STK 500 Pengantar Teori Statistika Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors Example 1: if we have a matrix A: A 2 4 4 -4
then
A I 2 4 1 0 4 -4 0 1 4 2 4 16 0 2- 4 -4 - or 2 2 24 0
which implies there are two roots or eigenvalues : =-6 and =4.
Eigenvalues and Eigenvectors For
a square matrix A, let I be a conformable identity matrix. Then the scalars satisfying the polynomial equation |A - I| = 0 are called the eigenvalues (or characteristic roots) of A. The equation |A - I| = 0 is called the characteristic equation or the determinantal equation.
Eigenvalues and Eigenvectors
For a matrix A with eigenvectors , a nonzero vector x such that Ax = x is called an eigenvector (or characteristic vector) of A associated with .
Example 1 if we have a matrix A:
A 2 4 4 -4
with eigenvalues = -6 and = 4, the eigenvector of A associated with = -6 is Ax x 2 4 x1 6 x1 4 -4 x 2 x 2 2x1 4x 2 6x1 8x1 4x 2 0 and 4x1 4x 2 6x 2 4x1 2x 2 0
Fixing x1=1 yields a solution for x2 of –2.
Example 1 Note that eigenvectors are usually normalized so they have unit length, i.e., e
x
x'x
For our previous example we have: e
x x'x
1 -2
1 1 -2 5 -2 5 1 1 -2 5 -2
Thus our arbitrary choice to fix x1=1 has no impact on the eigenvector associated with = -6.
Example 1 For matrix A and eigenvalue = 4, we have Ax x 2 4 x1 4 x1 4 -4 x 2 x 2 2x1 4x 2 4x1 2x1 4x 2 0 and 4x1 4x 2 4x 2 4x 1 8x 2 0
We again arbitrarily fix x1=1, which now yields a solution for x2 of 1/2.
Normalization of Eigenvectors Normalization to unit length yields
e
x x'x
1 1 2
1 1 2 5 1 1 11 4 2 2
1 1 2 2 5 1 5 5 2
Again our arbitrary choice to fix x1=1 has no impact on the eigenvector associated with = 4.
Example 2
Find the eigenvalues and corresponding eigenvectors for the matrix A. What is the dimension of the eigenspace of each eigenvalue? 2 1 0 A 0 2 0 0 0 2 Characteristic equation: 2 I A
Eigen value :
0 0 2
1 0 2 0 ( 2)3 0 0 2
Example 2 The eigenspace of λ = 2: 0 1 0 x1 0 ( I A)x 0 0 0 x2 0 0 0 0 x3 0 x1 s 1 0 x2 0 s 0 t 0 , s , t 0 x t 3 0 1
1 0 s 0 t 0 s , t R : the eigenspace of A corresponding to 2 0 1
Thus, the dimension of its eigenspace is 2.
Eigenvalues and Eigenvectors (1) If an eigenvalue 1 occurs as a multiple root (k times) for the characteristic polynominal, then 1 has multiplicity k. (2) The multiplicity of an eigenvalue is greater than or equal to the dimension of its eigen space.
Example 3 Find the eigenvalues and corresponding eigenspaces for 1 3 0 A 3 1 0 0 0 2
0 1 3 I A 3 1 0 ( 2)2 ( 4) 0 0 2 0 eigenvalues 1 4, 2 2 The eigenspaces for these two eigenvalues are as follows.
