VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF BIOMEDICAL ENGINEERING
ANALÝZA SPÁNKOVÝCH EEG SLEEP EEG ANALYSIS
BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS
AUTOR PRÁCE
TEREZA KŘÍŽENECKÁ
AUTHOR
VEDOUCÍ PRÁCE SUPERVISOR
BRNO, 2015
ING. MARINA RONZHINA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Ústav biomedicínského inženýrství
Bakalářská práce bakalářský studijní obor Biomedicínská technika a bioinformatika Studentka: Ročník:
Tereza Kříženecká 3
ID: 155587 Akademický rok: 2014/2015
NÁZEV TÉMATU:
Analýza spánkových EEG POKYNY PRO VYPRACOVÁNÍ: 1) Proveďte literární rešerši v oblasti analýzy spánkových elektroencefalogramů (EEG). Zaměřte se na metody používané pro automatickou detekci spánkových fázi. 2) Seznamte se s databází skórovaných spánkových EEG dostupných na ÚBMI. 3) Proveďte výpočet vybraných parametrů z úseků EEG odpovídajících různým spánkovým fázím. 4) Na základě statistické analýzy určete parametry EEG vhodné pro následnou automatickou detekci jednotlivých spánkových fázi. 5) Proveďte diskusi získaných výsledků. DOPORUČENÁ LITERATURA: [1] SÖRNMO, Leif a Pablo LAGUNA. Bioelectrical signal processing in cardiac and neurological applications. Academic Press, 2005, 688 s. ISBN 978-0-12-437552-9. [2]. MOSER, Doris et al. Sleep classification according to AASM and Rechtschaffen & Kales: Effects on Sleep Scoring Parameters. Sleep. 2009, č. 32, s. 139-149. ISSN 1550-9109. Termín zadání:
9.2.2015
Termín odevzdání:
29.5.2015
Vedoucí práce: Ing. Marina Ronzhina Konzultanti bakalářské práce:
prof. Ing. Ivo Provazník, Ph.D. Předseda oborové rady
UPOZORNĚNÍ: Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.
ABSTRAKT Tato bakalářská práce se zabývá analýzou spánkových EEG, která je provedena pomocí výpočtu vybraných parametrů z časové a frekvenční oblasti. Parametry se počítají z jednotlivých úseků EEG signálů, které odpovídají jednotlivým spánkovým fázím. Na základě analýzy se rozhodne, které parametry EEG jsou vhodné pro automatickou detekci fází a která metoda je vhodnější pro hodnocení dat v hypnogramu. K analýze byl pouţit program MATLAB, ve kterém byla daná data porovnána.
KLÍČOVÁ SLOVA Spánek, elektroencefalogram (EEG), spánkové EEG - polysomnografie, časová analýza, frekvenční analýza
ABSTRACT This thesis deals with the analysis of EEG during various sleep stages, which is done by calculating the selected parameters from the time and frequency domain. These parameters are calculated from individual segments of EEG signals that correspond with various sleep stages. Based on the analysis it decides which EEG parameters are appropriate for the automatic detection of the phases and which method is more suitable for evaluation of data in hypnogram. The programme MATLAB was used for the analysis and also for the comparison of chosen data.
KEYWORDS Sleep, elektroencephalogram (EEG), sleep EEG - polysomnography, time domain analysis, frequency - domain analysis
KŘÍŢENECKÁ,T. Analýza spánkových EEG. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií. Ústav biomedicínského inţenýrství, 2015. 65 s. Bakalářská práce. Vedoucí práce: Ing. Marina Ronzhina
PROHLÁŠENÍ Prohlašuji, ţe svou bakalářskou práci na téma Analýza spánkových EEG jsem vypracovala samostatně pod vedením vedoucího bakalářské práce a s pouţitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autor uvedené bakalářské práce dále prohlašuji, ţe v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení § 11 a následujících zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně moţných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb. V Brně dne ..............................
.................................... (podpis autora)
PODĚKOVÁNÍ Děkuji vedoucí bakalářské práce Ing. Marině Ronzhině za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce.
V Brně dne ..............................
.................................... (podpis autora)
Obsah Úvod 1
2
8
SPÁNEK 1.1
Fáze spánku............................................................................................... 9
1.2
Poruchy spánku ....................................................................................... 10
ELEKTROENCEFALOGRAFIE 2.1
Vyšetření pomocí EEG ........................................................................... 11 Snímání na povrchu mozkové kůry .................................................... 11
2.1.2
Snímání na povrchu hlavy .................................................................. 11
2.2.1 2.3
4
11
2.1.1 2.2
3
9
Charakteristiky EEG záznamu ................................................................ 12 Frekvenční pásma ............................................................................... 13 Artefakty při EEG ................................................................................... 14
2.3.1
Chyby přístroje ................................................................................... 14
2.3.2
Chyby biologické ................................................................................ 14
2.3.3
Chyby vnějšího rušení ........................................................................ 15
SPÁNKOVÉ EEG – POLYSOMNOGRAFIE
16
3.1
Postup vyšetření ...................................................................................... 16
3.2
Hodnocení polysomnografického záznamu ............................................ 16
3.3
Hypnogram ............................................................................................. 16
3.4
Struktura spánku ..................................................................................... 17
3.4.1
Standard R&K..................................................................................... 17
3.4.2
Standard AASM .................................................................................. 19
AUTOMATICKÁ DETEKCE SPÁNKOVÝCH FÁZÍ 4.1
20
Předzpracování EEG ............................................................................... 20
4.1.1
Filtrace ................................................................................................ 20
4.1.2
Segmentace ......................................................................................... 20
4.2
Analýza EEG .......................................................................................... 20
4.2.1
Spektrální analýza deterministických signálů ..................................... 21
4.2.2
Spektrální analýza stochastických signálů .......................................... 23
4.2.3
Analýza EEG v časové oblasti ............................................................ 23
4.2.4
Analýza EEG ve frekvenční oblasti .................................................... 26
4.2.5
Analýza EEG v časově - frekvenční oblasti ....................................... 27
4.2.6
Analýza EEG pomocí nelineárních metod.......................................... 29
5
SEZNÁMENÍ S DATABÁZÍ SKÓROVANÝCH SPÁNKOVÝCH EEG
30
6
STATISTICKÁ ANALÝZA
44
6.1
Analýza pro kaţdého pacienta ................................................................ 44
6.2
Analýza pro všechny pacienty ................................................................ 47
7
Závěr
50
8
Literatura
51
Seznam symbolů, veličin a zkratek
53
Seznam obrázků
54
9
Přílohy
56
ÚVOD Tato bakalářská práce je zaměřená zejména na analýzu spánkových elektroencefalografických (EEG) záznamů. Samotné vyšetření, nazvané polysomnografické vyšetření (PSG), se skládá ze snímání EEG, EOG a EMG. PSG je metoda, která se vyuţívá v diagnostice poruch spánku. Pomocí PSG dokáţeme posoudit architekturu spánku, tedy jednotlivé fáze spánku a příčiny probuzení ze spánku. Pro samotnou klasifikaci a analýzu PSG záznamu je potřeba rozeznat spánková stádia. Tuto analýzu dělá buď lékař, nebo zdravotnický pracovník. Samotná analýza se provádí rozdělením na epochy, ve kterých se následně určují spánková stádia podle Rechtschaffena a Kalese (R&K) a American Academy of Sleep Medicine (AASM) standardů. Jelikoţ je PSG několikahodinový záznam, je proto klasifikace zdlouhavá, proto je vyvíjena snaha o automatickou klasifikaci, tedy pomocí přístrojů. V práci se také seznámíme s teoretickým úvodem do problematiky EEG, se spánkem samotným a jeho architekturou. Při seznámení s EEG budou zmíněny artefakty, které se při snímání mohou objevit, dále samotný popis EEG. Praktická část práce je realizovaná v programu MATLAB a STATISTICA. Zde bylo provedeno porovnání hodnot různých parametrů vypočtených z EEG signálů nasnímaných v průběhu různých spánkových fází v rámci studie RELIEF, která byla poskytnuta z Fakultní nemocnice u Svaté Anny.
8
1
SPÁNEK
Spánek a odpočinek patří mezi základní lidské potřeby a jsou nezbytným předpokladem pro zachování, udrţení a regeneraci tělesného a duševního zdraví. Tato potřeba nám zabere třetinu ţivota. Spánek je charakteristický minimální fyzickou aktivitou, různou úrovní vědomí, změnou fyziologických funkcí a sníţenou odpovědí na vnější podněty. Při spánku dochází ke změně činnosti mozku, uvolnění svalstva, sníţení tělesné teploty, zpomalení dýchání a sníţení krevního tlaku. Věkem se spánek přirozeně mění - zkracuje se, usínání se posouvá do dřívějších večerních či nočních hodin. Spánek je celkově kratší s probouzením v dřívějších ranních hodinách. Současně se zvyšuje výskyt poruch chování a chorobných projevů při dýchání, objevují se noční pohyby dolních končetin. S rostoucím věkem přibývá i onemocnění a léků, které mají vliv na kvalitu spánku.
1.1 Fáze spánku Spánek probíhá cyklicky a je řízen dvěma specializovanými oblastmi mozkového kmene - retikulárním aktivačním systémem a bulbární synchronizující oblastí v prodlouţené míše. Spánek se dělí na dva druhy spánku. Je to REM spánek a NREM spánek. Tyto dvě fáze se v průběhu spánku střídají. REM fáze spánku je řízená noradrenalinem. V této fázi spánku jsou aktivní sny, sníţený svalový tonus, svalové záškuby, nepravidelná frekvence dýchání a srdce, rychlé pohyby očních bulbů, mírně se zvyšuje metabolismus a tělesná teplota. REM fáze slouţí k regeneraci psychických funkcí. Z REM fáze se člověk probouzí, kdyţ předtím prošel jednotlivými stádii NREM fáze spánku. NREM fáze spánku je spánek mělčí, řízený serotoninem, s pomalou EEG aktivitou. Probuzení z této fáze je nefyziologické, člověk nedosáhne správné regenerace, síly a cítí se unavený. NREM má 4 stádia: Stádium je stádium nejlehčího spánku, člověk je ospalý, klidný, klesá frekvence srdeční činnosti a dýchání. Z tohoto stádia se dá člověk lehce probudit.
Stádium je lehký spánek, kdy se zpomalují procesy organismu.
Stádium je středně hluboký spánek, dochází ke svalové relaxaci, klesá krevné tlak a sniţuje se teplota. Spící jde hůře probudit Stádium je hluboký spánek, kdy frekvence dýchání a srdce klesá o 20 - 30%, nastává úplná svalová relaxace. Tato fáze nastává za 10 - 30 minut od usnutí. V této fázi se tělo fyzicky zotavuje. Tato čtyři stádia trvají u dospělého jedince asi hodinu, proto se během 8 hodin spánku opakují 4 - 6x. Jeden cyklus uzavírá REM fáze spánku a pak nastane opakování fází. Celý tento cyklus (REM + NREM) trvá zhruba 90 minut [1].
