Second generation biofuels The next best thing? Gijs van der Meer
Eindhoven, April 2009
Gijs van der Meer - Thesis
2
Second generation biofuels – The next best thing? Assessment of two second generation biofuels
Thesis
Eindhoven University of Technology Author
G.R. (Gijs) van der Meer
TU/e ID
0568889
Enrolled in
Master program Technology & Policy Energy and Sustainable development Faculty of Industrial Engineering & Innovation sciences
st
1 Supervisor
Dr. ir. E.B.A. (Erik) van der Vleuten Faculty of Industrial Engineering & Innovation sciences
nd
2 Supervisor
J.H. (Johanna) Ulmanen MA Faculty of Industrial Engineering & Innovation sciences
Royal Haskoning st
1 Supervisor
R. (Bob) Boudewijn MSc Advisory Group of Waste Management & Energy Technology
nd
2 Supervisor
E.A. (Erik) van Dijk MSc Advisory Group of Waste Management & Energy Technology
Eindhoven, April 2009
Gijs van der Meer - Thesis
3
Gijs van der Meer - Thesis
4
Preface This report is the thesis of Gijs van der Meer. It is the result of a study carried out for Royal Haskoning and serves to finalize the Master program Technology & Policy at Eindhoven University. The choice to carry out research for an external organization, in the area of renewable energy was a deliberate one. Applied research outside the university would provide an outlook on working in a business environment. The area of renewable energy has always appealed to me and is in line with my desired future field of employment. The subject that was offered by the Advisory group Waste Management & Energy Technology of Royal Haskoning suited these desires perfectly. Their interest in biofuels provided a very interesting subject for me to study. During the period that this study lasted; from February 2008 to April 2009 I learned a lot. Most obvious, I learned about biofuels, about various technologies and about the environment in which they develop. Moreover, I learned how to carry out research. Perhaps most important, I learned that carrying out such a project not only requires dedication, effort and persistence, but also distance form the subject, frequent diversion and relaxation. The time, effort and occasional struggling have led to satisfying results. For this result, I first of al thank my supervisors of Eindhoven University; Erik van der Vleuten and Johanna Ulmanen. Second, I would like to thank my supervisors and colleagues of Royal Haskoning. I spent most of my time with them at the Haskoning office in Nijmegen. The hours at the office were very enjoyable; both informative and pleasant, when discussing work, leisure time or the moves of the animal wildlife in the Ooijpolder. In addition, I would like to thank the persons I interviewed for this study. Apart of their valuable contribution to my study, I certainly enjoyed their motivating enthusiasm for the subject. Obviously, I thank my family and friends. You might be right when arguing that I was a bit late in recognizing the third lesson of this project. Lastly, I mention my housemates at the Tongelresestraat. Thanks for sharing the ups and downs, great music, ideas and considerations, drinks and patio camp fires! In my opinion, this report is interesting from the very beginning to the last page. However, for readers that are mostly interested in the results of this study, the analysis sub sections of section 3 and 4 are most interesting, arriving at opportunities and barriers. These sub sections reveal more details then the conclusion in section 5.
Gijs van der Meer April 2009
Gijs van der Meer - Thesis
5
Summary Biofuels are liquid alternatives for gasoline and diesel, produced from organic matter; biomass. Due to increasing environmental concerns, dependence on import of mineral oil and increasing fuel prices, interest in biofuels has grown over the past years. However, at present, the production and use of biofuels receives increasingly more criticism because of competition with food production and concerns over sustainability aspects. This study, which is carried out for Royal Haskoning, assesses how the production of biofuels can be increased without increasing pressure on food supply. Following on a pre study, the choice was made to narrow the scope of the study to FT biodiesel & cellulose ethanol, two so-called second generation biofuels. The arguments for this choice are that Dutch organizations possess significant knowledge & expertise in both fields, and that high expectations exist about their potential in volume, cost and avoided competition with food production. The research question of this study is stated as follows: What are the opportunities and barriers for the production of FT biodiesel and cellulose ethanol in the Netherlands within the next 5 years, applying waste and (agricultural) residues as feedstock? Two aspects are important for assessing the subjects in this study: a systems perspective and the ability to assess ongoing dynamics over time. Strategic Niche Management (SNM) is selected as analytical framework to support the study. This analytical framework is appropriate for assessing innovation trajectories over time. Two assumptions are formulated. The first concerns the early state of development - both FT biodiesel and cellulose ethanol are not yet exposed to society. The second assumption concerns the perceived international aspects in the development of both biofuels. This resulted in a qualitative study, consisting of two cases, one for FT biodiesel and one for cellulose ethanol. SNM involves the assessment of niche development; technological development in a protected environment where the technology is exposed to society. The objects to study are societal experiments such as pilot plants or demonstration projects. Internal niche processes are principal characteristics of niche development. SNM recognizes three internal niche processes: ‘Voicing and shaping of expectations’, ‘Network formation’ and ‘Learning processes’. The first two are included in this study and applied to both cases. Subsequently, opportunities and barriers are derived from the internal niche processes and the additional analysis of the international perspective, as perceived by the Dutch actors. Both niche processes are analyzed according to a number of indicators. The data that is required to analyze the internal niche processes over time is derived from sources that cover the societal experiments. The study is based on written public sources and interviews with key actors. Examples of written sources are: research reports, press releases, policy documents corporate presentations etc. As the study assesses development over time, sources are required that cover the situation in the past; approximately in the early 2000s, and in the present. A future outlook of approximately 5 – 10 years is constructed, based on the analysis over time. Next is a brief outline of niche development for FT biodiesel and cellulose ethanol. Each section finishes by answering the research question for that case. After the outline of both cases, the summary continues with a comparison of both cases and finishes with a reflection on the study. FT biodiesel Expectations about FT biodiesel changed over time. Some expectations got more robust, both in favor of, and against the development and deployment of FT biodiesel. Part of the favorable and unfavorable expectations is supported by results from experiments that have been carried out. However, regardless of the technological progress over time; from proof of concept to the advancement of the production technology of FT biodiesel, increasing convergence with regard to realization of expectations hardly occurred.