B1 {(1, 1, 0)}
Basis for 1 4
B2 {(1, 1, 0), (0, 0, 1)}
Basis for 2 2
Example 4 Find
the eigenvalues of the matrix A and find a basis for each of the corresponding eigenspaces 0 1 0 0 A 0 1 5 10 1 0 0 0 0 1 0 2 3 1 0 0 0 1 5 10 I A 1 0 2 0 Characteristic equation: 1
0
0
3
( 1) 2 ( 2)( 3) 0
Eigenvalues: 1 1, 2 2, 3 3 According to the note on the previous slide, the dimension of the eigenspace of λ1 = 1 is at most to be 2 For λ2 = 2 and λ3 = 3, the dimensions of their eigenspaces are at most to be 1
Example 4 0 0 (1) 1 1 (1 I A)x 1 1
0 0 0 x1 0 0 5 10 x2 0 0 1 0 x3 0 0 0 2 x4 0
0 2 x1 2t 0 2 x s 1 0 1 0 2 s t , s,t 0 0, 2 x3 2t 0 2 0 1 x t 0 1 4
is a basis for the eigenspace corresponding to 1 1
The dimension of the eigenspace of λ1 = 1 is 2
Example 4 1 0 (2) 2 2 (2 I A)x 1 1
0 0 0 x1 0 1 5 10 x2 0 0 0 0 0 x3 0 0 1 x4 0
x1 0 0 x 5t 5 2 t , t 0 x3 t 1 x4 0 0 0 5 is a basis for the eigenspace 1 corresponding to 2 2 0
The dimension of the eigenspace of λ2 = 2 is 1
Example 4 2 0 (3) 3 3 (3 I A)x 1 1
0 0 0 x1 0 2 5 10 x2 0 0 0 1 0 x3 0 0 0 x4 0
x1 0 0 x 5t 5 2 t , t 0 x3 0 0 x4 t 1 0 5 is a basis for the eigenspace 0 corresponding to 3 3 1
The dimension of the eigenspace of λ3 = 3 is 1
Eigenvalues and Eigenvectors Theorem 1. Eigenvalues for triangular matrices If A is an nn triangular matrix, then its eigenvalues are the entries on its main diagonal
Finding eigenvalues for triangular and diagonal matrices
2 0 0 (a) A 1 1 0 5 3 3
2 (a) I A
1 5
0 0 1 0 ( 2)( 1)( 3) 0 3 3
1 2, 2 1, 3 3
Eigenvalues and Eigenvectors
Finding eigenvalues for triangular and diagonal matrices 1 0 (b) A 0 0 0
0 2 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 3
(b) 1 1, 2 2, 3 0, 4 4, 5 3
Diagonalization Definition 1: A square matrix A is called diagonalizable if there exists an invertible matrix P such that P–1AP is a diagonal matrix (i.e., P diagonalizes A) Definition 2: A square matrix A is called diagonalizable if A is similar to a diagonal matrix
Diagonalization Theorem 2: Similar matrices have the same eigenvalues If A and B are similar nn matrices, then they have the same eigenvalues A and B are similar B P1AP
For any diagonal matrix in the form of D = λI, P–1DP = D
Considering the characteristic equation of B:
I B I P 1 AP P 1 IP P 1 AP P 1 ( I A) P P 1 I A P P 1 P I A P 1P I A I A Since A and B have the same characteristic equation, they are with the same eigenvalues
Example 5
Eigenvalue problems and diagonalization programs Characteristic equation: 1
I A 3 0
1 3 0 A 3 1 0 0 0 2
3 0 1 0 ( 4)( 2) 2 0 0 2
The eigenvalues : 1 4, 2 2, 3 2
1 (1) 4 the eigenvector p1 1 0
Example 5 (2) 2 the eigenvector
P [p1 p 2
If
P [p 2
1 0 p 2 1 , p3 0 0 1
1 1 0 4 0 0 p3 ] 1 1 0 , and P 1 AP 0 2 0 0 0 1 0 0 2 p1 p3 ]
1 1 0 2 0 0 1 1 0 P 1 AP 0 4 0 0 0 1 0 0 2 The above example can prove Thm. 2 numerically since the eigenvalues for both A and P–1AP are the same to be 4, –2, and –2 The reason why the matrix P is constructed with eigenvectors of A is demonstrated in Thm. 3 on the next slide
Diagonalization Theorem 3: An nn matrix A is diagonalizable if and only if it has n linearly independent eigenvectors Note that if there are n linearly independent eigenvectors, it does not imply that there are n distinct eigenvalues. It is possible to have only one eigenvalue with multiplicity n, and there are n linearly independent eigenvectors for this eigenvalue However, if there are n distinct eigenvalues, then there are n linearly independent eigenvectors and thus A must be diagonalizable
Since A is diagonalizable, there exists an invertible P s.t. D P 1 AP is diagonal. Let P [p1 p 2 p n ] and D diag (1 , 2 , , n ), then
()
1 0 0 2 PD [p1 p 2 pn ] 0 0 [1p1 2p 2 np n ]
0 0 n