9
1.2 Poruchy spánku V dnešní době je spánek přirovnán k základní fyziologické potřebě. Díky spánku se můţe celý organismus regenerovat. Samotný spánek ovlivňuje kvalitu ţivota. Dříve se poruchy spánku nebraly jako nemoci. V nynější době existuje diagnostika a léčba poruch spánku. Hledají se příčiny a konstatují se důsledky na zdraví člověka. V současné klasifikaci poruch spánku se poruchy dělí na krátkodobé, a to ty, které jsou způsobeny například psychickým vypětím, nepříjemným záţitkem, apod. Tyto poruchy se ovšem v medicíně nepovaţují za nemoc. U člověka se mohou vyskytnout váţnější poruchy, které se dělí do skupin [6]: Poruchy v délce spánku:
Hyposomnie - doba trvání spánku je kratší neţ obvykle
Hypersomnie-doba spánku je prodlouţena a je moţné usínání i ve dne. Dělí se na vlastní hypersomnii, kdy postiţený nejprve pociťuje, ţe usne a narkolepsii, kdy je usínání imperativní a postiţený cítí, ţe nemůţe spánek překonat
Insomnie - úplná nespavost
Poruchy v intenzitě spánku:
Hyposomnie
Hypersomnie
Termíny jsou stejné jako v předchozím bodě, ovšem v tomto případě jde o kvalitativní poruchu spánku Poruchy spánku při usínání:
Dysfilaxie - nadměrně rychlé usínání
Diskoimnesis - nemoţnost usnout, tedy doba usínání se nadměrně prodluţuje
Poruchy během spánku: Sonnambulismus - je to stav automatického jednání během spánku, na které si postiţený nepamatuje
Somnilogie - mluvení ze spaní
Noční děsy
Spánková obrna
Poruchy spánku při probouzení:
Pospánková obrna - postiţený je probuzen, ale nemůţe vstát
Spánková opilost - prodlouţené probuzení
Poruchy spánku z důvodu duševní poruchy
10
2
ELEKTROENCEFALOGRAFIE
Elektroencefalografie je neurologická diagnostická metoda, která zaznamenává elektrickou aktivitu mozku. Nervové buňky mezi sebou komunikují pomocí nabitých iontů a díky jejich aktivitě vzniká elektrický potenciál. Tyto potenciály následně snímáme pomocí elektrod na povrchu hlavy, nebo na povrchu mozkové kůry. Signál snímaný na povrchu hlavy je slabý, řády mikrovoltů, díky průchodu signálu přes měkké tkáně a lebku. Vyšetření EEG se pouţívá při podezření na epilepsii a poruchách spánku.
2.1 Vyšetření pomocí EEG Na samotné vyšetření pomocí EEG se pacienti nemusí předem připravovat. Jsou však určitá doporučení, které můţeme učinit. Doporučuje se umýt si vlasy, nepouţívat ovšem přípravky na úpravu vlasů. Pacient by neměl před vyšetřením uţít alkoholické nápoje. Měl by být dostatečně vyspaný. Nachystat si seznam uţívaných léků. V den vyšetření by neměl pacient pít nápoje, ve který je kofein nebo tein. Také by se neměly jíst potraviny, ve kterých se nachází glutamát sodný a neuţívat vitamín B. Před vyšetřením je doporučené se najíst i napít.
2.1.1 Snímání na povrchu mozkové kůry Snímání na povrchu mozkové kůry, neboli elektrokortikogram (= ECoG), se pouţívá při neurochirurgických zákrocích.
2.1.2 Snímání na povrchu hlavy Signál EEG je součtem všech elektrických dějů snímaných elektrodou. Pro umístění elektrod na povrchu lebky se pouţívá rozměřování, které vychází z definovaných výčnělků na lebce, a následném rozdělení všech vzdáleností po 10% a 20% - tedy systém „10 - 20“ [4]. Tento systém byl stanoven doktorem Herbertem Jasperem roku 1949 [5]. Tímto systémem je definováno umístění a názvy 19 základních elektrod. Snímání větším počtem elektrod umoţňuje systém“10 - 10“. Maximálně se na lebce můţe pouţít 128 elektrod a to se vyuţívá jen pro experimentální účely. Elektrody musí být nepolarizované. Tomu vyhovují vzácné kovy(zlacené elektrody), nebo se pouţívají elektrody stříbrné s vrstvou AgCl v kombinaci s roztoky sniţujícími přechodový odpor (gely, pasty). Elektrody se na lebku připevňují lepením pomocí kolodia nebo EEG pasty [4]. Na Obr. 1 je znázorněno rozmístění elektrod. Na schématu rozloţení vidíme písmena a čísla. Čísla lichá se nacházejí na levé hemisféře, sudá na pravé hemisféře. Elektrody ve střední čáře se označují písmenem „z“ (zero), tedy Fz, Cz, Pz a Oz. Písmena dále označují rozmístění elektrod podle oblastí hlavy. Jsou to: Fp – frontopolární F - frontální P - parietální
11
T - temporální O - okcipitální C – centrální Při snímání EEG se registrují rozdíly elektrických potenciálů mezi dvěma elektrodamivzniká EEG svod. Počet snímacích elektrod odpovídá mnoţství záznamových kanálů a způsobu snímání. Bipolární zapojení představuje snímání mezi dvěma aktivními elektrodami, unipolární (referenční) zapojení mezi aktivní a referenční elektrodou, která bývá umístěna například na ušním lalůčku. Získané křivky odráţí synchronní, rytmickou aktivitu velkého mnoţství korových neuronů. Podkladem jsou rozdílné změny membránového napětí na dendritech a tělech neuronů, které jsou dány součtem excitačních a inhibičních postsynaptických potenciálů [5].
Obr. 1 Rozmístění elektrod na povrchu mozku [1]
2.2 Charakteristiky EEG záznamu Při hodnocení EEG záznamu popisujeme následující parametry:
Frekvence:
Udává počet grafoelementů (vlnové tvary) za sekundu. Udává se v Hertzích. Podle frekvence se rozlišují frekvenční pásma (alfa, beta theta a delta).
Amplituda:
12
Udává výšku grafoelementů = výstupní voltáţ. Udává se v mikrovoltech. Měří se technikou peak – to - peak. Rozdělujeme ji na nízkou (<20 µV), střední (20-50 µV) a vysokou (>50 µV). Její přesné měření nemá téměř význam, protoţe je ovlivněné různými faktory.
Tvar:
Téţ morfologie. Dělí se pravidelný a nepravidelný. Pravidelnost se určuje podle symetričnosti vzestupné a sestupné fáze. Další dělení je na mono-, bi-, tri- a polyfázické. Dělení je zaloţeno na počtu protnutí myšlenou základní linií, kolem které se EEG křivka vyskytuje.
Výskyt v prostoru:
Výskyt v prostoru, dělí se na regionální a fokální.
Výskyt v čase:
Dělí s na kontinuální, epizodický, periodický a paraxyzmální.
Synchronie:
Současný výskyt určité aktivity. Je to časový vztah vln a vzorců.
Symetrie:
Výskyt aktivit stejného charakteru nad homologními místy obou polovin hlavy, souvisí s amplitudou.
Reaktvita:
Na určitý podnět.
Distribuce:
Elektroda nebo elektrody, ve kterých je EEG nejlépe zachycen. Dělí se na generalizovanou, difúzní, laterizovanou, fokální a regionální.
Rytmicita:
Dělí se na opakování vln rytmické a arytmické.
Perzistence:
Frekvence, se kterou se určitý EEG vzorec objevuje v delším úseku grafu. [3] [8]
2.2.1 Frekvenční pásma Vlny tvořící signál EEG jsou sinusoidního tvaru a rozdělují se podle frekvence měřené mezi minimy nebo maximy do pásem označovaných řeckými písmeny alfa, beta, delta a theta. Normální jsou vlny alfa a beta, vlny niţších frekvencí vyskytující se častěji se povaţují za patologické. Dělení pásem:
Alfa rytmus:
Tento rytmus se nachází v oblasti 8 - 13 Hz. Vyskytuje se u zdravých dospělých jedinců v bdělém stavu. Maximum se objevuje nad zadními kvadranty mozkových hemisfér. Nejlépe je tato aktivita viditelná při zavřených očích. Alfa rytmus je viditelný před usnutím.
13
Beta rytmus:
Je aktivita, která se nachází v oblasti 13 - 30 Hz. Najdeme ji hlavně u zdravých dospělých jedinců v bdělém stavu nad frontálními laloky. Rytmus beta nám ukazuje soustředění, logické myšlení, pocity (hněv, neklid a strach).
Delta rytmus:
Je to frekvence v oblasti 1 - 4 Hz. U dospělého jedince se fyziologicky objevuje jen při hlubokém NREM spánku, hypnóze a transu, v bdělém stavu je patologický. U novorozenců do čtyř měsíců je fyziologický.
Theta rytmus:
Nachází se v oblasti 4 - 8 Hz. U zdravého dospělého jedince je pouze v povrchních spánkových stádiích, v bdělém stavu je patologický. U dětí se vyskytuje normálně a fyziologický je i u dospělých při ospalosti [8].
Lambda rytmus:
Je u dětí mezi 2. – 15. rokem ţivota při otevřených očích - mizí při zavření očí [3].
2.3 Artefakty při EEG Jako chybu při EEG povaţujeme obrazy (výstupy), u kterých není zdrojem mozková aktivita. Takovéto chyby dělíme na chyby přístroje, chyby biologické a chyby vnějšího rušení.
2.3.1 Chyby přístroje Mezi chyby způsobené přístrojem můţeme zařadit chyby elektrod, které jsou nejčastější. Dále můţe být chyba způsobena špatným umístěním elektrod (čepice jsou univerzální, při nehomogenitách povrchu hlavy nemusí být čepice umístěna správně). Dále mohou být chyby v přenosových kabelech.
2.3.2 Chyby biologické Chyby způsobené pacientem dělíme na:
Pohybové:
Při chybách způsobených pohybem se chyby ukazují na všech referenčních elektrodách.
Svalové:
Jsou to většinou artefakty, které trvají krátce, mají ostrý tvar. Největší výskyt je díky svalový stahům – záškubům. Proto je potřeba, aby byl pacient co nejvíce zrelaxován.
Oční:
Oční artefakty vznikají díky pohybům očí, mrkání, slzení, třesení víček, apod. Vyskytují se především ve stádiu NREM1 (viz. 3.1).
14
Způsobené pocením:
Vznikají změnou koţního odporu nebo při změně elektrického potenciálu kůţe.
Způsobené srdeční činností:
Tyto chyby vznikají u pacientů obézních, pacientů s malým krkem, nebo pokud jsou elektrody umístěny v blízkosti lalůčků.
Způsobené otoringolaryngokologickými činnostmi:
Jsou to chyby způsobené ţvýkáním, mluvením, kašlem a polykáním.
Způsobené tepovou činností:
Jsou způsobeny špatným umístěním elektrod v okolí cév.
2.3.3 Chyby vnějšího rušení Jsou to artefakty způsobené okolím pacienta a přístroje. Jsou to například chyby způsobené elektromagnetickým polem. Nejčastěji jsou to chyby způsobené impedancemi elektrod, kde se indukují různá napětí. Indiference je poté smíšena s biologickými signály a zesílena. Další artefakty mohou vznikat díky střídavému elektrickému proudu (50 Hz). Jsou to například zvonění telefonů, upozornění počítačů a jiné signalizace a upozornění a změna stavu osvětlení.
15
3
SPÁNKOVÉ EEG – POLYSOMNOGRAFIE
Polysomnografické vyšetření je základní metodou v diagnostice poruch spánku. Umoţňuje rozlišení spánku a bdění, jednotlivých fází spánku i příčin probuzení ze spánku. Skládá se ze tří základních modalit: EEG, EOG, EMG. Podle charakteru spánkové poruchy se monitorují i další funkce, například pulzní oxymetrie, respirační pohyby hrudníku, EKG, průtok vzduchu nosem a ústy. Vyšetření se provádí ve spánkové laboratoři v průběhu celé noci. Pomocí vyšetření můţeme sestavit hypnogram (graf, který zobrazuje sled jednotlivých fází), ve kterém se posuzuje architektura spánku. Polysomnografie je indikována v případě důvodného klinického podezření na syndrom spánkové apnoe nebo pohybové spánkové poruchy [9].
3.1 Postup vyšetření Polysomnografie se provádí v upravené místnosti, která je zvukově i světelně izolována. Samotný přístroj se skládá z čidel a elektrod, počítače a zesilovače. Počítač slouţí k řízení celého vyšetření, vyhodnocení výsledků a následné archivaci. Průběh vyšetření je následující. Pacient je uloţen a jsou na něho aplikovány elektrody ke snímání EEG, EOG a EMG. Takto uloţen a nachystán ke spánku je mezi 22:00 – 23:00. Měření probíhá po celou noc. Ráno se pacient budí mezi 6:00 - 7:00.