Gijs van der Meer - Thesis
6
The process of voicing and shaping of expectations indeed occurred in the niche of FT biodiesel. However, only to a degree did voicing and shaping of expectations provide support for the development of FT biodiesel. It is questionable whether or not the expectations convince the actors to invest time and effort for further development and deployment of FT biodiesel. The network of actors that carries the development of FT biodiesel can be considered resourceful, and capable of introducing and pursuing change. At the same time, the network seems to be rather loose and over time it showed that interests differ. The independent actors lack an aligned agenda, and much resources and decisive power are in the hands of a single actor. This principal actor, Shell, could activate (acquire) and combine resources. However, the internal incentive to speed up the development and deployment is not strong and the future outlook on FT biodiesel is characterized by unfavorable economics. The sources argue, Shell and Choren included, that an external incentive, such as market conditions or regulation, will determine the course of development. It is questionable whether or not the present incentive is sufficient to actually stimulate and speed up the development and commercialization of FT biodiesel. Activities in the international field of development of FT biodiesel are limited. Choren / Shell are the unquestioned frontrunners and are therefore the actors to keep track of. However, development goes slowly. Those future initiatives by Choren that are already proposed, are intended to be located in Germany. Activities that might be deployed in the middle long run will likely also be situated in Germany, due to a strong German component in the consortium that funds and supports Choren. Consequently, the Netherlands are likely not the first choice to locate new facilities in the short or middle long term; within 10 years from now. Concluding can be said that it is very unlikely that a mature production process for FT biodiesel will be available within 5 years from now. Besides, the most advanced development is centered around Choren (Germany). Therefore, any initiatives in the near future will be deployed in Germany, limiting the perspective on deployment in the Netherlands within approximately 10 years. Cellulose ethanol The movement that is involved in development of cellulose ethanol in the Netherlands grew over the past years. An increasing number and variety of actors share important expectations that fuel the development. A division can be made in early expectations particularly aiming at utilization of lignocellulosic biomass, and more recent expectations about the potential of cellulose ethanol as a biofuel. In both cases, expectations got more robust. Most of the expectations are supported by results in experiments. Ongoing technological progress supports the expectations about the utilization of lignocellulosic biomass and cellulose ethanol as a biofuel. However, the experiments did not result in convincing support for short term economic feasibility of cellulose ethanol as a biofuel. Although not overconfident, the quality of expectations increased. Specificity of expectations is ambiguous. The movement is dividing over various approaches to achieve the expectations of utilization of lignocellulosic biomass and the production of cellulose ethanol. Overall, these movements target increasingly more specific goals. However, the fact that the movement splits up indicates that there is no undisputed way to reach the goals, illustrating divergence of expectations. Then again, it is expected that there is no single solution. The process of voicing and shaping of expectations can therefore be considered fairly successful. Expectations fuel the development of cellulose ethanol, while the niche builds up momentum. The increasing and expanding network of actors can be considered resourceful, and capable of introducing and pursuing change. There is diversity in initiatives, both young and old in terms of the period that they are ongoing, as well as the organizations that are involved. Development of a number of complementary and competing approaches is ongoing, driven by internal and external incentives for development and deployment. Interests and visions are
Gijs van der Meer - Thesis
7
aligned and / or complementary. However, an external incentive is required to speed up the introduction and overcome the present difficult market conditions for the production of cellulose ethanol. The international perspective demonstrated that under the given circumstances; the state of the art and economic incentives, it is unlikely that potential foreign cellulose ethanol producers will settle in the Netherlands. At the same time, Dutch actors consider the possibility to commercialize their knowledge and expertise abroad. However, given technological progress and improving economic conditions, opportunities exist for production of cellulose ethanol from waste and agricultural residues in the Netherlands. These will likely be exploited by Dutch actors. Future large scale production of cellulose ethanol can certainly profit from the conditions that the Netherlands offer. A company to keep track of is Abengoa. Abengoa is a promising European actor in the field of cellulose ethanol and is already constructing a conventional ethanol production facility in Rotterdam. Concluding can be said that the production of cellulose ethanol in the Netherlands is presently hampered by techno economic barriers. However, opportunities for small scale production exist and Dutch actors are assumed capable of exploitation. Comparison and reflection Apart of the answers to the research question, the study provides an interesting comparison between the past development and future outlook for both cases. The starting points in the early 2000s were similar for FT biodiesel and cellulose ethanol. Today, similar expectations are expressed about their potential. However, a closer look, as employed in this study, reveals differences in the course of development, resulting in different outlooks. The development of cellulose ethanol has more momentum; it is carried by a larger number and more diverse group of actors than FT biodiesel. The biochemical technology platform is perceived to be more versatile and better fitting within the present vision of the biobased economy. In the vision of a biobased economy, lignocellulosic biomass is applied for a wide variety of applications besides biofuels. The study is carried out according to the research design. Sufficient and appropriate sources were available. Only, there is a deficit of detailed information about near future expectations. This is likely due to the commercial / competitive character of the development, combined with the use of public sources. Still, the analysis could be carried out to satisfaction. Few significant changes to the outcome of the study are assumed. The analytical framework of SNM proved useful and appropriate. The study resulted in support for the assumptions. This led to interesting suggestions for further research, in particular with regard to assessing the international character of technological development.