Diagonalization AP PD (since D P 1 AP ) [ Ap1 Ap 2 Ap n ] [1p1 2p 2 Api i pi , i 1, 2,
np n ]
,n
(The above equations imply the column vectors pi of P are eigenvectors of A, and the diagonal entries i in D are eigenvalues of A)
Because A is diagonalizable P is invertible Columns in P, i.e., p1 , p 2 , , p n , are linearly independent (see p. 4.101 in the lecture note or p. 246 in the text book) Thus, A has n linearly independent eigenvectors
() Since A has n linearly independent eigenvectors p1 , p 2 , with corresponding eigenvalues 1 , 2 , n , then Let P [p1 p2 Api i pi , i 1, 2, , n
pn
pn ]
Diagonalization AP A[p1 p 2 [1p1 2p 2 [p1 p 2
Since p1 , p 2 ,
p n ] [ Ap1 Ap 2
Ap n ]
np n ] 1 0 0 2 pn ] 0 0
0 0 PD n
, p n are linearly independent
P is invertible (see p. 4.101 in the lecture note or p. 246 in the text book) AP PD P 1 AP D A is diagonalizable (according to the definition of the diagonalizable matrix on Slide 7.27)
Note that pi 's are linearly independent eigenvectors and the diagonal entries i in the resulting diagonalized D are eigenvalues of A
Example 6
A matrix that is not diagonalizable Show that the following matrix is not diagonalizable
1 2 A 0 1
1
2 I A ( 1)2 0 0 1 The eigenvalue 1 1, and then solve (1I A)x 0 for eigenvectors
Characteristic equation:
0 2 1 1I A I A eigenvector p1 0 0 0
Since A does not have two linearly independent eigenvectors,
A is not diagonalizable.
Diagonalization
Steps for diagonalizing an nn square matrix: Step 1: Find n linearly independent
eigenvectors
p1 , p2 ,
pn for A
with corresponding eigenvalues 1 , 2 , , n pn ] Step 2: Let P [p1 p2 Step 3: 1 0 0
0 P AP D 0 1
0 n
2 0
where Api i pi , i 1, 2,
,n
Example 6
Diagonalizing a matrix 1 1 1 A 1 3 1 3 1 1 Find a matrix P such that P 1 AP is diagonal.
Characteristic equation: 1
I A 1 3
1 1 3 1 ( 2)( 2)( 3) 0 1 1
The eigenvalues : 1 2, 2 2, 3 3
Example 6 1 1 1 1 0 1 G.-J. E. 1 2 1 I A 1 1 1 0 1 0 3 1 3 0 0 0 x1 t x 0 2 x3 t
2
1 eigenvector p1 0 1
1 1 0 14 3 1 G.-J. E. 1 2 2 I A 1 5 1 0 1 4 0 0 0 3 1 1 x1 14 t 1 x 1 t eigenvector p 1 2 2 4 x3 t 4
Example 6 2 1 1 1 0 1 0 1 1 G.-J. E. 3 3 3 I A 1 0 1 3 1 4 0 0 0 x1 t x t 2 x3 t P [p1
p2
2 P 1 AP 0 0
1 eigenvector p3 1 1
1 p3 ] 0 1 0 0 2 0 0 3
1 1 4
1 1 and it follows that 1
Diagonalization Note: a quick way to calculate Ak based on the diagonalization technique 1 0 0 2 (1) D 0 0
0 1k 0 0 k D n 0
(2) D P 1 AP D k P 1 AP P 1 AP
0
2k 0
P 1 AP P 1 Ak P
repeat k times
1k 0 k k 1 k A PD P , where D 0
0
2k 0
0 0 k n
0 0 k n
Diagonalization Theorem 4: Sufficient conditions for diagonalization If an nn matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and thus A is diagonalizable. Proof : Let λ1, λ2, …, λn be distinct eigenvalues and corresponding eigenvectors be x1, x2, …, xn. In addition, consider that the first m eigenvalues are linearly independent, but the first m+1 eigenvalues are linearly dependent, i.e., xm1 c1x1 c2 x2 cm xm , (1) where ci’s are not all zero. Multiplying both sides of Eq. (1) by A yields Axm1 Ac1x1 Ac2 x2 Acm xm
m1xm1 c11x1 c22 x2
cm m xm
(2)
Diagonalization On the other hand, multiplying both sides of Eq. (1) by λm+1 yields
m1xm1 c1m1x1 c2m1x2
cmm1xm
(3)
Now, subtracting Eq. (2) from Eq. (3) produces
c1 (m1 1 )x1 c2 (m1 2 )x2
cm (m1 m )xm =0
Since the first m eigenvectors are linearly independent, we can infer that all coefficients of this equation should be zero, i.e.,
c1 (m1 1 ) c2 (m1 2 )
cm (m1 m )=0
Because all the eigenvalues are distinct, it follows all ci’s equal to 0, which contradicts our assumption that xm+1 can be expressed as a linear combination of the first m eigenvectors. So, the set of n eigenvectors is linearly independent given n distinct eigenvalues, and according to Thm. 3, we can conclude that A is diagonalizable.