3.2 Hodnocení polysomnografického záznamu Při hodnocení záznamů hodnotíme spánková stádia po epochách. Epochy trvají 30 sekund. V epochách se hodnotí amplituda delta vln. Jelikoţ hodnocení dat nebylo jednotné, zavedlo se skórování dat podle dvou standardů. První standard je tzv. manuál Rechtschaffena a Kalese (R&K), který charakterizuje noční záznam. Tento standard se pouţívá nyní jen v několika státech. V ostatních se pouţívá standard American Academy of Sleep Medicine (AASM).
3.3 Hypnogram Hypnogramem rozumíme graf, který zobrazuje sled jednotlivých fází spánku po dobu osmi hodin. Podle hypnogramu lékař hodnotí epochy číslicemi - bdělost W = 0, NREM1 fáze = 1, NREM2 fáze = 2, NREM3 fáze = 3, REM fáze = 5, nezařazená fáze = 9. Hypnogramy se popisují podle R&K (Obr. 3) a AASM (Obr. 2) standardů.
16
Obr. 2 Hypnogram u AASM standardu [14]
Obr. 3 Hypnogram u R&K standardu [23]
3.4 Struktura spánku Spánek není homogenní, je proměnlivý. Můţeme ho popsat dvěma standardy zmíněnými v hodnocení spánkových fází.
3.4.1 Standard R&K Tento standard je rozdělen na následující fáze:
17
Bdělost (W)
Bdělost se pozná díky nízkému napětí (10 - 30 µV). Dělí se na relaxovanou a nerelaxovanou. Na EEG záznamech jsou vidět alfa vlny při zavřených očích, moţné je i rozlišení vln beta. Na EMG jsou při nerelaxované bdělosti vidět vysoké aktivity, jejich intenzita kolísá podle aktivace mimických svalů. Na EOG pozorujeme rychlé nebo ţádné pohyby očí.
NREM1 (S1)
Fáze NREM1 je ve spánku moţné zaznamenat během usínání. Na EOG při této fázi můţeme vidět pomalé oční pohyby, na EMG jsou zjevné svalové aktivity při niţší intenzitě a rychlé svalové záškuby. Na EEG je viditelná mozková aktivita díky křivce s nízkými amplitudami (50 - 70 µV). Alfa rytmus se zpomaluje a mění se na nerozpoznatelné vlny a občasné theta vlny. Fáze trvá kolem 6 - 10 minut.
NREM2 (S2)
NREM2, neboli lehký spánek je polovinou celkové doby spánku, tedy kolem 320 minut. Na EOG nevidíme ţádnou aktivitu. EMG ukazuje tonickou aktivitu. Na EEG je viditelná zpomalená mozková činnost. Převládají tady vlny theta s nízkou a středně nízkou amplitudou. Ve fázi se navíc objevují spánková vřetena (12 - 14 Hz) a Kkomplexy, coţ jsou vlny, které trvají déle neţ 0,5 s. Díky amplitudě a tvaru Kkomplexů jsou v záznamu dobře rozlišitelné a vyskytují se aţ 3x za tuto fázi.
NREM3 (S3)
Fáze NREM3 se označuje jako fáze hlubokého spánku. Nejvíce jsou zde vidět vlny theta, pomalé vlny delta a spánková vřetena s K-komplexy.
NREM4 (S4)
Tato fáze je fází nejhlubšího spánku. Je podobná NREM3 s rozdílem, ţe u ní dochází k úplnému uvolnění svalstva. EEG záznam ukazuje výskyt delta vln a spánková vřetena s K-komplexy se objevují uţ jen zřídka. S fází NREM3 trvá dohromady okolo 120 - 130 minut.
REM
Ve fázi REM je spánek doprovázen rychlými očními pohyby. REM trvá zhruba 160 minut. U této fáze je charakteristické nízké napětí. Na EEG najdeme vlny theta, alfa a pilovité vlny s frekvencí 2 - 4 Hz. Nevyskytují se tu spánková vřetena a K-komplexy. EMG ukazuje krátké záškuby. Na EOG jsou viditelné nepatrné a rychlé oční pohyby všemi směry.
MT
MT, neboli movement time, je tzv. epocha pohybových artefaktů, která se neklasifikuje jako spánek ani bdění díky blokování zesilovače nebo svalové činnosti. V R&K standardu tedy nalézáme určité omezení a to bylo důvodem vyvinutí metody AASM
18
Obr. 4 EEG záznam fází spánku podle R&K standardu rozdělený na W, S1, S2, S3, S4 a REM fázi [13]
3.4.2 Standard AASM Standard AASM je podobný R&K, liší se ovšem tím, ţe nemá fázi MT a fáze NREM1, 2, 3 a 4 se značí NREM1 (N1), NREM2 (N2), NREM3 a 4 (N3). Bdělost a REM fáze nejsou změněny.
19
4 AUTOMATICKÁ DETEKCE SPÁNKOVÝCH FÁZÍ Automatickou detekci spánkových fází můţeme rozdělit na tři části, a to na předzpracování, analýzu a klasifikaci.
4.1 Předzpracování EEG Předzpracování je prvním krokem úpravy dat. Úkolem předzpracování je odstranění veškerých neţádoucích sloţek (šum, artefakty), které jsou přítomny v EEG záznamu, nebo naopak zvýraznění uţitečných sloţek.
4.1.1 Filtrace Filtrace je první úpravou signálu před začátkem zpracování. Slouţí k potlačení veškerých sloţek, které vnímáme jako rušivé. Jelikoţ pracujeme s biologickým signálem, musíme potlačit například síťové rušení o frekvenci 50 Hz, pocení pacienta, svalové artefakty i špatné signály z elektrod. Filtry musí být navrţeny tak, aby byly z výpočetního hlediska kvalitní a zároveň rychlé. Pro filtraci pouţíváme číslicové filtry, které dělíme podle délky impulzní odezvy (konečná a nekonečná odezva) a podle struktury (rekurzivní a nerekurzivní). U filtrace biologického signálu se nejčastěji pouţívá FIR filtr, protoţe fázová charakteristika filtru musí být vţdy lineární.
4.1.2 Segmentace Segmentace je dalším typem předzpracování, v němţ se signál rozdělí na kratší úseky, které povaţujeme za stacionární. Slouţí k odstranění artefaktů a následné analýze signálu. Segmentaci dělíme na adaptivní a konstantní, ve které se pouţívá konstantní délka segmentů, díky níţ mají segmenty stejnou délku a stejný počet vzorků. Výhodou konstantní segmentace je jednoduché pouţití a nízká výpočetní náročnost, výhodou adaptivní segmentace je proměnlivost délky segmentu. Délka se mění podle charakteristiky a přizpůsobuje se okamţitému stavu signálu. Výsledný signál je rozdělený na segmenty s podobnými vlastnostmi.
4.2 Analýza EEG Analýza je druhý krok zpracování EEG signálu. Pomocí různých metod můţeme vyuţít potřebné informace ze signálu. Díky těmto metodám můţeme určit parametry EEG, které nám pomohou v automatické detekci spánkových stádií. Analýzu dělíme na časovou, frekvenční, časově - frekvenční a nelineární.
20
4.2.1 Spektrální analýza deterministických signálů Pojem spektrum signálu v této kapitole budeme chápat jako výsledek Fourierovy transformace. Představme si tedy, ţe signál je směs komplexních harmonických sloţek. Reálný signál je poté ve frekvenční oblasti reprezentován oboustranným spektrem, které má symetrický modul kolem 0 a antisymetrickou fázi. O tom se můţeme přesvědčit, pokud spojitý harmonický signál napíšeme ve tvaru [24]:
(
)
(1)
,
kde ω0 je kmitočet, A je amplituda a φ představuje fázi. Takovému signálu pak odpovídá dvojice spektrálních čar na kmitočtech ω0 a - ω0 o velikosti A/2 a fázi ±φ. Pro diskrétní signály vţdy platí, ţe jejich spektra jsou periodická s periodou ωvz. Poté můţeme diskrétní harmonický signál vyjádřit [24]: ( )
(
)
(
)
(
)
(2)
kde pro libovolné celé k>0 dostaneme shodnou posloupnost s0(n). V tabulce Tab. 1 vidíme vlastnosti spekter a jejich výpočet pro jednotlivé spojité a diskrétní signály.
Tab. 1 Vlastnosti spekter a jejich výpočet
Časová oblast
Spojité signály
Diskrétní signály
Periodické
Neperiodické
Periodické
Neperiodické
Spektrum
Diskrétní, neperiodické
Spojité, neperiodické
Diskrétní, periodické
Spojité, periodické
Výpočet spektra
Fourierova řada
Integrální Fourierova transformace
Diskrétní Fourierova transformace
DTFT
Pokud máme diskrétní, nekonečně dlouhý harmonický signál, tak spektrum počítáme z konečného počtu vzorků (N). Potom je tedy nekonečně dlouhý signál vynásoben oknem o N vzorcích. V ideálním případě úsek periodického diskrétního signálu po diskrétní FT (DFT) obsahuje celistvý počet period. Ve většině případů však spíše očekáváme, ţe úsek signálu po DFT obsahuje necelý počet period [24]. Výsledné spektrum je závislé na délce a typu okna v časové oblasti. Ve sloţení spektra mohou vzniknout zdánlivé sloţky, které ve skutečnosti v harmonickém signálu nejsou. Proto je signál rozdělen na menší realizace a toto rozdělení je provedeno jako součin původního signálu s určitým typem časového okna. Okna mohou být typu:
21
Obdélníkové okno Pouţívá se nejčastěji a je nejjednodušší. Při hranách nejsou ţádné modifikace, spektrum je roztáhnuté a amplituda spektra pro hlavní frekvenci je velmi zkreslená. Trojúhelníkové okno Je podobné na obdélníkové okno Cosinusové okno Okno tvoří skupinu několika oken, která jsou od sebe odlišná pouze v parametru (α), který udává mocninu cosinové funkce. Okno Hanning Okno vyuţívá trigonometrickou funkci cosinus, která má na krajích hodnotu blízkou 0. Okno Hamming Je to modifikované okno Hannig. Modifikace je pomocí dvou koeficientů a to –α a β. Z α (udává mocninu cosinové funkce) vypočítáme β. Okno Blackman Proti oknům Hannig a Hamming, kde jsou pouze 2 koeficienty, jsou u tohoto okna z mnoha koeficientů, kde ţádný nesmí být 0. Čím více koeficientů, tím lepší výsledky můţeme získat. Okno Flat top Toto okno je navrhnuté pro maximální přesnost při zjišťování amplitudy signálu. Zaviní ale velké rozmazání spektra. Délka okna je charakterizovaná počtem vzorků. Volba délky časového okna ovlivňuje frekvenční rozlišovací schopnost přímo úměrně [24]:
(3)
kde N je počet vzorků, T je perioda a fvz je vzorkovací frekvence. Časovou rozlišovací schopnost ovlivňuje nepřímo úměrně[24]: (4)
Posun časového okna můţe být bez překrytí nebo s překrytím. Překrývání můţe být např. polovinou, třetinou, dvěma třetinami délky okna. Volba typu časového okna ovlivňuje prosakování a následně i dynamické rozlišení, tedy ovlivňuje rozlišovací schopnost ve spektru.