Gijs van der Meer - Thesis
8
Contents Preface ...........................................................................................................................5 Summary........................................................................................................................6 1
Introduction ..........................................................................................................11 1.1 Background.............................................................................................. 11 1.2 Biofuels.................................................................................................... 12 1.3 Research question ................................................................................... 14 1.4 Approach and sub questions.................................................................... 14 1.4.1 Operations Research methods............................................................. 14 1.4.2 Innovation sciences.............................................................................. 15 1.4.3 Multilevel Perspective .......................................................................... 15 1.4.4 Strategic Niche Management and sub questions ................................. 16
2
Research design ..................................................................................................18 2.1 Strategic Niche Management................................................................... 18 2.1.1 Fundamentals of SNM ......................................................................... 18 2.1.2 Correspondence to cases & assumptions ............................................ 19 2.2 Niche definition ........................................................................................ 21 2.3 Analysis and data collection..................................................................... 22 2.3.1 Analysis ............................................................................................... 22 2.3.2 Sources................................................................................................ 25
3
Internal niche processes – FT Biodiesel ............................................................26 3.1 FT Biodiesel in the Netherlands ............................................................... 26 3.2 Sources - FT biodiesel ............................................................................. 28 3.3 Voicing and shaping of expectations........................................................ 29 3.3.1 Past situation ....................................................................................... 29 3.3.2 Present situation .................................................................................. 33 3.3.3 Analysis of expectations....................................................................... 41 3.4 Network formation.................................................................................... 46 3.4.1 Composition......................................................................................... 46 3.4.2 Alignment............................................................................................. 50 3.4.3 Analysis of network formation .............................................................. 51 3.5 International perspective .......................................................................... 53 3.5.1 Perception of niche actors.................................................................... 53 3.5.2 Voicing and shaping of expectations .................................................... 53 3.5.3 Network formation................................................................................ 54 3.5.4 Analysis ............................................................................................... 54
4
Internal niche processes – Cellulose ethanol ....................................................57 4.1 Cellulose ethanol in the Netherlands........................................................ 57 4.2 Sources – cellulose ethanol ..................................................................... 60 4.3 Voicing and shaping of expectations........................................................ 61 4.3.1 Past situation ....................................................................................... 61 4.3.2 Present situation .................................................................................. 64 4.3.3 Analysis of expectations....................................................................... 74 4.4 Network formation.................................................................................... 80 4.4.1 Composition......................................................................................... 80 4.4.2 Alignment............................................................................................. 86 4.4.3 Analysis of network formation .............................................................. 87 4.5 International perspective .......................................................................... 90 4.5.1 Perception of niche actors.................................................................... 90
Gijs van der Meer - Thesis
9
4.5.2 4.5.3 4.5.4
Voicing and shaping of expectations .................................................... 91 Network formation................................................................................ 92 Analysis ............................................................................................... 92
5
Conclusion ...........................................................................................................94 5.1 Sub question 1......................................................................................... 94 5.2 Sub question 2........................................................................................100 5.3 Research question ..................................................................................102 5.4 Comparison and outlook .........................................................................103 5.4.1 History of development - Niche processes ..........................................103 5.4.2 Outlook on future development ...........................................................104
6
Discussion & recommendations .......................................................................106 6.1 Reflection on the study and results .........................................................106 6.2 Reflection on analytical framework..........................................................108 6.3 What can be learned?.............................................................................109 6.4 Recommendations ..................................................................................110
References.................................................................................................................111 Appendix A - Definitions Appendix B - FT biodiesel actors Appendix C - Cellulose ethanol actors Appendix D - Sustainability criteria The interviews are collected in a separate appendix.