Example 7
Determining whether a matrix is diagonalizable 1 2 1 A 0 0 1 0 0 3
Because A is a triangular matrix, its eigenvalues are 1 1, 2 0, 3 3.
According to Thm. 4, because these three values are distinct, A is diagonalizable.
Symmetric Matrices and Orthogonal Diagonalization A square matrix A is symmetric if it is equal to its transpose: A AT
Example symmetric matrices and nonsymetric matrices 0 1 2 A 1 3 0 2 0 5 4 3 B 3 1 3 2 1 C 1 4 0 1 0 5
(symmetric) (symmetric) (nonsymmetric)
Symmetric Matrices and Orthogonal Diagonalization Thm 5: Eigenvalues of symmetric matrices If A is an nn symmetric matrix, then the following properties are true. a) A is diagonalizable (symmetric matrices are guaranteed to has n linearly independent eigenvectors and thus be diagonalizable). b) All eigenvalues of A are real numbers c) If is an eigenvalue of A with multiplicity k, then has k linearly independent eigenvectors. That is, the eigenspace of has dimension k. The above theorem is called the Real Spectral Theorem, and the set of eigenvalues of A is called the spectrum of A.
Example 8
Prove that a 2 × 2 symmetric matrix is diagonalizable. a c A c b
Proof: Characteristic equation: I A
a c
c 2 (a b) ab c 2 0 b
As a function in , this quadratic polynomial function has a nonnegative discriminant as follows (a b) 2 4(ab c 2 ) a 2 2ab b 2 4ab 4c 2 a 2 2ab b 2 4c 2 (a b) 2 4c 2 0
Example 8 (1) (a b) 2 4c 2 0 a b, c 0
a c a 0 A itself is a diagonal matrix. c b 0 a (2) (a b) 2 4c 2 0
The characteristic polynomial of A has two distinct real roots, which implies that A has two distinct real eigenvalues. According to Thm. 5, A is diagonalizable.
Symmetric Matrices and Orthogonal Diagonalization
Orthogonal matrix : A square matrix P is called orthogonal if it is invertible and P1 PT (or PPT PT P I )
Thm. 6: Properties of orthogonal matrices An nn matrix P is orthogonal if and only if its column vectors form an orthonormal set. Proof: Suppose the column vectors of P form an orthonormal set, i.e.,
P p1 p2
pn , where pi p j 0 for i j and pi pi 1.
p1T p1 p1T p 2 p1T p n p1 p1 p1 p 2 T T T p 2 p1 p 2 p 2 p p p p p p T 2 1 2 2 2 1 P P T T T p n p n p n p1 p n p 2 p n p1 p n p 2 It implies that P–1 = PT and thus P is orthogonal.
p1 p n p 2 p1 In pn pn
Example 9
Show that P is an orthogonal matrix. 13 2 P 5 2 3 5
2 3 1 5 4 3 5
0 5 3 5 2 3
If P is a orthogonal matrix, then P1 PT 2 2 1 2 2 1 3 1 5 3 5 3 3 3 T 1 2 1 4 PP 25 0 0 3 5 5 3 5 2 2 0 5 5 4 3 5 3 5 3 5 3 0 3 5
PPT I
0 0 1 0 I 0 1
Symmetric Matrices and Orthogonal Diagonalization 1 2 2 3 3 3 2 1 Moreover, let p1 5 , p 2 5 , and p3 0 , 2 4 5 3 5 3 5 3 5 we can produce p1 p 2 p1 p3 p 2 p3 0 and p1 p1
p 2 p 2 p3 p3 1. So, {p1 , p 2 , p3} is an orthonormal set. (Thm. 7.8 can be illustrated by this example.)