22
4.2.2 Spektrální analýza stochastických signálů Při spektrální analýze stacionárních stochastických signálů jde o výpočet výkonového spektra signálu (pomocí DFT) a jeho následnou analýzu. Je to transformace signálu z časové do kmitočtové oblasti. Tak je tato analýza lépe proveditelná. Ztratíme tak informaci o čase a proto má tato analýza smysl jen pro procesy stacionární nebo ergodické. Pro výpočet spekter pomocí DFT pouţíváme hlavně dvě metody, a to metodu periodogramu a metodu korelogramu. Odhad spektra metodou periodogramu Je to nejsnadnější způsob pro zjištění výkonového spektra. Určujeme ho jako střední hodnotu kvadrátů spekter jednotlivých realizací [24]: ( )
( )
{
( )}
{ |
( )| }
∑
|
( )|
(5)
kde Xw je M změřených realizací, kaţdá o délce N. Z nich určíme kvadrát spektra |Xw(k)|2 a ten potom zprůměrujeme. Výkonové spektrum je funkce deterministická, ale fázové spektrum kaţdé realizace je náhodné, proto nemá smysl je průměrovat. Průměrováním tedy sniţujeme rozptyl odhadu výkonového spektra [24]. Jestliţe je signál ergodický, jeho výkonové spektrum lze odhadnout pouze z jedné realizace. To se dělá tak, ţe je signál délky N rozdělen na M úseků, které mají délku N=N´/M. Z kaţdého takového úseku je poté vypočítáno spektrum a výsledky jsou zprůměrovány. Tímto způsobem dojde ke zmenšení rozlišovací schopnosti, protoţe pro výpočet jednotlivých spekter pouţíváme menší počet vzorků, neţ má celý měřený signál. Proto se před výpočtem pouţívá váhování některým z oken (zmíněné výše), aby se zmenšilo prosakování. Odhad spektra metodou korelogramu Pro výpočet výkonového spektra se tu pouţívá Wiener - Chinčinův teorém. Ten dává do souvislosti funkci náhodného procesu rxx(τ) s jeho výkonovým spektrem Sxx(k) [24]: ( )
*
( )+
∑
(6)
( )
kde rxx(τ) je funkce deterministická a symetrická kolem středu. Výkonové spektrum je také funkce deterministická, reálná. Pro ergodické procesy počítáme autokorelační funkci z jedné změřené realizace. Výpočet v sobě zahrnuje průměrování a výsledné spektrum má tedy menší rozptyl. Odhad autokorelační funkce je pro velké hodnoty τ hodně nepřesný, protoţe do průměru vstupuje málo hodnot. Proto se před výpočtem výkonového spektra provádí odříznutí několika posledních hodnot rxx(τ).
4.2.3 Analýza EEG v časové oblasti Analýzou EEG v časové oblasti můţeme zobrazit mozkovou aktivitu a závislosti na čase. Pro popis analýzy pouţíváme různé veličiny, jsou to [22] [21] [18]:
23
Střední hodnota (7)
∑
Směrodatná odchylka √
∑(
)
(8)
)
(9)
Rozptyl ∑(
Signál EEG je soubor hodnot označený
, kde je hodnota i v intervalu 1 aţ n.
Efektivní hodnota
(10)
√ ∑
U efektivní hodnoty je n počet hodnot
měřeného signálu x,
je i-tá hodnota
signálu x. Koeficient šikmosti a špičatosti – oba vychází z centrálního empirického momentu Mk
∑(
(11)
)
24
Koeficient špičatosti - charakterizuje rozdělení náhodné veličiny (12)
Koeficient šikmosti – je charakteristickým rozdělením pravděpodobnosti náhodné veličiny. Nulová šikmost naznačuje, ţe náhodné veličiny jsou rovnoměrně rozděleny vlevo a vpravo od střední hodnoty. Kladná šikmost ukazuje, ţe vpravo od průměru se vyskytují odlehlejší hodnoty neţ vlevo od průměru. U záporné šikmosti je tomu přesně naopak. (13)
√
Koeficient korelace ( )
∑
(
)
(14)
( )
R(τ) je celý vektor korelačních koeficientů, τ je hledaná hodnota zpoţdění v signálu. Koeficient koherence - koherence udává míru lineární závislosti mezi dvěma signály jako funkce frekvence. Určuje se pomocí dvou autospekter a vzájemného spektra ze vztahu ( )
|
( )| ( ) ( )
(15)
V tomto případě 0 odpovídá nejmenší míře přesnosti a 1 maximální míře přesnosti vzájemné spektrální hustoty. je vzájemné spektrum signálu, a jsou autospektra. Dále pro analýzu pouţíváme Hjorthovy deskriptory, mezi ně patří aktivita, mobilita a sloţitost, které jsou vypočítány ze signálu pomocí první a druhé derivace a rozptylu. Aktivita (16)
25
Mobilita (17)
Složitost √( )
(18)
( )
je v tomto případě rozptyl signálu a
je rozptyl i-té derivace gignálu.
4.2.4 Analýza EEG ve frekvenční oblasti Základní metoda zpracování EEG signálu je spektrální analýza. Díky spektrální analýze nám umoţňuje určit spektrum a spektrální výkonovou hustotu signálu. Matematicky se spektrální analýza udělá pomocí transformace, kde je časovému průběhu přiřazeno spektrum. Fourierova transformace FT, neboli Fourierova transformace se pouţívá pro převod signálu z časové osy do frekvenční oblasti a zpět. FT nám určuje spektrum spojitého signálu se spojitým časem. FT je vyjádřena pomocí vztahu [18]
( )
* ( )+
(19)
∫ ( )
Ve vztahu platí, ţe ( ) je u fourierovy transformace spektrum analogového signálu, * ( )+ je Fourierova transformace časově závislé funkce ( ), ω je kmitočet. U časově - frekvenční analýzy EEG signálu nám určuje zastoupení jednotlivých frekvencí ve spektru signálu. FT vyjadřuje obraz signálu pomocí ortogonálních bázových funkcí. Transformace pomocí integrálu ukáţe signál v prostoru s bází ve formě harmonických funkcí. Díky tomu můţeme získat popis signálu jako závislost amplitudy a fáze na frekvenci. DFT je vyjádřena vztahem [18]
* +
{
∑
(20)
}
26
T je v tomto případě vzorkovací perioda, n a k jsou celočíselné indexy, N je počet vzorků posloupnosti, F jsou komplexní spektrální koeficienty, Ώ je N-tina vzorkovacího kmitočtu. Problémem DFT je, ţe předpokládá, ţe signál je periodický, coţ u našeho signálu neplatí. Proto je potřeba pouţít metody pro zpracování neperiodického signálu, tedy krátkodobou FT (FFT) nebo vlnkovou transformaci.
4.2.5 Analýza EEG v časově - frekvenční oblasti Analýza EEG v časově - frekvenční oblasti je výhodná, kromě jednotlivých frekvenčních sloţek získáme i informaci o jejich výskytu v čase. Analýzu v časově frekvenční oblasti provádíme pomocí krátkodobé Fourierovy transformace a vlnkové transformace. Krátkodobá Fourierova transformace Krátkodobá FT, neboli diskrétní FT (STFT) je modifikace FT, která se pouţívá k popisu nestacionárních signálů ve frekvenční oblasti. Frekvenční koeficienty Fourierovy řady jsou periodické v ω s periodou ωz. ω představuje úhlovou frekvenci, ωz znamená úhlovou frekvenci, odpovídající vzorkovací frekvenci. Základní interval ve frekvenční oblasti, který se pouţívá, je interval (-ωvz/2; +ωvz/2). Zpracovávaný signál v číslicových obvodech má konečný počet hodnot. Zpracovávají se tedy konečné číselné posloupnosti a i frekvenční spektrum má konečný počet vzorků. V oblasti času i frekvence mají signály stejný počet vzorků N a při výpočtech přímé i zpětné transformace je povaţujeme za periodické, protoţe pracujeme s periodicky prodlouţenými signály ze základního intervalu [17]. DFT je přechodem mezi diskretním časovým signálem fn a diskretním frekvenčním signálem Fk. DFT je definována vztahem [21] [22] *
+
{
∑
(21)
}
Pro výpočet samotné krátkodobé Fourierovy trasformace (STFT) se pouţívá vztah [21] [22]
(
)
∫, ( )
(
(22)
)-
U STFT je w okénková funkce, * je komplexní konjugace, τ je časové posunutí okénka, ( ) je časově - frekvenční reprezentace. x(t) je časová reprezentace signálu a
27
Vlnková transformace Vlnková transformace je prostředek časově - frekvenční analýzy, který se pouţívá jako časově - frekvenční popis signálu. Vlnková transformace, nebo-li WT, je základním matematickým prostředkem pro analýzu nestacionárních signálů. Odstraňuje nevýhodu všech metod časově - frekvenční analýzy zaloţených na Fourierově transformaci (FT), které pouţívají harmonických, časově neomezených, bázových funkcí. Při FT je zapotřebí velký počet harmonických sloţek pro vyjádření strmých přechodů v čase. Naproti tomu, bázovými funkcemi WT jsou časově omezené průběhy, tzv. vlnky, generované časovou dilatací z jediného vzorku. Hodnoty spektra u WT jsou ovlivněny daným úsekem analyzovaného signálu, coţ je základní vlastností WT. Celý rozsah analyzovaného signálu pokrývají vlnky s nenulovými hodnotami po částech [18] [20]. WT se dělí na spojitou a diskrétní. Pro spojitou platí vztah
(
)
∫ ( )
√
(
(23)
)
U spojité vlnkové transformace je ( ) analyzovaný signál, b je časový posun, a je dilatace (měřítko) mateřské vlnky ψ(t). Důleţitým parametrem u vlnkové transformace je typ vlnky, mezi nejpouţívanější patří Haarova, Daubechies nebo Morlet [18]. Časově – frekvenční analýza nestacionárních signálů Při této analýze zjišťujeme spektra signálu z jeho krátkých segmentů. V našem případě máme signál EEG, který má nestacionární charakter, proto výpočty výkonových spekter uvedené výše můţeme pouţít jen na krátké stacionární úseky EEG. Postup u nestacionárních signálů je tedy následující. Musíme zjistit vývoj krátkodobého spektra signálu v čase. Tato metoda se jmenuje krátkodobá Fourierova transformace (STFT). STFT pracuje na následujícím principu [24]. Rozdělení signálu na segmenty o délce N, tyto segmenty se překrývají pro zlepšení časového rozlišení, Stanovení výkonového spektra z kaţdého segmentu, Uloţení jednotlivých spekter do matice, Zobrazení matice a její další analýza. Výsledkem je tedy spektrogram (matice spekter). U spektrogramu se často setkáváme s problémem volby délky okna. U spektrogramu je při volbě dlouhého okna horší rozlišení v časové oblasti. Proto je vhodné volit okno kratší. Kratším oknem se zhoršuje rozlišení ve frekvenční oblasti, protoţe toto rozlišení je nepřímo úměrné délce okna. Proto musíme zvolit kompromis. Před výpočtem spektra je také vhodné pouţít váhovací funkce pro omezení prosakování.
28
4.2.6 Analýza EEG pomocí nelineárních metod Analýza pomocí nelineárních metod je zaloţená na zásadách nelineární dynamiky a teorii chaosu. Podle této teorie jsou biologické signály výsledkem chaotických procesů. Proto mohou být tyto signály reprezentovány chaotickými parametry, do kterých zařazujeme Lyaponovy a Hurtovy exponenty, dimenzionální komplexnosti, entropie, fraktální dimenze, korelační dimenze. Některé studie ukazují, ţe jsou hodnoty chaotických parametrů závislé na spánkových fázích. Mohou být tedy pouţity jako jejich charakteristické vzorce. Teorie deterministického chaosu je zaloţena na nelineární dynamice. Nejvíce pouţívaná je korelační dimenze, která umoţňuje detekovat vzájemné nelineární spojení mezi komplexními systémy a je schopná kvantifikovat sílu a směr této dynamické závislosti [21].
29
5 SEZNÁMENÍ S DATABÁZÍ SKÓROVANÝCH SPÁNKOVÝCH EEG V bakalářské práci jsou pouţita data ze studie RELIEF, kterou poskytla spánková laboratoř Fakultní nemocnice u sv. Anny v Brně. Studie se týká léčby pacientů s farmakorezistentní hypertenzí metodou ablace (denervace) renálního sympatiku. Studie se týkala 53 pacientů, z nichţ pro bakalářskou práci bylo vyuţito prvních 5 záznamů od deseti pacientů. Polysomnografické vyšetření bylo u pacientů provedeno noc před zákrokem a poté šest měsíců po zákroku. Snímání EEG signálů bylo provedeno podle Obr. 5. Vzorkovací frekvence byla 256 Hz. Pouţil se systém rozmístění elektrod „10 - 20“ zmíněný v kapitole 2.1.2. Aby mohla být data zpracována v programu MATLAB (verze MATLABR2012b), musela být data převedena z původního formátu (EDF) na formát ASCII. Tento převod byl proveden pomocí konvertoru EDF-to-ASCII. Tento konvertor je volně dostupný na webové stránce uvedené v seznamu literatury [16].