Gijs van der Meer - Thesis
10
Introduction The report starts with a section that specifies the origin of this study. It tells what the study intends to achieve and why. It provides direction to the study and drafts what the results look like. The section starts by drafting the background of the study. It specifies the conditions that created the desire to start the assessment of second generation biofuels and arrives at the objective of this study. Next is an overview of biofuel technology, ranging from current practices to technologies that are not on the market - yet. It outlines the possibilities to produce various biofuels and makes a brief inventory of the activities in the Netherlands and at the international level. The overview of biofuel technology results in a selection of technologies to focus on. After specifying the objective and making a selection of technologies, this section further narrows the scope of the study and arrives at the research question. The final part specifies how the research question is made operational. It presents the analytical framework that serves to answer the research question and includes sub questions that support the main research question.
Background Due to increasing environmental concerns, dependence on fossil fuels and increasing fuel prices, there has been a growing interest in development and use of renewable energy sources in recent years. In the European Union as well as in The Netherlands, there are ambitious policy goals to increase the application of these energy sources. Dutch authorities 1 aim for a 20% share of renewable energy sources in the year 2020 . 2 Biomass is expected to provide for a significant share in renewable energy . One of the fields of application is in the transport sector. Fuels derived from biomass, biofuels, fit very well within the present infrastructure and have therefore grown rapidly in popularity. However, a dilemma rises for the biofuels that are produced today. The feedstock that is used for the production of these conventional biofuels appears to compete with food production. Examples of feedstock for conventional biofuels are; cereals, sugar cane and palm oil. This is one of the reasons that the increase in biofuel production received much criticism; prices of food crops have risen significantly and an ethical discussion arises about the utilization of 3 food crops for energy purposes . Besides, the increase in demand for feedstock causes feedstock prices to rise and subsequently increasing production costs of biofuels. The above conditions result in the following objective of this study: The objective of this study is to investigate the possibilities to increase the production of liquid biofuels for the transport sector without increasing pressure on food supply.
1
www.vrom.nl (May 2008) VROM (2001), NMP4 3 Indeed there has been a sharp rise in food prices recently (2007 – early 2008) that is not expected to decline any time soon. However, the causes for this increase are not that clear. On the one hand, there are researchers who point mainly to the extra demand of food crops used for biofuels, while others do not hold biofuels responsible for the sharp price increase. What is certain is that the extra demand for the purpose of biofuel production will not do any good to a tense food market. (“Biofuels cause price increase”: among many others: World Bank report: Rising Food Prices, Policy options and World Bank response 2008, David Boddiger (2007), in: The Lancet, vol. 370, September th th 15 Geert Bergsma & Bettina Kampman in: NRC Handelsblad January 15 2008. th Olaf Velthuis presents a different view in Volkskrant, april 19 2008, supported by an agricultural economist of Wageningen UR, a resource annalist of Rabobank and a professor in economics of VU Amsterdam. 2
Gijs van der Meer - Thesis
11
The study serves as the master thesis for Gijs van der Meer, enrolled in the MSc program Technology & Policy at Eindhoven University of Technology, faculty of Industrial Engineering and Innovation Sciences. The study is carried out for, and facilitated by Royal Haskoning. Royal Haskoning is a Dutch company for consultancy, engineering and architecture, operating worldwide.
Biofuels Technology takes a central place in this study. There is great variety in biofuels; in the feedstock, the conversion process and the final product. This sub-section therefore contains a brief overview of biofuels that are produced today and biofuels that are expected in the near future. It includes their respective feedstock and conversion process. As there is such variety in biofuels, this sub-section also serves to define the focus of the 4 study; which biofuels are analyzed .
Figure 1 – Overview Biofuel technology (Elam 1996, Hamelinck & Faaij 2006)
Figure 1 provides an overview of the various biofuels and their respective feedstock and conversion processes. The routes in the figure indicate conversion routes. They start from a resource, or feedstock, (e.g. oil plants or lignocellulosic biomass) and arrive at a product (e.g. biodiesel, methanol or hydrogen) by means of a conversion process. The conversion process also shows intermediary products such as sugar or syngas. The conversion routes in the figure are either applied on commercial scale or have been demonstrated at pilot scale. In practice, a – somewhat ambiguous - distinction is made between first and second generation biofuels (For an elaboration on this issue, see Appendix A). In this study, the
4
This paragraph is based on Ros & Montfoort (2006), Faaij (2006), Hamelinck & Faaij (2006), Hekkert & Suurs (2005), ECN (2004) and Broek e.a. 2003.