Symmetric Matrices and Orthogonal Diagonalization Thm. 7: Properties of symmetric matrices Let A be an nn symmetric matrix. If 1 and 2 are distinct eigenvalues of A, then their corresponding eigenvectors x1 and x2 are orthogonal. (Thm. 6 only states that eigenvectors corresponding to distinct eigenvalues are linearly independent
1 (x1 x2 ) (1x1 ) x2 ( Ax1 ) x2 ( Ax1 )T x2 (x1T AT )x2
Proof :
because A is symmetric
(x1T A)x2 x1T ( Ax2 ) x1T (2 x2 ) x1 (2 x2 ) 2 (x1 x2 )
The above equation implies (1 2 )(x1 x2 ) 0, and because
1 2 , it follows that x1 x2 0. So, x1 and x2 are orthogonal. For distinct eigenvalues of a symmetric matrix, their corresponding eigenvectors are orthogonal and thus linearly independent to each other Note that there may be multiple x1 and x2 corresponding to 1 and 2
Symmetric Matrices and Orthogonal Diagonalization A matrix A is orthogonally diagonalizable if there exists an orthogonal matrix P such that P–1AP = D is diagonal. Thm.8: Fundamental theorem of symmetric matrices Let A be an nn matrix. Then A is orthogonally diagonalizable and has real eigenvalues if and only if A is symmetric. Proof: () A is orthogonally diagonalizable D P 1 AP is diagonal, and P is an orthogonal matrix s.t. P 1 PT A PDP 1 PDPT AT ( PDPT )T ( PT )T DT PT PDPT A
() See the next two slides
Symmetric Matrices and Orthogonal Diagonalization Let A be an nn symmetric matrix. (1) Find all eigenvalues of A and determine the multiplicity of each. According to Thm. 7, eigenvectors corresponding to distinct eigenvalues are orthognoal (2) For each eigenvalue of multiplicity 1, choose a unit eigenvector. (3) For each eigenvalue of multiplicity k 2, find a set of k linearly independent eigenvectors. If this set {v1, v2, …, vk} is not orthonormal, apply the Gram-Schmidt orthonormalization process.
Symmetric Matrices and Orthogonal Diagonalization (4) The composite of steps (2) and (3) produces an orthonormal set of n eigenvectors. Use these orthonormal and thus linearly independent eigenvectors to form the columns of P. i. According to Thm. 7, the matrix P is orthogonal ii. Following the diagonalization process, D = P–1AP is diagonal iii. therefore, the matrix A is orthogonally diagonalizable
Example 10
Determining whether a matrix is orthogonally diagonalizable Symmetric Orthogonally matrix diagonalizable 1 1 1 A1 1 0 1 1 1 1
5 2 1 A2 2 1 8 1 8 0
3 2 0 A3 2 0 1 0 0 A4 0 2
Example 11
Orthogonal diagonalization Find an orthogonal matrix P that diagonalizes A. 2 A 2 2
2 2 1 4 4 1
Sol: (1) I A ( 3) 2 ( 6) 0 1 6, 2 3 (has a multiplicity of 2) v1 (2) 1 6, v1 (1, 2, 2) u1 ( 13 , v1
(3) 2 3, v2 (2, 1, 0), v3 (2, 0, 1)
2 3
,
2 3
)
Verify Thm. 7 that v1·v2 = v1·v3 = 0 Linearly independent but not orthogonal
Example 11 Gram-Schmidt Process:
v3 w 2 w 2 v 2 (2, 1, 0), w 3 v3 w 2 ( 52 , 54 , 1) w2 w2 w3 w2 2 1 u2 ( 5 , 5 , 0), u3 ( 325 , 3 45 , 3 55 ) w2 w3
Verify Thm. 7 that after the Gram-Schmidt orthonormalization process, i) w2 and w3 are eigenvectors of A corresponding to the eigenvalue of 3, and ii) v1·w2 = v1·w3 = 0 2 13 2 15 P3 5 23 0 u1 u2
2 3 5 4 3 5 5 3 5
u3
6 0 0 P 1 AP 0 3 0 0 0 3