Obr. 5 Rozmístění elektrod ve studiu RELIEF
V programovém prostředí MATLAB jsou signály načteny a uloţeny do souboru *.mat. Z celkového záznamu kaţdého pacienta byly vybrány 2 části, které byly uloţené do proměnných eeg - eeg5.mat, coţ odpovídá signálům CzOz, a faze - faze5.mat, ve kterých jsou hodnoty hypnogramu. Po spuštění programu tereza_krizenecka.m se vykreslí obrázky. Na Obr. 6 máme zobrazené hypnogramy od pěti pacientů vykreslené programem. Detail hypnogramů se nachází v Přílohy A.
30
Obr. 6 Hypnogramy pěti vybraných pacientů
Pomocí hypnogramu byl EEG signál rozdělen na skupiny odpovídající jednotlivým spánkovým fázím. Ukázky 30 sekundové epochy z kaţdé fáze můţeme vidět na Obr. 7
31
Výchylka [µV] Výchylka [µV] Výchylka [µV]
epocha N1 50 0 -50 5
10
15 čas [s] epocha N2
20
25
30
0
5
10
15 čas [s] epocha N3
20
25
30
0
5
10
15 čas [s] epocha REM
20
25
30
0
5
10
15 čas [s] epocha wake
20
25
30
0
5
10
15 čas [s]
20
25
30
50 0 -50
100 0 -100
Výchylka [µV] Výchylka [µV]
0
50 0 -50
50 0 -50
Obr. 7 Ukázky 30 sekundových epoch pro různé spánkové fáze jednoho pacienta
Výchylka [µV] Výchylka [µV] Výchylka [µV] Výchylka [µV] Výchylka [µV]
Na Obr.8 jsou vykresleny ukázky všech epoch sjednocených pro kaţdou fázi. spojene casti N1 50 0 -50 0
2000
4000
6000
8000 čas [s]
10000
12000
14000
16000
spojene casti N2 50 0 -50 0
1
2
3
4
5
6
7
čas [s]
4
x 10
spojene casti N3 50 0 -50 0
2000
4000
6000
8000
10000
12000
14000
čas [s] spojene casti REM 50 0 -50 0
500
1000
1500
2000
2500 čas [s]
3000
3500
4000
4500
1.2
1.4
1.6
1.8
5000
spojene casti wake 50 0 -50 0
0.2
0.4
0.6
0.8
1 čas [s]
Obr. 8 Zobrazení několika spojených epoch EEG pro jednotlivé fáze
32
2 4
x 10
Následně byl proveden výpočet spektrogramu a výkonového spektra. Výkonové spektrum bylo vypočítáno pomocí FFT a spektrogram pomocí STFT. Tyto dva výpočty byly provedeny pro následné zhodnocení, tedy pomocí porovnání těchto dvou metod by mělo být ukázáno, která metoda je vhodnější pro skórování dat v hypnogramu. V tuto chvíli je lékaři pouţívaná metoda výkonového spektra, avšak hodnocení pomocí spektrogramu by mělo být názornější například pro výskyt K-komplexů a spánkových vřeten. Také je předpokládáno, ţe se pomocí metody spektrogramu dá lépe určit přechod jednotlivých fází a vizualizace by měla pomoci ke snadnějšímu vyhodnocení výsledku. Pro výpočet spektrogramu bylo pouţito obdélníkové okno délky rovné vzorkovací frekvence, tedy 256 Hz, s nulovým překryvem oken. Dále byly vypočítány výkony jednotlivých fází z dat ze spektrogramu a výkonového spektra. Následovalo porovnání hodnot výkonů jednotlivých frekvenčních pásem v různých spánkových fázích vypočtených na základě spektrogramu a výkonového spektra. Zobrazení vypočtených hodnot bylo provedeno pomocí krabicových grafů (boxplotů). Příčemţ výkon ze spektrogamů byl poté zobrazen jako průměrná hodnota výkonu. Průměrná hodnota výkonu byla vypočítána z dat získných ze spektrogramu, přesněji kaţdý výkon byl získán tak, ţe se hodnota výkonu dané fáze jednoho frekvenčního pásma podělila sumou všech výkonů dané fáze kaţdého pásma. Pro ukázku při zobrazení byla zvolena pásma delta a beta od 1. a 5. pacienta, kde se předpokládá, ţe relativní výkonové spektrum daného pásma bude odlišné v jednotlivých fázích, jelikoţ delta by měla mít vyšší výkon ve fázích N2 a N3 a beta by měla mít vyšší výkon ve fázích WAKE, N1 a REM. Na následujících grafech jsou tedy vykresleny relativní výkony jednotlivých fází v daných pásmech. Pásmo alfa a theta je obsaţeno v Přílohy B. Relativní výkonové spektrum frekvencního pásma [%]
delta ze spektrogramu 150
100
50
0
-50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 9 Výkon pásma delta v jednotlivých fázích spánku získaný ze spektrogramu pro 1. pacienta
33
Relativní výkonové spektrum frekvencního pásma [%]
delta z FFT 150
100
50
0
-50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 10 Výkon pásma delta v jednotlivých fázích spánku získaný z výkonového spektra pro 1. pacienta
Relativní výkonové spektrum frekvencního pásma [%]
delta ze spektrogramu 150
100
50
0
-50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 11 Výkon pásma delta v jednotlivých fázích spánku získaný ze spektrogramu pro 5. pacienta
34
Relativní výkonové spektrum frekvencního pásma [%]
delta z FFT 150
100
50
0
-50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 12 Výkon pásma delta v jednotlivých fázích spánku získaný z výkonového spektra pro 5. pacienta
Relativní výkonové spektrum frekvencního pásma [%]
beta ze spektrogramu 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 13 Výkon pásma beta v jednotlivých fázích spánku získané ze spektrogramu pro 1. pacienta
35
Relativní výkonové spektrum frekvencního pásma [%]
beta z FFT 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 14 Výkon pásma beta v jednotlivých fázích spánku získané z výkonového spektra pro 1. pacienta
Relativní výkonové spektrum frekvencního pásma [%]
beta ze spektrogramu 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 15 Výkon pásma beta v jednotlivých fázích spánku získané ze spektrogramu pro 5. pacienta
36
Relativní výkonové spektrum frekvencního pásma [%]
beta z FFT 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 16 Výkon pásma beta v jednotlivých fázích spánku získané z výkonového spektra pro 5. pacienta
Pro ukázku byly zvoleny pásma delta a beta od 1. a 5. pacienta. Z boxplotů tedy můţeme vidět, ţe výsledné hodnoty výkonu pásem v jednotlivých fázích vykreslené pomocí výpočtu spektrogramu a výkonového spektra se téměř shoduje. Při vykreslení relativních výkonů jednotlivých fází v pásmu delta vidíme, ţe nejvyšší výkon má delta ve fázi N2 a N3, coţ odpovídá, jelikoţ pásmo delta se má nacházet v nejhlubším spánku, který je právě charakterizován fázemi N2 a N3. Pro automatickou detekci pomocí pouţitých algoritmů není metoda aţ tak výhodná, jelikoţ ţádný z boxplotů v jednotlivých fázích nijak výrazně nevybočuje z řady, tedy všechny se alespoň krátkou částí překrývají. Pokud by byly pouţity sofistikovanější algoritmy (například fuzzy logika), mohlo by dojít k lepším výsledkům klasifikace. V boxplotech je zřejmý trend narůstání hodnot v určitých fázích oproti ostatním, nýbrţ u daného pacienta (v našem případě pacienta 1 a 5) by se nedala očekávat stoprocentní úspěšnost detekce ani při pouţití sofistikovanějších algoritmů. Při vykreslení relativních výkonů jednotlivých fází v pásmu beta vidíme naopak nejvyšší výkony ve fázích WAKE, N1 a REM. To odpovídá, jelikoţ pásmo beta se u zdravého jedince má nacházet v bdělém stavu. Nejvíce by teda měla být patrná aktivita ve fázi WAKE, coţ odpovídá výsledkům. Opět tato analýza není nejvhodnější pro automatickou detekci, protoţe všechny fáze mají podobný výkon, tudíţ se překrývají. Následovalo zprůměrování výkonů ve fázích pro jednotlivá pásma. Výkony byly pouţity z výpočtu spektrogramů. Průměrování bylo provedeno ze všech pěti pacientských záznamů. V průměrných výkonech vidíme, ţe se neobjevuje ţádná výraznější aktivita. Výkony byly zobrazeny pomocí boxlotů. Jednotlivé boxploty občas ukazují menší nebo větší rozptyl, ale ve výsledku v nich není zaznamenána ţádná větší aktivita. Boxploty těchto výkonů jsou zobrazeny v Přílohy C (Chyba! Nenalezen zdroj odkazů., Obr. 18). Jako ukázka je pouţité pásmo delta a beta.