Gijs van der Meer - Thesis
12
biofuels that are produced from oil plants or sugar/starch crops are considered first generation biofuels. Second generation biofuels are produced from lignocellulosic biomass. In the Netherlands, production of first generation biofuels is currently taking place. Second generation biofuels are being studied, but not – yet – produced. Outside the Netherlands, first generation biofuels are even more common. Large producers are the USA, Brazil and within Europe; France, Spain, Sweden and Germany. No commercial scale production of second generation biofuels is taking place yet, but much effort is currently put in R&D. Development mainly takes place in the USA, Canada, Sweden, Spain and Germany. According to the sources (See footnote 4), bioethanol from lignocellulosic biomass (cellulose ethanol) and biodiesel by means of gasification and Fischer Tropsch synthesis (FT biodiesel) are the second generation biofuels that are closest to commercial production. Both conversion routes are recently demonstrated in pilot scale plants; cellulose ethanol by Iogen ltd. (Canada) and FT biodiesel by Choren Industries (Germany). Expectations regarding these two conversion routes are high, not only within the research community, but also among 5 policy makers, environmental organizations and financial institutes . Dutch organizations possess significant knowledge and expertise about both of these second generation biofuels, due to government funded, as well as private research. Examples of these organizations are: Shell, ECN, Wageningen University and Research Centre (WUR), TU Delft and Nedalco. According to Ros & Montfoort (2006), in some aspects Dutch research is leading. Assessing the whole field of biofuels would make the scope of the study far too broad. Therefore, a selection of technologies is made. Criteria for the selection are derived from the objective, as is written above, and based on interests of Royal Haskoning. The objects to study: -
Have to be liquid biofuels; compatible substitutes for fossil gasoline and diesel, Should avoid competition with food / feed supply, Should preferably utilize waste and residue streams, Should be readily available or close to commercial employment; within approximately 5 years, Should offer potential for deployment in the Netherlands.
Four options are derived, based on the above criteria, and expertise that exists in the Netherlands; st - 1 generation bioethanol from waste and residues (f.e. waste and residues from the food & beverage industry) st - 1 generation biodiesel from waste and residues (f.e. animal fat or used frying oil) nd - 2 generation bioethanol from lignocellulosic biomass waste and residues (f.e. straw / wood thinnings) nd - 2 generation biodiesel from lignocellulosic biomass (f.e. straw / wood thinnings) (Referred to in figure 1 as FT Diesel) The choice is made to assess both second generation biofuels. They are expected to offer higher potential volume of production, while avoiding competition with food and feed supply. 6 Besides, the technological novelty makes them an interesting subject to study .
5
In addition to the sources already mentioned: David Berry of Flagship Ventures (USA), presentation at th TWA conference Biobased Economy april 10 2008 and IRIS 2007, Schaarste in overvloed, beleggen in nieuwe schaarstes. 6 Two small notes on the choice for technology. First, the food versus fuel debate is not particularly clear for both first generation options mentioned, as organic waste and residues can in most of the cases be used for feed. Second, the period within which the second generation options become commercially available is disputable. Expectations differ significantly, ranging from practically available, to in about 15 years from now.
Gijs van der Meer - Thesis
13
The conversion routes are described in more detail in their respective sections that follow. These sections also contain a detailed inventory of past and present activities in the field of cellulose ethanol and FT biodiesel in the Netherlands.
Research question As the previous sub-section specifies, this study focuses on the development of two conversion routes for the production of second generation biofuels. Various organizations in the Netherlands are involved in research and development concerning FT biodiesel and cellulose ethanol. Production does not take place – yet, not within, nor outside the Netherlands. However, more advanced initiatives exist outside the Netherlands; the first demonstration scale facilities have been constructed and are operational. Both within the Netherlands as well as at international level, expectations regarding both technologies are very high. Therefore this study aims to answer questions such as; what is the actual state of development in the Netherlands; how does development in the Netherlands compare to development abroad; why are there no demonstration projects taking place in the Netherlands? More specific, this study aims to answer the questions; what are the opportunities and barriers for deployment of these production processes in the Netherlands within the next 5 – 10 years; what are crucial obstacles for commercial introduction of the technology? Of particular interest is production in the Netherlands. Therefore, the research question in this study is: What are the opportunities and barriers for the production of FT biodiesel and cellulose ethanol in the Netherlands within the next 5 years, applying waste and (agricultural) residues as feedstock?
Approach and sub questions Recalling the research question, the study aims to assess technological development, to derive opportunities and barriers and to present an outlook on future development. The next step is to select an appropriate analytical framework to support the study. This framework outlines the approach of the study and structures the analysis. It also serves to formulate sub questions that support to answer the research question.