Beberapa Teorema Akar Ciri dan Vektor Ciri Jika λ adalah akar ciri matriks A dengan vektor ciri padanannya x, maka untuk fungsi tertentu g(A) akan mempunyai akar ciri g(λ) dengan x vektor ciri padanannya. Kasus khusus : 1. Jika λ adalah akar ciri matriks A, maka c גadalah akar ciri matriks cA dengan c≠0 sebarang skalar Bukti : c A x = c λ x x vektor ciri padanan λ dari matriks A x vektor ciri padanan c λ dari matriks cA
Beberapa Teorema Akar Ciri dan Vektor Ciri 2. Jika גadalah akar ciri matriks A, dengan x vektor ciri padanannya, maka cג+k adalah akar ciri matriks (cA+kI) dengan x vektor ciri padanannya. Bukti : c A x + k x = c λ x + k x (c A + k I)x = (c λ + k) x (tidak dapat diperluas untuk A + B, dengan A , B sebarang matriks n x n ) 3. λ2 adalah akar ciri dari matriks A2 (dapat diperluas untuk Ak) Bukti : A x = λ x A(A x) = A(λ x ) A2 x= λ Ax= λ(λ x )= λ 2 x
Beberapa Teorema Akar Ciri dan Vektor Ciri 4. 1/ λ adalah akar dari matriks A-1 Bukti : A x = λ x A-1 (A x) = A-1(λ x ) x= λ A-1x A-1x = λ-1 x 5. Kasus (1) dan (2) dapat digunakan untuk mencari akar ciri dan vektor ciri dari polinomial A Contoh : (A3 + 4 A2 -3 A + 5 I ) x = A3x + 4 A2 x -3 Ax + 5 x = λ 3x + 4 λ 2 x -3 λ x + 5 x =(λ3 + 4λ 2 -3 λ + 5)x λ3 + 4 λ 2 -3 λ + 5 adalah akar ciri dari A3 + 4 A2 -3 A + 5 I dan x vektor ciri padanannya
Beberapa Teorema Akar Ciri dan Vektor Ciri Sifat (5) dapat diperluas untuk deret tak hingga. ☺ Misal : akar ciri A adalah λ, maka (1- λ) adalah akar ciri dari (I-A). ☺ Jika (I-A) nonsingular, maka (1- λ)-1 adalah akar ciri dari (I-A)-1 . ☺ Jika -1< λ <1, maka (1- λ)-1 =1+ λ + λ2 +.... ☺ Jika akar ciri A memenuhi -1< λ <1, maka (I-A)-1 .= I +A + A 2 +A 3 +....
Beberapa Teorema Akar Ciri dan Vektor Ciri 6. Jika matriks A berukuran (n x n) dengan akar ciri λ1, ..., λn maka a. ǀAǀ=∏ λi b. tr(A)=∑ λi Bukti : a11 a12 a13 a21 a31
a22 a23 0 a32 a33
(-λ) 3 + (-λ)2 tr1(A) +(-λ) tr2(A) + ǀAǀ=0 Dengan tri(A)= jumlah minor utama, tr1(A)= tr (A) tr2(A )=ǀa11 a22ǀ+ ǀa11 a33ǀ + ǀa22 a33 ǀ tr3(A )=ǀa11 a22 a33ǀ
Beberapa Teorema Akar Ciri dan Vektor Ciri Bukti (lanjutan): Secara umum (-λ)n +(-λ)n-1 tr1(A) +(-λ) n-2 tr2(A) + ... +(-λ)trn-1(A) +ǀAǀ=0 Jika λ1, ..., λn akar ciri dari persamaan tersebut maka (λ1-λ) (λ2-λ)... (λn-λ)=0 (-λ)n +(-λ)n-1 ∑ λi+(-λ) n-2 ∑i ≠j λi λj +...+ ∏ λi =0 Sehingga ∑ λi = tr(A) dan ∏ λi =ǀAǀ
Beberapa Teorema Akar Ciri dan Vektor Ciri ♪ Jika A dan B berukuran (n x n) atau A berukuran (n x p) dan B berukuran (p x n), maka akar ciri (tak nol) AB sama dengan akar ciri BA. Jika x vektor ciri AB, maka Bx vektor ciri BA ♪ Jika A berukuran (n x n), maka 1. Jika P (n x n) nonsingular, maka A dan P-1AP mempunyai akar ciri yang sama 2. Jika C (n x n) matriks ortogonal, A dan C’AC mempunyai akar ciri yang sama
Teorema Matriks Simetrik 1. a. Akar ciri λ1, ..., λn adalah real b.Vektor ciri x1, ..., xn bersifat ortogonal Bukti (1a): Ambil λ bilangan kompleks dengan x vektor ciri padanannya Jika λ= a+ib dan λ*= a-ib, x={xi}= a+ib dan x*={xi*}= a-ib Maka A x = λ x→ x*’ A x =x*’λx= λ x*’x dan A x* = λ*x* → x*’Ax = (Ax *)’x =(λ*x*)’ x=λ* x*’x Sehingga λ* x*’x = λ x*’x,dan x*’x≠0 adalah jumlah kuadrat → λ* = λ atau a+ib= a-ib berarti b=0