37
Vykon faze wake
Vykon[dB]
100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 17 čas[s] Vykon faze N1
18
19
20
21
22
23
24
25
26
27
28
29
30 delta ve wake
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 17 čas[s] Vykon faze N2
18
19
20
21
22
23
24
25
26
27
28
29
30
delta v n1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
delta v n2
17
18
19
20
21
22
23
24
25
26
27
28
29
30
delta v n3
17
18
19
20
21
22
23
24
25
26
27
28
29
30
delta v rem
Vykon[dB]
100 50 0
Vykon[dB]
100 50 0 16 čas[s] Vykon faze N3
Vykon[dB]
100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 čas[s]
Vykon faze REM
Vykon[dB]
100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 čas[s]
Obr. 17 Krabicové grafy průměrného výkonu delta v různých fázích – lepší čitelnost v příloze (viz. Obrázek 10)
Vykon faze wake
Vykon[dB]
100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 čas[s]
17
18
19
20
21
22
23
24
25
26
27
28
29
30
beta ve wake
17
18
19
20
21
22
23
24
25
26
27
28
29
30
beta v n1
17
18
19
20
21
22
23
24
25
26
27
28
29
30
beta v n2
17
18
19
20
21
22
23
24
25
26
27
28
29
30
beta v n3
18
19
20
21
22
23
24
25
26
27
28
29
30
beta v rem
Vykon faze N1
Vykon[dB]
100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 čas[s] Vykon faze N2
Vykon[dB]
100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 čas[s] Vykon faze N3
Vykon[dB]
100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 čas[s]
Vykon[dB]
Vykon faze REM 100 50 0 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
čas[s]
17
Obr. 18 Krabicové grafy průměrného výkonu delta v různých fázích - lepší čitelnost v příloze (viz. Obrázek 11)
V Obr. 17 a Obr. 18 vidíme pro kaţdou fázi 31 boxplotů, coţ znamená, ţe máme
38
zobrazeny průměrné výkony fází v epoše z dat ze spektrogramu s rozlíšením 1 sekunda a 31. boxplot nám ukazuje pásmo (delta – beta), které odpovídá datům z výkonového spektra. Při srovnání zobrazeného průměrného výkonu ze spektrogramu s výkonem z výkonového spektra není patrný větší rozdíl, tedy výkony jsou téměř shodné. Další část programu se věnuje zobrazení části signálu bez přechodu mezi jednotlivými fázemi a s přechodem. Přechod byl vybrán u kaţdého pacienta stejný, a to z N2 do WAKE, a bez přechodu fáze N2. Tedy, pomocí hypnogramu byly vybrány epochy, kde se předpokládá změna a epochy, kde se podle hypnogramu nic neděje. Tato epocha signálu byla vykreslena jako časový průběh signálu s přechodem a bez přechodu, dále byla data zobrazena ve spektrogramu a pro epochu s přechodem i bez přechodu byl vykreslen výkon těchto epoch. Data byla pouţita od pěti pacientů, kde byly od kaţdého vybrány dvě zajímavé epochy a porovnané s epochou bez přechodu. Na Obr. 19 byl zobrazen původní časový průběh, který nám ukazuje výchylku ve vybrané epoše s přechodem a bez přechodu. Na následující Obr. 20 jsou vykresleny spektrogramy vybraných epoch. Spektrogramy ostatních vybraných epoch jsou obsaţeny v Přílohy D. U spektrogramů je zobrazena závislost frekvence na čase a jednotlivé barevné zobrazení odpovídá amplitudě. Hodnoty barevné škály jsou ukázány pomocí colorbaru, který je umístěný vedle spektrogramu. Na Obr. 21a Obr. 22 jsou vykresleny výkonová spektra vybraných epoch. Toto zobrazení je v nynější době pouţíváno lékaři k vyhodnocení dat. Puvodni prubeh s prechodem mezi N2 a wake, 490. usek
Výchylka [µV]
100 50 0 -50 -100
0
1000
0
1000
2000
3000
2000
3000
4000 5000 6000 Vzorky Puvodni prubeh bez prechodu v N2, 450. usek
7000
8000
7000
8000
Výchylka [µV]
100 50 0 -50 -100
4000 Vzorky
5000
6000
Obr. 19 Časový průběh epochy bez přechodu (N2) a s přechodem (z N2 do WAKE) od 3. pacienta
39
Spektrogram vybraneho 490. useku (prechod z N2 do Wake) Frekvence (Hz)
20 100
0 -20
50
-40 -60
0
5
10
15 20 25 cas (s) Spektrogram vybraneho 450. useku ( bez prechodu N2)
100
0 -20 -40
50
-60 -80
0
5
10
15 cas (s)
20
25
Obr. 20 Spektrogram vybrané epochy s a bez přechodu od 3. pacienta
Vykon[dB] Vykon[dB]
50 0 -50
Vykon[dB]
Vykon delta v prechodu 50 0 -50
50 0 -50
Vykon[dB]
Frekvence (Hz)
20
50 0 -50
0
5
10
0
5
10
0
5
10
0
5
10
15 20 čas[s] Vykon theta v prechodu
25
30
15 20 čas[s] Vykon alfa v prechodu
25
30
15 20 čas[s] Vykon beta v prechodu
25
30
25
30
15 čas[s]
20
Obr. 21 Výkon v místě přechodu zobrazované části pro 3. pacienta
40
Vykon[dB] Vykon[dB]
50 0 -50
Vykon[dB]
50 0 -50
Vykon[dB]
Vykon delta bez prechodu 50 0 -50
50 0 -50
0
5
10
15 20 čas[s] Vykon theta bez prechodu
25
30
0
5
10
25
30
0
5
10
25
30
0
5
10
25
30
15 20 čas[s] Vykon alfa bez prechodu
15 20 čas[s] Vykon beta bez prechodu
15 čas[s]
20
Obr. 22 Výkon v místě bez přechodu zobrazované části pro 3. pacienta
Ve vykreslení časového průběhu vybraného úseku vidíme na horním obrázku část s přechodem, kde je kolem 17. sekundy (kolem 4350. vzorku) viditelná vyšší výchylka. Na spodním obrázku bychom měli mít výchylku téměř beze změny, ovšem kolem 6. sekundy vidíme menší výchylku. Tu můţeme přisuzovat K-komplexu. Zbytek epochy je dál téměř bez výchylky. Stejná část byla následně vykreslena i spektrogramem. V horním obrázku je opět viditelná část s přechodem, kde v první půlce epochy vidíme aktivitu pásma delta a theta (0 – 8 Hz), které jsou typické pro fázi N2. V druhé polovině vidíme spíše aktivitu pásma alfa a beta, které jsou typické s fází WAKE. Pomocí spektrogramu tedy můţeme potvrdit výskyt přechodu. V dolním obrázku vidíme aktivitu pásma delta a theta, tedy typické pro fázi N2. Je tam patrný i výskyt lokální změny, která se nedá posuzovat jako přechod do jiné fáze, spíše se jedná o jiţ zmíněný K-komplex. V Obr. 21 a Obr. 22 máme zobrazené výkonové spektrum pro analyzované části. V obrázku s přechodem i bez přechodu jsou výkony téměř podobné. Proto se nedá přesně určit, který z nich je s přechodem a bez přechodu. Lépe je na tom tedy zobrazení ve spektrogramu, který i odpovídá datům z hypnogramu. Jako další ukázka byl vybrán úsek od 5. pacienta, ve kterém je vidět lépe úsek bez přechodu. Tedy výchylka je tam minimální.
41
Puvodni prubeh s prechodem mezi N2 a wake, 797. usek
Výchylka [µV]
100 50 0 -50 -100
0
1000
0
1000
2000
3000
2000
3000
4000 5000 6000 Vzorky Puvodni prubeh bez prechodu v N2, 250. usek
7000
8000
7000
8000
Výchylka [µV]
100 50 0 -50 -100
4000 Vzorky
5000
6000
Obr. 23 Časový průběh části bez přechodu (N2) a s přechodem (z N2 do WAKE) od 5. pacienta Spektrogram vybraneho 797. useku (prechod z N2 do Wake)
Frekvence (Hz)
20 100
-20 -40
50
-60 0
Frekvence (Hz)
0
-80 5
10
15 20 25 cas (s) Spektrogram vybraneho 250. useku ( bez prechodu N2) 0
100
-20 50
-40 -60
0
5
10
15 cas (s)
20
25
Obr. 24 Spektrogram vybrané epochy s a bez přechodu od 5. pacienta
42
Vykon[dB] Vykon[dB]
50 0 -50
Vykon[dB]
50 0 -50
Vykon[dB]
Vykon delta v prechodu 50 0 -50
50 0 -50
0
5
10
0
5
10
0
5
10
0
5
10
15 20 čas[s] Vykon theta v prechodu
25
30
15 20 čas[s] Vykon alfa v prechodu
25
30
15 20 čas[s] Vykon beta v prechodu
25
30
25
30
15 čas[s]
20
Obr. 25 Výkon v místě přechodu zobrazované části pro 5. pacienta
Vykon[dB] Vykon[dB]
50 0 -50
Vykon[dB]
50 0 -50
Vykon[dB]
Vykon delta bez prechodu 50 0 -50
50 0 -50
0
5
10
15 20 čas[s] Vykon theta bez prechodu
25
30
0
5
10
25
30
0
5
10
25
30
0
5
10
25
30
15 20 čas[s] Vykon alfa bez prechodu
15 20 čas[s] Vykon beta bez prechodu
15 čas[s]
20
Obr. 26 Výkon v místě bez přechodu zobrazované části pro 5. pacienta Znovu tedy vidíme, ţe v časovém průběhu epochy s přechodem se nachází výchylka, která se potvrzuje i ve spektrogramu, kde je patrný přechod fází. A naopak v části bez přechodu je vidět minimální výchylka, kterou ukazuje i spektrogram. Výkonové spektrum však ţádné výchylky nezaznamenává, jen minimální, coţ opět není vhodné pro správnou detekci.
43
6
STATISTICKÁ ANALÝZA
Úkolem statistické analýzy bylo stanovení vhodných parametrů k automatické klasifikaci nebo analýze. Pomocí programového prostředí MATLAB byla vypočítána výkonová spektra. Ta se vypočítala Fourierovou transformací. Dostali jsme tedy hodnoty výkonů jednotlivých pásem v jednotlivých fázích. Tyto hodnoty byly dále zpracovány statistickými testy. Hodnoty byly vykresleny pomocí boxplotů, které jsou zobrazeny např. na Obr. 27. Relativní výkonové spektrum frekven?ního pásma [%]
delta z FFT 150
100
50
0
-50
wake
N1
N2 Spánkové fáze
N3
REM
Obr. 27 Výkon frekvenčního pásma delta v jednotlivých fázích pro 1. pacienta
Následně byla pomocí programu STATISTICA (verze a programového prostředí MATLAB provedena analýza.
STATISTICA
12)
6.1 Analýza pro každého pacienta Prvním krokem v analýze dat pro kaţdého pacienta zvlášť byl test normality. V testu byl pouţit Kolmogorovův-Smirnovův (K-S) test normality a Lillieforsův test normality. Na Obr. 28 a Obr. 29 jsou zobrazeny výsledky (výsledky testů včetně histogramů), kde hodnoty splňovaly i nesplňovaly podmínku normality. Proto byl následně zvolen neparametrický test. Pokud by ovšem všechny parametry splňovaly podmínku normality, pouţila by se parametrická ANOVA. Pro ověření normality byl v našem případě vybrán první pacient, u kterého bylo testováno pásmo alfa. Pro ukázku jsou zobrazeny fáze N3 a N2, přičemţ u N3 byl splněn test normality, zatím co u N2 test splněn nebyl. Tedy nebyla splněna podmínka normality u všech parametrů ve všech fázích a z toho vyplívá, ţe musel být pouţit neparametrický test.
44
Histogram: n2 K-S d=.05176, p> .20; Lilliefors p<.05 Očekávané normální 160 140
Počet pozor.
120 100 80 60 40 20 0 -4
-3
-2
-1
0
1
2
3
4
x <= hranice kategorie
Obr. 28 Test normality - příklad nesplnění normality, tedy p>0.05 Histogram: n3 K-S d=.10059, p<.20 ; Lilliefors p<.01 Očekávané normální 40 35
Počet pozor.
30 25 20 15 10 5 0 -2
-1
0
1
2
3
4
5
6
7
x <= hranice kategorie
Obr. 29 Test normality - příklad splnění normality, tedy p<0.05
45
8
Neparametrický test byl zhotoven v programu MATLAB. Byl vybrán Kruskal-Wallisův test a následně multcompare test (Tukey test). Výsledkem těchto testů je tabulka podobnosti. Kruskal – Wallisův test, je test shody mediánů. Je zaloţen na pořadí pozorovaných hodnot. Pouţívá se, pokud se předpokládá nesplnění normálního rozloţení. Je to tedy neparametrická metoda, u které je menší nevýhodou citlivost. V testu se testuje nulová hypotéza, která předpokládá shodu mediánů u jednotlivých skupin. Testuje se proti alternativní hypotéze, u které se alespoň jedna z dvojic mediánů nerovná. Výsledkem je p-hodnota, která rozhoduje o platnosti či neptaltnosti nulové hypotézy. Pokud nám v testu vyjde hodnota p<0,05, pak nulovou hypotézu zamítáme, platí tedy alternativní hypotéza. O takové výsledku říkáme, ţe je statisticky významný. Pokud je p>0,05, pak je statisticky nevýznamný [25]. V Tab. 2 vidíme výsledky analýzy. První dva sloupce odpovídají pořadí jednotlivých skupin, v našem případě tedy jednotlivým fázím (kde 1=WAKE, 2=N1, 3=N2, 4=N3, 5=REM). V dalších sloupečcích čísla ukazují, ţe střední hodnota 1.skupiny mínus průměr ze 2.skupiny se odhaduje na hodnoty, které jsou zobrazeny ve 4.sloupci, a 95% interval spolehlivosti pro rozdíl dvou porovnávaných skupin je dán 3.a 5. sloupcem, tedy v případě prvního řádku Tab. 2 se porovnávají skupiny 1 a 2, tedy fáze WAKE a fáze N1, střední hodnota se odhaduje na 59,6969832 a interval spolehlivosti je roven [-12,21478 131,608746]. Pokud interval mezi 3. a 5. sloupcem neobsahuje 0, pak je rozdíl statistický významný na hladině 0.05. Pokud obsahuje 0, je statisticky nevýznamný. Pokud by tedy byly shrnuty výsledky z Tab. 2, pak můţeme říct, ţe u pěti porovnání jsou statisticky nevýznamné rozdíly (v tabulce jsou zvýrazněny tučně) a u zbylých pěti jsou rozdíly statistický významné. Tab. 2 Porovnání relativního výkonu pásma delta v jednotlivých fázích 1 1 1 1 2 2 2 3 3 4
2 3 4 5 3 4 5 4 5 5
-12.21478 -285.24214 -517.581592 -597.514784 -340.722526 -573.891136 -656.624318 -281.498815 -372.304556 -156.544949
59.6969832 -223.099498 -441.158661 -166.306202 -282.796481 -500.855644 -226.003185 -218.059163 56.7932961 274.852459
131.608746 -160.956856 -364.735729 264.902381 -224.870436 -427.820151 204.617949 -154.619511 485.891149 706.249867
Při srovnání zobrazených boxplotů na Obr. 27 s hodnotami v Tab. 2 je dokázáno, ţe hodnoty významnosti rozdílů se shodují s mediány v boxplotech. Tedy konkrétně například u srovnání fáze WAKE a N1, kde mediány obou fází ukazují podobnou hodnotu relativního výkonu se srovnání potvrzuje i v Tab. 2, která ukazuje, ţe srovnání fáze WAKE a N1 má statisticky nevýznamný rozdíl. Proto pouţití výkonového spektra pro automatickou detekci není vhodné, jelikoţ se nedá s přesností určit jakákoli fáze. Pomocí programu STATISTICA mohly být tedy učené všechny fáze u všech pásem pro kaţdého pacienta vhodné pro automatickou detekci, zobrazeno v Tab. 3.
