the number of roots to the right of the imaginary axis
∴ A system is STABLE IF all the elements in the first column of the Routh Array are POSITIVE 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 34
5.4 Kriteria Kestabilan Routh-Harwitz
Example 5.4.1: Stability Analysis with the RouthHurwitz Criterion Consider FBC system in Ex. 5.1.2, Its Characteristic eq. is
s + 2 s + (K c + 2 )s + 3
2
Routh array is: Row
Kc
τI
=0 1st Column
1
1
2 + Kc
2
2
Kc
3 4
2(2 + K c ) − 2
Kc
τI
τI 0
Kc
τI
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 35
5.4 Kriteria Kestabilan Routh-Harwitz
Example 5.4.1 (Continued) The elements of the first column are:
⎡ ⎢ ⎢1, 2, ⎢ ⎣
2(2 + K c ) − 2
Kc
τI
,
⎤ Kc ⎥ τ I ⎥⎥ ⎦
Third element can be positive or negative depending on the values of Kc and τI The system is STABLE if Kc and τI satisfy the condition:
2(2 + K c ) >
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
Kc
τI
INDALPRO / 36
5.4 Kriteria Kestabilan Routh-Harwitz
Example 5.4.2: Critical stability Conditions for FBC Return to Ex.5.4.1, and Let τI= 0.1 3rd
element becomes:
2(2 + K c ) − 10 K c 2
IF Kc = 0.5 Æ third element = 0 Æ critical condition, two roots on imaginary axis (pure imaginary) Æ ± j(1.58) Æ sustained sinusoidal response IF Kc < 0.5 Æ third element is positive Æ STABLE IF Kc > 0.5 Æ third element is negative Æ UNSTABLE 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 37
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.4.1. Tanggapan kritis dari sistem terkendali terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1) Kc = 0.5 ; thoi = 0.1 2
CV
1.5 1 0.5 0
0
5
10
15
10
15
Time [sec] 6
MV
4 2 0 -2
0
5
Time [sec]
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 38
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.4.2. Tanggapan stabil dari sistem terkendali terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1) Kc = 0.1 ; thoi = 0.1 1.5
CV
1 0.5 0
0
5
10
15
10
15
Time [sec] 3
MV
2 1 0
0
5 Time [sec]
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 39
5.3 Kestabilan Berdasarkan Ultimate Response
Gambar 5.4.3. Tanggapan tidak stabil dari sistem terkendali terhadap perubahan satu unit set point dengan fungsi tahap (Contoh 5.4.1) Kc = 1 ; thoi = 0.1 20
CV
10 0 -10 -20
0
5
10
15
10
15
Time [sec] 100
MV
0 -100 -200
0
5 Time [sec]
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 40
5.5 Analisis Kestabilan dengan Root-Locus
5.5 Root-Locus Analysis • Root Locus is a graphical technique that consists of graphing the roots of the characteristic equation • The resulting graph allows to see whether a root crosses the imaginary axis to the right hand side of the s-plane
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 41
5.5 Analisis Kestabilan dengan Root-Locus
Example 5.5.1: Root locus for a Reactor with P Control R Flow rate = F – m
A Flow rate = m
Reactions: A+RÆB B+RÆC C+RÆD
Flow rate = F
D+RÆE
Concentration in C = y
The control objective is to keep the concentration of the desired product C as close as possible to its set point by manipulating the flow rate of A 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 42
5.5 Analisis Kestabilan dengan Root-Locus
Example 5.5.1: (Continued) 2.98(s + 2.25) y( s) = TF of the process: G p ( s ) = m( s ) (s + 1.45)(s + 2.85)2 (s + 4.35)
Implementation of P Control with Gc(s) = Kc , and Assume that Gm = Gf = 1, we have the following characteristic equation: 1 +
2.98(s + 2.25) Kc = 0 2 (s + 1.45)(s + 2.85) (s + 4.35)
S4 + 11.5 s3 + 47.49 s2 + (2.98Kc + 83.0633)s + (6.705Kc + 51.2327) = 0 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 43
5.5 Analisis Kestabilan dengan Root-Locus
Roots of the characteristic equation (for ex. 5.5.1)
Kc
p1
p2
p3
p4
0
− 1.45
−2.85
1
−1.92
−2.34 + 0.82 j −2.34 − 0.82 j −4.89
5
−2.20
−1.76 + 1.88 j −1.76 − 1.88 j −5.77
20
−2.23
−1.06 + 3.23 j −1.06 − 3.23 j −7.14
50
−2.24
−0.38 + 4.48 j −0.38 − 4.48 j −8.49
100
−2.25
+0.30 + 5.70 j +0.30 − 5.70 j −9.85
−2.85
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
−2.85
INDALPRO / 44
5.5 Analisis Kestabilan dengan Root-Locus
Gambar 5.5.1. Root-Locus of the reactor in Ex. 5.5.1 Root Locus 20
15
10
Imaginary Axis
5
0
-5
-10
-15
-20 -20
-15
-10
-5
0
5
10
15
Real Axis 5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
INDALPRO / 45
5.5 Analisis Kestabilan dengan Root-Locus
Gambar 5.5.2. Tanggapan stabil loop terkendali terhadap perubahan satu unit set-point (Ex. 5.5.1) 1.5
New set-point
1
y
Kc = 50 Kc = 20 Offset
0.5
Kc = 5 Kc = 1 0
0
2
4
6
8
10 12 Time (Sec)
14
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
16
18
20
INDALPRO / 46
5.5 Analisis Kestabilan dengan Root-Locus
Gambar 5.5.3. Tanggapan kritis dari loop terkendali terhadap perubahan satu unit set-point (Ex. 5.5.1) 2
Critical condition
Kc = 75
y
1.5
1
0.5
0
0
2
4
6
8
10 12 Time (Sec)
14
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
16
18
20
INDALPRO / 47
5.5 Analisis Kestabilan dengan Root-Locus
Gambar 5.5.4. Tanggapan tak-stabil dari loop terkendali terhadap perubahan satu unit set-point (Ex. 5.5.1) 300
Kc = 100
200
y
100
0
-100
-200
-300
0
2
4
6
8
10 12 Time (Sec)
14
5 - ANALISIS KESTABILAN SISTEM PENGENDALIAN UMPAN BALIK – DR. ENG. Y. D. HERMAWAN
16
18
20
INDALPRO / 48