Teorema Matriks Simetrik Bukti (1b): Misalkan λ1 ≠ λ2 dengan vektor ciri x1≠x 2 dan A=A’, serta Ax k = λ x k λ1 x2’x1 = x2’ λ1 x1 = x2’ Ax 1 = x1’ A’x 2 = x1’ Ax 2 = x1’ λ2 x2 = λ2 x1’ x2 → λ1 , λ2 ≠0, maka x1’x 2 =0 (ortogonal) 2. A dapat dinyatakan sebagai A=CDC’ (dekomposisi spektral) dengan D adalah matriks diagonal dengan unsur diagonalnya λi dan C adalah matriks dengan unsur pada kolomnya x1 padanan akar ciri λi
Teorema Matriks Simetrik 3. Matriks (semi) definit positif a. Jika A definit positif, maka λi>0 untuk i=1,...,n b. Jika A semi definit positif, maka λi≥0 untuk i=1,...,n. Banyaknya akar ciri λi>0 sama dengan rank(A) Catatan : Jika A definit positif dapat ditentukan A½. Karena λi>0 maka pada dekomposisi spektral A= A½ A½ =(A½) 2 A = (A½) 2 = C’D C=(C’D ½ C) (C’D ½ C)
Teorema Matriks Simetrik 4. Jika A singular, idempoten, dan simetrik, maka A semi definit positif Bukti : A= A’ dan A =A2 maka A =A2 =A A= A’A (semi definit positif) 5. Jika A simetrik idempoten dengan rank (A)=r maka A mempunyai r akar ciri bernilai 1 dan (n-r) akar ciri bernilai 0 Bukti : Ax = λ x dan A2x = λ2 x karena A =A2 → A2x = λ2 x↔ Ax = λ2 x ↔ λx= λ2 x ↔ (λ- λ2)x=0 . Karena x≠0 maka (λ- λ2) =0 → λ bernilai 0 atau 1.Berdasarkan teorema (4), maka A semi definit positif dengan r menyatakan banyaknya λ>0
Teorema Matriks Simetrik 6. Jika A idempoten dan simetrik dengan pangkat r, maka rank(A)=tr(A)=r Bukti : Berdasarkan teorema (5), maka ∑ λi = tr(A)
Teorema Jika A (n x n) matriks idempoten, P matriks nonsingular (n xn) dan C matriks ortogonal (n xn) maka : a. I-A idempoten b. A(I-A)=0 dan (I-A) A=0 c. P-1 A P idempoten d. C’A C idempoten (jika A simetrik maka C’A C idempoten simetrik Jika A (n x p) dengan rank(A)=r, A- adalah kebalikan umum A dan (A’ A) - adalah kebalikan umum (A’ A), maka A- A, A A- dan A(A’ A)- A idempoten
Quadratic Forms A Quadratic From is a function
Q(x) = x’Ax in k variables x1,…,xk where x1 x 2 x xk
and A is a k x k symmetric matrix.
Quadratic Forms Note that a quadratic form has only squared terms and crossproducts, and so can be written k
k
Q x aij x i x j
Suppose we have
then
i1 j1
x x 1 and A 1 4 0 2 x 2
Q(x) = x'Ax = x12 + 4x1x 2 - 2x 22
Spectral Decomposition and Quadratic Forms Any k x k symmetric matrix can be expressed in terms of its k eigenvalueeigenvector pairs (i, ei) as k
A ie ie i1
' i
This is referred to as the spectral decomposition of A.
Spectral Decomposition and Quadratic Forms For our previous example on eigenvalues and eigenvectors we showed that A 2 4 4 4
has eigenvalues 1 = -6 and 2 = -4, with corresponding (normalized) eigenvectors 1 2 5 , e 5 , e1 -2 2 1 5 5
Spectral Decomposition and Quadratic Forms Can we reconstruct A? k
A ieiei' i1
1 2 1 2 5 5 -2 6 +4 -2 1 5 5 5 5 5 1 -2 4 2 6 5 5 4 5 5 2 4 A -2 5 4 5 2 5 1 5 4 4
1
5
Spectral Decomposition and Quadratic Forms Spectral decomposition can be used to develop/illustrate many statistical results/ concepts. We start with a few basic concepts: - Nonnegative Definite Matrix – when any k x k matrix A such that 0 x’Ax x’ =[x1, x2, …, xk] the matrix A and the quadratic form are said to be nonnegative definite.