46
Tab. 3 Fáze vhodné pro automatickou detekci u všech pacientů
alfa beta delta theta
Pacient1 N3 W,N1,N2,N3 W,N1,N3 W
Pacient2 N2,N3 N2,N3 W W
Pacient3 N1 N1, N2 N1, N2
Pacient4 W,N3,R W,N2, N3,R W,R W,N2,N3,R
Pacient5 W, N1 W,N2,N3,R W W,N1,N2,N3,R
Pokud bychom chtěli určit, která fáze se můţe detekovat u kteréhokoli pacienta v určitém pásmu, musely by se v daném pásmu zobrazovat jednotlivé fáze u všech pacientů. Z Tab. 3 je patrné, ţe tato podmínka není splněna ani u jednoho pásma.
6.2
Analýza pro všechny pacienty
Při analýze dat pro všechny pacienty dohromady byla vytvořena matice pro kaţdé pásmo. Tedy jedna matice obsahuje všechny fáze daného pásma od všech pacientů. Pro tyto data byl opět vyhotoven test normality. Test se skládal z K-S. testu normality, Lilleforsova testu normality a z Shapiro Wilkova testu normality. V testu nám vyšlo, ţe pásmo alfa ve všech testovaných fázích nesplňuje test normality. Pro ukázku jsou zobrazeny testy pásma alfa, konkrétně fáze N1 a N2.
47
Histogram: n3 K-S d=.02047, p> .20; Lilliefors p> .20 Očekávané normální 450 400 350
Počet pozor.
300 250 200 150 100 50 0 5
10
15
20
25
30
x <= hranice kategorie
Obr. 30 Test normality - příklad nesplnění podmínky normality u N3 v pásmu alfa Histogram: n2 K-S d=.06415, p<.01 ; Lilliefors p<.01 Shapiro-Wilk W=.97993, p=.00000 900 800 700
Počet pozor.
600 500 400 300 200 100 0 -8
-6
-4
-2
0
2
4
x <= hranice kategorie
Obr. 31 Test normality - příklad nesplnění normality
48
6
8
Jelikoţ test normality určil, ţe jsou nesplněné podmínky, musel být opět pouţit neparametrický test, stejný jako u testování kaţdého pacienta zvlášť. Tab. 4 Porovnání jednotlivých fází pro pásmo alfa u všech pacientů 1 1 1 1 2 2 2 3 3 4
2 3 4 5 3 4 5 4 5 5
-238.83809 -173.965081 -1221.43052 379.15915 -115.773546 -1161.14037 441.425231 -1153.92386 437.427685 1412.337
-66.9355776 -39.8330963 -1042.50994 636.185303 27.1024813 -975.57436 703.120881 -1002.67684 676.0184 1678.69524
104.966934 94.2988884 -863.589354 893.211456 169.978509 -790.008347 964.816531 -851.429822 914.609114 1945.05349
Pokud bychom porovnali data z Tab. 4, zjistíme, ţe pouze 3 rozdíly jsou statisticky nevýznamné a 7 je statisticky významných. Z toho tedy vyplívá, ţe 7 porovnání by mohlo být pouţito pro automatickou detekci. Tab. 5 Fáze vhodné pro automatickou detekci v jednotlivých pásmech s daty od všech pacientů alfa beta delta theta
W,N1,N2,N3,REM W,N1,N2,N3,REM W,N1,REM W,N2,N3,REM
V případě sloučení jednotlivých pásem od všech pacientů bylo podle programu STATISTICA vyhodnoceno, ţe u kaţdého pásma můţeme automaticky detekovat fázi WAKE a REM. Ostatní se nevyskytovali ve všech pásmech.
49
7
ZÁVĚR
Tato bakalářská práce se zabývá analýzou spánkových EEG. První část byla věnována literární rešerši. Rešerše byla rozdělena do několika kapitol. První kapitola se zabývala spánkem samotným, fázemi spánku a poruchami spánku. V druhé kapitole je zmíněná samotná elektroencefalografie. V této kapitole jsou vysvětlena snímání na povrchu hlavy a na povrchu mozkové kůry, dále jsou v kapitole uvedeny charakteristiky EEG a artefakty při snímání EEG. Ve třetí kapitole je popsáno spánkové EEG, tedy postup vyšetření, hodnocení záznamů a skórování pomocí R&K a AASM standardů. Čtvrtá kapitola byla věnována automatické detekci spánkových fází, ve které byla zmíněna analýza v časové oblasti, ve frekvenční oblasti, v časově - frekvenční oblasti a analýza podle nelineárních metod. V páté kapitole jsme se seznámili s databází, pouţitou pro tuto bakalářskou práci. Dále byly v kapitole uvedeny výsledky práce v prostředí MATLAB. Pomocí hypnorgamu byl záznam rozdělen na jednotlivé spánkové fáze. Tyto fáze byly vykresleny jako ukázky jedné epochy a ukázky všechny sjednocených epoch pro kaţdou fázi. Následně byl proveden výpočet spektrogramu a výkonového spektra, díky kterým byly vykresleny boxploty výkonů pro pásma delta a beta ve všech fázích. V dalším kroku byly zprůměrovány výkony ve fázích pro jednotlivá pásma, výkony byly pouţity ze spektrogramů. Vykreslené byly pomocí boxplotů. Následně byla vybrána epocha, která znázorňuje přechod fází a epocha, která je bez přechodu. Vybraná epocha byla vykreslena pomocí časového průběhu, spektrogramu a výkonového spektra. Vykreslením těchto metod bylo dokázáno, ţe hodnocení podle spektrogramu ukazuje lepší výsledky neţ hodnocení pomocí výkonového spektra. Spektrogram je názornější, lépe ukazuje přechody jednotlivých fází i výskyt abnormalit. Také jsou na něm pozorovatelné lokální změny, jako jsou například K-komplexy a spánková vřetena. Následně byla provedena statistická analýza, kde byly porovnány hodnoty výkonového spektra s hodnotami vypočítanými pomocí statistických metod. Data nejprve musela být testována pomocí testu normality. V testu bylo zjištěno, ţe některá data nesplňují test normality, proto byla následně pouţita neparametrická metoda testování. Neparametrický test byl Kruskal-Wallisův test a multcompare (post hoc) test, který nám vyhodnotil statistickou významnost rozdílů. Při porovnání statistického testu a zobrazení boxplotů pomocí výkonového spektra bylo ukázáno, ţe v některých pásmech některých fází byly statisticky významné rozdíly. Proto by byla moţná detekce fází u jednotlivých pásem, u kterých se ukázaly statisticky významné rozdíly. Nejvhodnější fáze pro odlišení se jeví fáze WAKE, jelikoţ je moţné ji automaticky detekovat v nejvíce případech, naopak nejméně fáze REM. Pokud bychom porovnali jednotlivé pacienty, můţeme říct, ţe nejzajímavější jsou detekce u pacienta číslo 3, u nějţ se vůbec nevyskytují fáze REM a N3. V opačném případě, nejlépe detekovatelný je pacient číslo 4, který má velkou moţnost detekce fází v jednotlivých pásmech. V případě analýzy dal pro všechny pacienty dohromady je nejlepší pro odlišení fáze WAKE a REM, které se dají automaticky detekovat u všech pásem, naopak N1, N2 a N3 nejsou detekovatelné ve všech případech. Pro úspěšnější klasifikaci by bylo moţné pouţít větší mnoţství pacientů, dále vypočítat další parametry, nebo odvodit parametry z jiných typů PSG signálu.
50
8
LITERATURA
[1] HŮSKOVÁ, Jitka a Petra KAŠNÁ. Ošetřovatelství-ošetřovatelské postupy pro zdravotnické asistenty. 1. vyd. Praha: Grada Publishing a.s., 2009. ISBN 978-802-4728544. [2] MOUREK, Jindřich. Fyziologie: učebnice pro studenty zdravotnických oborů. 2., dopl. vyd. Praha: Grada, 2012, 222 s. Sestra (Grada). ISBN 978-802-4739-182. [3] POKORNÝ, Jan, (nedatováno). http://fbmi.cvut.cz/files/nodes/657/public/EEG.pdf .
Načteno
z
[4] ROZMAN, Jiří. Elektronické přístroje v lékařství. Vyd. 1. Praha: Academia, 2006, 406 s., xxiv s. barev. obr. příl. Česká matice technická (Academia). ISBN 80-2001308-3. [5] NOVÁKOVÁ, Zuzana a Robert ROMAN. Praktická cvičení z fyziologie. 1. vyd. Brno: Masarykova univerzita, 2011, 118 s. ISBN 978-80-210-4391-6. [6] DUŠEK, Karel a Alena VEČEŘOVÁ-PROCHÁZKOVÁ. První pomoc v psychiatrii. Vyd. 1. Praha: Grada, 2005, 170 s. ISBN 80-247-0197-9. [7] SPRIGGS, William H. Essentials of polysomnography: a training guide and reference for sleep technicians. Second edition. Texas: World Headquarters, x, 385 pages. ISBN 978-1-284-03027-3. [8] JAN, Jiří. Číslicové zpracování a analýza signálů: stručné skriptum. Brno: MJ servis Brno, s.r.o., 2010, 138 s. ISBN 978-80-214-4018-0. [9] LUKÁŠ, Karel a Aleš ŢÁK. Chorobné znaky a příznaky 2: 35 vybraných znaků, příznaků a některých důležitých laboratorních ukazatelů v 32 kapitolách s prologem a epilogem. 1. vyd. Praha: Grada, 2011, 328 s. ISBN 978-802-4737-287. [10] S RNMO, Leif a Pablo LAGUNA. Bioelectrical signal processing in cardiac and neurological applications. Boston: Elsevier Academic Press, c2005, xiii, 668 p. ISBN 01-243-7552-9. [11] MOSER, Doris et al. Sleep classification according to AASM and Rechtschaffen & Kales: Effects on Sleep Scoring Parameters. Sleep. 2009, č. 32, s. 139-149. ISSN 1550-9109. [12] NEVŠÍMALOVÁ, Soňa a Karel ŠONKA. Poruchy spánku a bdění. Praha: MAXDORF, 1997, 256 s. Jesenius. ISBN 80-858-0037-3. [13] SCHLAFMEDIZIN, Deutsche Gesellschaft für Schlafforschung und a Hrsg. von Hartmut SCHULZ. Kompendium Schlafmedizin: für Ausbildung, Klinik und Praxis. 9. Ergänzungslieferung, März 2006. Landsberg/Lech: Ecomed, 1997. ISBN 36-097-66603. [14] LEGAULT, Glenn. Sleep and Heat Related Changes in the Cognitive Performance of Underground Miners: A Possible Health and Safety Concern. ISBN 10.3390/min1010049.