Operations Research methods Common methods for assessing technological options, support in decision making and strategic planning are found in the field of Operations Research (OR). A useful overview of OR methods is presented in a paper by Leleur (2004). Three well known methods are: Cost Benefit Analysis (CBA), Multi Criteria Analysis (MCA) and Strengths, Weaknesses, Opportunities and Threats (SWOT). These methods are briefly explained. CBA is an economic evaluation method that requires quantification of arguments. This is a known drawback, which is partially compensated for in MCA by including non monetary arguments. A SWOT analysis focuses less on quantification and takes a broader perspective, including organizational and market aspects. Although this method usually targets more tangible subjects, such as a business case rather than a technology, the method could be useful. However, this study assesses technological development of which the outcome is not clear and keeps on evolving. Costs and benefits – monetary or non monetary - can drastically change over time and what seems to be an advantage at one point can turn out to be a disadvantage over time. This last peculiar example was witnessed during utilization of first generation biofuels development with regard to sustainability issues. Moreover, these methods share a drawback that is important for evaluating complex decision environments, as Leleur calls them. They lack a systems perspective; the interrelation among
Gijs van der Meer - Thesis
14
elements. Below, it is argued that the subject of this study does require a systems perspective. For assessment of an infrastructural problem Leleur proposes a combination of OR methods and emphasizes aspects of exploration and learning. Still, costs and benefits, advantages and disadvantages, opportunities and threats need to be more or less clear, or possible to estimate. This is not the case for the subjects in this study.
Innovation sciences The systems perspective and dynamics of ongoing technological development thus require another approach for this study than those offered by common OR methods. The school of innovation sciences generally studies subjects with the characteristics that prevent the application of the above mentioned OR methods. This field of science studies technological development and how it is embedded in society. Technological development is regarded to be the outcome of both technical and non-technical aspects. These non-technical aspects range from social and legal aspects, to economical and political aspects. Two concepts in innovation sciences are important for answering the research question. The first one is the type of innovation. A distinction can be made between incremental and radical innovations. Innovations of the first kind are relatively uncomplicated and they do not require too many changes outside their scope. An example is the introduction of direct fuel injection in petrol engines for automobiles, improving performance and efficiency. A radical innovation would be electrically driven vehicles. In contrary to the first example, the latter would imply changes in automobile production, but as well in the supporting infrastructure, the safety regulations as they are common today, and possibly also in the way we use our cars. The use of biofuels as transport fuel can also be considered a radical innovation. The second concept of importance follows on the type of innovation as described above. It is the notion of a system innovation. A system innovation particularly points to the interdependence of a technology with its surroundings, ranging from technological infrastructure, industrial networks and legislation to user practices and behavior. A change from traditional fossil based transport fuels to biofuels would imply a system innovation. Within innovation sciences it is acknowledged that these so-called socio technical systems 7 are complex and hard to change .
Multilevel Perspective A useful analytical framework in the field of innovation sciences is the Multilevel Perspective (MLP). The MLP is developed as a tool to explain system innovations and is rooted in Science and Technology Studies and Evolutionary Economics. In short, the MLP distinguishes three levels that concern technological development, embedded in society. The central level is that of the so-called ‘socio-technical regime’, comparable to the sociotechnical system as mentioned earlier. Situated ‘above’ the regime level is the so-called ‘landscape’ level. Developments at this level affect the regime, but the level itself can not be influenced by single actors from that regime. Situated ‘below’ the regime level is the so-called ‘niche’ level. The niche level is where variation takes place and the harsh selection criteria of the regime do not apply. Due to these characteristics, a radical innovation, potentially capable of changing the regime can develop in the underlying ‘niche’ level. To sum up, a system innovation is considered to be a trajectory, starting premature within a niche and developing towards, and making its way into the regime, given the opportunities 7
For references, see for example: Raven 2005. From an engineering point of view, the complexity of energy systems and consequences with regard to sustainable development are also recognized: Energy Systems and Sustainability Metrics, Chapter 6 in: Sustainable Energy - Choosing among options, Tester e.a. 2005.
Gijs van der Meer - Thesis
15
shaped by the landscape. It is the outcome of activities at all three levels. A graphical representation of the MLP and an innovation trajectory is presented in figure 2.
Figure 2 – Multi Level Perspective (Geels, 2002)
Strategic Niche Management and sub questions The potential role of niches to nurture technological development, and in the long run provide alternatives for the socio-technical regime, has attracted the attention of an increasing number of innovation sciences scholars. Part of the research focuses on theories to explain technological development, while another part aims to derive a management tool to advance technological development. Taking into account the nature of the technology under investigation, Laak ea. describe this kind of research as follows: “Several scholars have investigated more precisely how experimental introduction of sustainable innovations in niche markets can benefit the further diffusion of the innovation. This research has been labeled Strategic Niche Management (SNM)” (Laak ea. 2007). To assess a successful or failed innovation trajectory, SNM scholars analyze three so-called ‘internal niche processes’, which they have found to be crucial. These internal niche processes, which are further explained in the next section, are: -
Voicing and shaping of expectations, Network formation, Learning processes.
Gijs van der Meer - Thesis
16
Utilizing the analytical framework of SNM to answer the research question, the first sub question is formulated as follows: Sub question 1 What opportunities and barriers can be derived from the internal niche processes; voicing and shaping of expectations, network formation and learning processes? The main research question emphasizes production in the Netherlands. Apart of significant technological development in the Netherlands, important activities take place outside the Netherlands. In fact, foreign initiatives have reached a more advanced state of development. Furthermore, it is assumed that there is interaction between the Dutch niche and the international field of development. Arguably, the above sub question does not sufficiently address the international perspective of the technological development. Consequently, opportunities and barriers that exist for the deployment of foreign initiatives in the Netherlands might be overlooked. Therefore, an extension of the first sub question is added in the form of a second sub question: Sub question 2 What opportunities and barriers for deployment of foreign initiatives in the Netherlands can be derived from the internal niche processes?