Spectral Decomposition and Quadratic Forms - Positive Definite Matrix – when any k x k matrix A such that 0 < x’Ax x’ =[x1, x2, …, xk] [0, 0, …, 0] the matrix A and the quadratic form are said to be positive definite.
Spectral Decomposition and Quadratic Forms Example - Show that the following quadratic form is positive definite: 6x12 + 4x 22 - 4 2x1 x 2
We first rewrite the quadratic form in matrix notation: Q(x) = x1
6 x1 -2 2 x 2 = x ' Ax x 2 -2 2 4
Spectral Decomposition and Quadratic Forms Now identify the eigenvalues of the resulting matrix A (they are 1 = 2 and 2 = 8). 6 1 0 -2 2 A I 0 1 -2 2 4
6 - -2 2 6 4 -2 2 -2 2 0 -2 2 4 - or 2 10 16 2 8 0
Spectral Decomposition and Quadratic Forms Next, using spectral decomposition we can write: k
A ieiei' 1e1e1' 2e2e2' 2e1e1' 8e 2e 2' i1
where again, the vectors ei are the normalized and orthogonal eigenvectors associated with the eigenvalues 1 = 2 and 2 = 8.
Spectral Decomposition and Quadratic Forms
Sidebar - Note again that we can recreate the original matrix A from the spectral decomposition: k
A ie ie i' i1
2 2
2 3 1 3 2 2 +8 -1 -1 3 3 2 3 3 3 3 1 2 2 2 6 3 2 2 A 3 8 3 3 2 2 2 2 4 2 1 3 3 3 3
1
Spectral Decomposition and Quadratic Forms
Because 1 and 2 are scalars, premultiplication and postmultiplication by x’ and x, respectively, yield: x ' Ax 2x 'e1e1' x 8x 'e2e'2 x 2y12 + 8y 22 0
where
y1 x 'e1 e1' x1 and y 2 x 'e2 e2' x 2 At this point it is obvious that x’Ax is at least nonnegative definite!
Spectral Decomposition and Quadratic Forms We now show that x’Ax is positive definite, i.e. x ' Ax 2y12 + 8y 22 0
From our definitions of y1 and y2 we have ' y1 e1 x1 or y Ex y 2 e'2 x 2
Spectral Decomposition and Quadratic Forms Since E is an orthogonal matrix, E’ exists.
Thus,
'
x Ey
But 0 x = E’y implies y 0 . At this point it is obvious that x’Ax is positive definite!
Spectral Decomposition and Quadratic Forms This suggests rules for determining if a k x k symmetric matrix A (or equivalently, its quadratic form x’Ax) is nonegative definite or positive definite: - A is a nonegative definite matrix iff i 0, i = 1,…,rank(A) - A is a positive definite matrix iff i > 0, i = 1,…,rank(A)
Square Root Matrices Because spectral decomposition allows us to express the inverse of a square matrix in terms of its eigenvalues and eigenvectors, it enables us to conveniently create a square root matrix. Let A be a p x p positive definite matrix with the spectral decomposition k
A ieiei' i1
Square Root Matrices Also let P be a matrix whose columns are the normalized eigenvectors e1, e2, …, ep of A, i.e.,
Then
P e2
ep
e2
k
A ieiei' P ' P i1
where P’P = PP’ = I and 1 0 0
0 2 0
0
0 0 p
Square Root Matrices Now since (P-1P’)PP’=PP’(P-1P’)=PP’=I we have 1 A P P eiei' i1 i -1
Next let
1 1 2 0 0
1
'
0 2 0
k
0 0 p
Square Root Matrices The matrix 1 2
k
P P ' i eiei' A i1
is called the square root of A.
1 2
Square Root Matrices The square root of A has the following properties: A
1 2
1 2
'
1 A 2 1 2
A A A -1 2
1 2
-1 2
-1 2
1 2
A A A A A A
A
1
-1 2
I
where A
-1 2
A
1 2
-1
Square Root Matrices Next let -1 denote the matrix matrix whose columns are the normalized eigenvectors e1, e2, …, ep of A, i.e., Then
P e2
ep
e2
k
A ieiei' P ' P i1
where P’P = PP’ = I and 1 0 0
0 2 0
0
0 0 p