51
[15] Sleep Disorders: For Patients And Their Families [online]. [cit. 2014-11-26]. Dostupné z: http://www.lakesidepress.com/pulmonary/Sleep/OSA.htm [16] KEMP, Bob. EDF-to-ASCII converter. Ver. 2004, Leiden. Počítačový program na převod signálů z EDF formátu do ASCII. 518 kB. Dostupné z http://www.edfplus.info/ [17] GERLA, Václav. ékar a technika: záznamů. 2008. ISBN 0301-5491.
etody zpracování dlouhodobých EEG
[18] JAN, Jiří. Číslicová filtrace, analýza a restaurace signálů. 2. upr. a rozš. vyd. Brno: VUTIUM, 2002, 427 s. ISBN 80-214-2911-9. [19] KRAJČA, Vladimír a Jitka MOHYLOVÁ. Číslicové zpracování neurofyziologických signálů. 1. vyd. V Praze: České vysoké učení technické, 2011, 168 s. ISBN 978-80-01-04721-7. [20] KOZUMPLÍK, J. Multitaktní systémy. Elektronická skripta. Brno: FEKT VUT, 2005. [21] RONZHINA, M. JANOUŠEK, O. KOLÁŘOVÁ, J. NOVÁKOVÁ, M. HONZÍK, P. PROVAZNÍK, I.: Sleep scoring using artificial neural networks. Sleep Medicine Reviews. 2012, vol. 16, issue 3, s. 251-263. DOI: 10.1016/j.smrv.2011.06.003. [cit. 2014-12-4] Dostupné z URL: http://linkinghub.elsevier.com/retrieve/pii/S1087079211000700 [22] VURAL, Cabir a Murat YILDIZ. Determination of Sleep Stage Separation Ability of Features Extracted from EEG Signals Using Principle Component Analysis. Journal of Medical Systems. 2010, vol. 34, issue 1, s. 83-89. DOI: 10.1007/s10916-0089218-9. [cit. 2014-12-4] Dostupné z URL: http://link.springer.com/10.1007/s10916008-9218-9 [23] Http://www.pouparmelhor.com/category/teorias/ [online]. [cit. 2014-12-29]. Dostupné z: http://www.pouparmelhor.com/category/teorias/ [24] KOZUMPLÍK, Jiří, Jiří JAN a Radim KOLÁŘ. Číslicové zpracování signálů v prostředí atlab. Vyd. 1. Brno: Vysoké učení technické, Fakulta elektrotechniky a informatiky, Ústav biomedicínského inţenýrství, 2001, 72 s. ISBN 80-214-1964-4. [25] PAVLÍK, T. DUŠEK, L.: Biostatistika. Vyd. 1. Brno: Akademické nakladatelství CERM, 2012, 131 s. ISBN 978-80-7204-782-6
52
SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK PSG
polysomnografické vyšetření
REM rapid eye movement NREM non rapid eye movemnt EEG
elektroencefalografie
EOG elektrookulografie EMG elektromyografie EKG elektrokardiografie R&K metoda Rechtschaffena a Kalese AASM standard American Academy of Sleep Medicine Hz
hertz
MT
movement time
FT
Fourierova transformace
DTF
diskrétní Fourierova trasformace
FFT
krátkodobá Fourierova trasformace
WT
wavelet transform
53
SEZNAM OBRÁZKŮ Obr. 1 Rozmístění elektrod na povrchu mozku [1] ........................................................ 12 Obr. 2 Hypnogram u AASM standardu [14] .................................................................. 17 Obr. 3 Hypnogram u R&K standardu [23] ..................................................................... 17 Obr. 4 EEG záznam fází spánku podle R&K standardu rozdělený na W, S1, S2, S3, S4 a REM fázi [13] .............................................................................................. 19 Obr. 5 Rozmístění elektrod ve studiu RELIEF ............................................................... 30 Obr. 6 Hypnogramy pěti vybraných pacientů ................................................................ 31 Obr. 7 Ukázky 30 sekundových epoch pro různé spánkové fáze jednoho pacienta ...... 32 Obr. 8 Zobrazení několika spojených epoch EEG pro jednotlivé fáze ........................... 32 Obr. 9 Výkon pásma delta v jednotlivých fázích spánku získaný ze spektrogramu pro 1. pacienta ........................................................................................................ 33 Obr. 10 Výkon pásma delta v jednotlivých fázích spánku získaný z výkonového spektra pro 1. pacienta ............................................................................................. 34 Obr. 11 Výkon pásma delta v jednotlivých fázích spánku získaný ze spektrogramu pro 5. pacienta .................................................................................................... 34 Obr. 12 Výkon pásma delta v jednotlivých fázích spánku získaný z výkonového spektra pro 5. pacienta .......................................................................................... 35 Obr. 13 Výkon pásma beta v jednotlivých fázích spánku získané ze spektrogramu pro 1. pacienta ........................................................................................................ 35 Obr. 14 Výkon pásma beta v jednotlivých fázích spánku získané z výkonového spektra pro 1. pacienta ........................................................................................ 36 Obr. 15 Výkon pásma beta v jednotlivých fázích spánku získané ze spektrogramu pro 5. pacienta .................................................................................................... 36 Obr. 16 Výkon pásma beta v jednotlivých fázích spánku získané z výkonového spektra pro 5. pacienta ........................................................................................ 37 Obr. 17 Krabicové grafy průměrného výkonu delta v různých fázích – lepší čitelnost v příloze (viz. Obrázek 10) ............................................................................. 38 Obr. 18 Krabicové grafy průměrného výkonu delta v různých fázích - lepší čitelnost v příloze (viz. Obrázek 11) .......................................................................... 38 Obr. 19 Časový průběh epochy bez přechodu (N2) a s přechodem (z N2 do WAKE) od 3. pacienta .................................................................................................... 39 Obr. 20 Spektrogram vybrané epochy s a bez přechodu od 3. pacienta ......................... 40 Obr. 21 Výkon v místě přechodu zobrazované části pro 3. pacienta .............................. 40 Obr. 22 Výkon v místě bez přechodu zobrazované části pro 3. pacienta ....................... 41
54
Obr. 23 Časový průběh části bez přechodu (N2) a s přechodem (z N2 do WAKE) od 5. pacienta ........................................................................................................ 42 Obr. 24 Spektrogram vybrané epochy s a bez přechodu od 5. pacienta ......................... 42 Obr. 25 Výkon v místě přechodu zobrazované části pro 5. pacienta .............................. 43 Obr. 26 Výkon v místě bez přechodu zobrazované části pro 5. pacienta ...................... 43 Obr. 27 Výkon frekvenčního pásma delta v jednotlivých fázích pro 1. pacienta ........... 44 Obr. 28 Test normality - příklad nesplnění normality, tedy p>0.05 ............................... 45 Obr. 29 Test normality - příklad splnění normality, tedy p<0.05 ................................... 45 Obr. 30 Test normality - příklad nesplnění podmínky normality u N3 v pásmu alfa ..... 48 Obr. 31 Test normality - příklad nesplnění normality .................................................... 48
55
9
PŘÍLOHY
PŘÍLOHY A V příloze A jsou zobrazeny detaily jednotlivých hypnogramů. hypnogram
w ake
REM
N1
N2
N3
unscored
100
200
300
400 cas [s]
500
600
Obrázek 1 Hypnogram 1. pacienta
56
700
800
hypnogram2
w ake
REM
N1
N2
N3
unscored
100
200
300
400 cas [s]
500
600
700
800
Obrázek 2 Hypnogram 2. pacienta hypnogram3
w ake
REM
N1
N2
N3
unscored
100
200
300
400
500 cas [s]
600
700
Obrázek 3 Hypnogram 3. pacienta
57
800
900
1000
hypnogram4
w ake
REM
N1
N2
N3
unscored
100
200
300
400 cas [s]
500
600
700
800
Obrázek 4 Hypnoram 4. pacienta hypnogram5
w ake
REM
N1
N2
N3
unscored
100
200
300
400 500 cas [s]
600
Obrázek 5 Hypnogram 5. pacienta
58
700
800
PŘÍLOHY B Příloha B obsahuje boxploty theta a alfa ze spektrogramu a výkonového spektra. Relativní výkonové spektrum frekvencního pásma [%]
theta ze spektrogramu 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obrázek 6 Výkon theta ve všech fázích z dat ze spektrogramu Relativní výkonové spektrum frekvencního pásma [%]
theta z FFT 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obrázek 7 Výkon theta ve všech fázích z dat z výkonového spektra
59
Relativní výkonové spektrum frekvencního pásma [%]
alfa ze spektrogramu 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obrázek 8 Výkon alfa ve všech fázích z dat ze spektrogramu Relativní výkonové spektrum frekvencního pásma [%]
alfa z FFT 50 40 30 20 10 0 -10 -20 -30 -40 -50
wake
N1
N2 Spánkové fáze
N3
REM
Obrázek 9 Výkon alfa ve všech fázích z dat z výkonového spektra
60
Obrázek 10 Krabicové grafy průměrného výkonu delta v různých fázích
Vykon[dB]
Vykon[dB]
Vykon[dB]
Vykon[dB]
61
Vykon[dB]
0
50
100
0
50
100
0
50
100
0
50
100
0
50
100
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
7
7
7
7
7
8
8
8
8
8
9
9
9
9
9
10
10
10
10
10
11
11
11
11
11
12
12
12
12
12
13
13
13
13
13
14
14
14
14
14
15
16 čas[s]
17
17 16 15 čas[s] Vykon faze REM
17 16 čas[s] Vykon faze N3
15
17 16 čas[s] Vykon faze N2
15
17 16 čas[s] faze N1 Vykon
15
Vykon faze wake
18
18
18
18
18
19
19
19
19
19
20
20
20
20
20
21
21
21
21
21
22
22
22
22
22
23
23
23
23
23
24
24
24
24
24
25
25
25
25
25
26
26
26
26
26
27
27
27
27
27
28
28
28
28
28
29
29
29
29
29
30delta v rem
30 delta v n3
30 delta v n2
30 delta v n1
30delta ve wake
PŘÍLOHY C
Obrázek 11 Krabicové grafy průměrného výkonu beta v různých fázích
62
PŘÍLOHY D Spektrogram vybraneho 734. useku (prechod z N2 do Wake) Frekvence (Hz)
40 20
100
0 -20
50
-40 0
-60 5
10
15 20 25 cas (s) Spektrogram vybraneho 710. useku ( bez prechodu N2)
Frekvence (Hz)
20 100
0 -20
50
-40 -60
0
5
10
15 cas (s)
20
25
Obrázek 12 Spektrogram od 1. pacienta
Frekvence (Hz)
Spektrogram vybraneho 733. useku (prechod z N2 do Wake) 20
100
0 -20 50
-40 -60
0
5
10
15 20 25 cas (s) Spektrogram vybraneho 710. useku ( bez prechodu N2)
Frekvence (Hz)
20 100
0 -20
50
-40 -60
0
5
10
15 cas (s)
20
25
Obrázek 13 Spektrogram od 1. pacienta
63
Spektrogram vybraneho 297. useku (prechod z N2 do Wake) Frekvence (Hz)
20 100
0 -20
50
0
-40 -60 5
10
15 20 25 cas (s) Spektrogram vybraneho 100. useku ( bez prechodu N2)
Frekvence (Hz)
20 100
0 -20
50
-40 -60
0
5
10
15 cas (s)
20
25
Obrázek 14 Spektrogram od 2. pacienta
Frekvence (Hz)
Spektrogram vybraneho 489. useku (prechod z N2 do Wake) 20
100
0 -20 50
-40 -60
0
5
10
15 20 25 cas (s) Spektrogram vybraneho 100. useku ( bez prechodu N2)
Frekvence (Hz)
20 100
0 -20
50
-40 -60
0
5
10
15 cas (s)
20
25
Obrázek 15 Spektrogram od 2. pacienta
64
Spektrogram vybraneho 192. useku (prechod z N2 do Wake) Frekvence (Hz)
20 100
0 -20
50
-40 -60
0
5
10
15 20 25 cas (s) Spektrogram vybraneho 450. useku ( bez prechodu N2)
Frekvence (Hz)
20 100
0 -20 -40
50
-60 0
-80 5
10
15 cas (s)
20
25
Obrázek 16 Spektrogram od 3. pacienta
Spektrogram vybraneho 797. useku (prechod z N2 do Wake) Frekvence (Hz)
20 100
-20 -40
50
-60 0
Frekvence (Hz)
0
-80 5
10
15 20 25 cas (s) Spektrogram vybraneho 250. useku ( bez prechodu N2) 0
100
-20 50
-40 -60
0
5
10
15 cas (s)
20
25
Obrázek 17 Spektrogram od 5. pacienta
65