Outline of report content The report consists of five more sections. The outline is as follows. The next section specifies the research design. It explains the analytical framework of SNM and presents the assumptions that SNM is based on, together with how they are interpreted for this specific study. Additional assumptions are elaborated upon and incorporated in the research design. Furthermore, the section specifies what indicators are required and what sources can provide them. Section 3 and 4 address the two cases; FT biodiesel and cellulose ethanol. The results of the two case studies are presented in section 5 Conclusion. Lastly, section 6 reflects on the study; both on the results and how the study is carried out, as well as the analytical framework including the additional assumptions. It highlights what can be learned from the study and finishes with recommendation. For more information about the Multi Level Perspective or Strategic Niche Management, I refer to Kemp ea. 1998, Raven 2005 and Laak ea. 2007. A listing of key definitions is found in appendix A.
Gijs van der Meer - Thesis
17
Research design After specifying the objective of the study and the desired results, this section outlines how to realize the study and how to obtain the desired results; it presents the specific direction of the study. The research design starts by zooming in on the analytical framework of SNM. What is the theory about and how can it be applied in this specific case? What assumptions are required to fully answer the sub questions and subsequently; the research question? The central concept of SNM is the ‘niche’. The middle sub-section of this section defines the niche for this study. The third sub-section is the most tangible. It describes how to carry out the analysis, what indicators to assess, what data are required and what sources provide these data.
Strategic Niche Management Strategic Niche Management (SNM) is an analytical framework; it is a model that represents socio-technical development. This sub-section outlines the analytical framework of SNM, it describes the perception of technological development according to SNM. Already in the previous section, the analytical framework of SNM was asserted to be an appropriate method to structure the analysis and answer the research question. This section goes more into detail. How exactly do both cases in this study correspond to the fundamentals of SNM? A slight expansion of the framework is found useful, requiring slight adaption of the original framework. This results in two assumptions. These assumptions are explained and supported, to fit within the framework.
Fundamentals of SNM Recalling the previous section, SNM fits within the analytical framework Multilevel Perspective. The MLP distinguishes three levels that concern technological development, embedded in society. The central level is that of the so-called ‘socio-technical regime’. A radical innovation, potentially capable of changing this regime can develop from the underlying ‘niche’ level. The niche level is where variation takes place and the harsh selection criteria of the regime do not apply. Situated ‘above’ the regime level is the so-called ‘landscape’ level. Developments at this level affect the regime, but single regime actors can not influence developments at landscape level. A system innovation is such a radical innovation. It is considered to be an innovation trajectory, starting premature at niche level and developing towards the regime. Ultimately, it could become part of the regime or even replace the existing regime. Developments at niche level are considered crucial for a successful innovation trajectory. These developments are represented by ‘societal experiments’ or experimental introductions of the technology outside the lab environment. Examples are pilot or demonstration projects. These experiments are the study objects of SNM. So, SNM studies niche development by observing experiments and subsequently analyzing internal niche processes. These internal niche processes are assumed to be indicators of successful niche development and consequently the start of a successful innovation trajectory. The internal niche processes are: -
Voicing and shaping of expectations, Network formation, Learning processes.
The framework of SNM includes instruments to analyze a system innovation and deal with the dynamics that are characteristic for the innovation trajectory.
Gijs van der Meer - Thesis
18
Generally, sustainable energy technologies do not easily make their way into the market or the energy system. The need to be included in the existing system and the potential to cause a radical change cause resistance of the energy regime. Furthermore, they generally lack a direct competitive advantage. Sustainable energy technologies can therefore particularly benefit the protection of a niche. Subsequently, SNM has been applied to study the development and introduction of sustainable energy technologies. SNM can be used as a research tool, as well as a tool for management of technological development. For the application of SNM as an operational tool, I refer to Caniëls & Romijn (2006). In this study, SNM is used as a research tool. (Raven 2005, Laak 2007)
Correspondence to cases & assumptions Both conversion routes that are assessed in this study are considered sustainable energy technologies. Their introduction is capable of causing a radical change, affecting producers, users, infrastructure, regulation etc. Their deployment would imply a system innovation. Studying this development therefore requires a systems perspective and the possibility to include the dynamics that are inherent of such an innovation trajectory. SNM fits this application very well. However, two aspects in this study require additional attention to fit within the framework of SNM. These are related to the state of development of both technologies that are assessed and the (geographical) scope of the study. Both aspects are elaborated on below. Assumption 1 SNM is particularly concerned with technological development in the phase near the introduction to society. The objects of investigation are experiments embedded in society, so outside a lab environment, for example; pilot or demonstration projects. Raven (2005), referring to earlier studies by Hetland and Hoogma, distinguishes four kinds of experiments that may play a role in creating niches. These kinds of experiments are characterized by an increasing level of development and are respectively called: explorative, pilot, demonstration and replication or dissemination experiments. As is illustrated in sub-section 1.2, the state of development of the two conversion routes in this study is close to introduction into society. However, the technologies under investigation in this study have not yet reached the stadium of demonstration experiments in the Netherlands; there are no actual demonstrations into Dutch society yet. Assumption 1: Taking the pre-mature state of development of the technologies into account, application of the methodology of SNM is still appropriate and useful. The following arguments support this assumption. At first, earlier work by Van den Belt & Rip (1987) should be recalled. In this work they apply the niche concept to study technological development in an R&D environment within an organization, so not yet introduced to society. Development of the technologies in this study is already much closer to introduction to society. Even more, the development has attracted attention throughout society, as the next argument shows. Second, development of both conversion routes has a record in the Netherlands, as subsection 1.2 illustrates. Although this record is not primarily formed by actual experiments in society, it is argued that a wide range of niche activities does take place in the Netherlands. These activities are formed by R&D that is carried out by Dutch research institutes and private companies. As the following sections show, development has arrived at the point that advanced plans are made to construct and operate demonstration plants. This shows that the technology is close to introduction to society. Besides, these plans are supported by various actors, both public and private. The development has also attracted attention of governmental – and non governmental organizations, such as environmental organizations. At the same time, a lively public debate is going on about the desirability of biofuels, involving both organizations that are directly
Gijs van der Meer - Thesis
19
involved, as well as those that are not directly involved in biofuels. They exchange opinions and expectations. The public debate was initiated by production and application of first generation biofuels, but touches upon the two conversion routes of interest. And although first generation biofuels are outside the scope of this study, its development is closely related to the second generation, as the names already imply. The development of first generation biofuels does provide input in the niche activities of the second generation. Lastly, besides the influence of first generation biofuels, there is also influence of developments abroad, which are one step ahead. So, in spite of the premature state of development, I argue that niche activities do take place in the Netherlands and that niche processes can be observed and analyzed. Assumption 2 As illustrated earlier, there is significant development in the field of both conversion routes in the Netherlands. Furthermore, much development takes place abroad, in particular in the US and within the EU. Development abroad has reached a more advanced state of affairs. Recalling the four kinds of experiments, demonstration projects are carried out abroad concerning FT biodiesel and cellulose ethanol. SNM emphasizes the influence of local conditions on innovation trajectories. Examples of local conditions are: local rules and regulation; local actors, the interaction between them and a shared history within a certain region; availability of resources within a certain region or even the mind set of a community. R&D with regard to both cellulose ethanol and FT biodiesel has a rather international character. Experiments that are carried out attract attention across borders; they fuel expectations, are compared to local practices and affect commercial interests. Exchange of information and technology across borders takes place and foreign organizations are involved 8 in ‘local’ experiments . The primary focus of this study is on the Netherlands. However, it can be argued that development in the Netherlands is influenced by development abroad. Taking the foreign influences into account is considered beneficial to the study. The main reason for including crossing border interaction in the study is to reveal opportunities and barriers for deployment of foreign initiatives in the Netherlands. Besides, this issue is interesting to study. It is discussed in section 6. The following assumption is made to include an international perspective in the study. Assumption 2: Although SNM emphasizes the importance of local conditions, the niche extends beyond national borders. It is very well possible to incorporate this assumption within the framework of SNM. SNM is about niche development; activities at the niche level in the form of societal experiments, resulting in the occurrence of internal niche processes, which can be observed and analyzed. The niche can be seen as an aggregation of local practices. In his dissertation, Raven (2005) recalls a study by Deuten (2003) to emphasize the difference between individual experiments and the aggregated niche level. A single experiment is not sufficient to form a niche. A niche is formed by various experiments and develops according to the level of stability and structure. Deuten (2003) has named this aspect of the niche concept; ‘cosmopolitanism’. It emphasizes interaction among experiments and between experiments and the regime. It points to the emergence of structure and stability within a niche. 8
Examples are: Collaboration between Abengoa (Spain) & SunOpta (Canada), Mascoma (USA) & Nedalco (Netherlands). Also: Abengoa (Spain) deploying activities in the USA. Recently, the US department of Energy has awarded subsidy to European companies: BioGasol (Denmark), DSM - White Biotech Program (Netherlands) See for more examples: Michigan Economic Development Corporation (2007) and Evans 2008.
Gijs van der Meer - Thesis
20
Deuten distinguishes four phases of cosmopolitanism, with increasing levels of interaction: local, inter-local, trans-local and cosmopolitan. In the local phase, no interaction between experiments takes place, whereas in the cosmopolitan phase, interaction exists among experiments and between experiments and the regime. See figure 3. Like Raven, the concept of cosmopolitanism is used in this study to differentiate between experiments and the niche. If interaction between experiments exists, this adds to the aggregated level, thus to the niche. So experiments that interact, that influence other experiments and contribute to internal niche processes, belong to the niche, regardless of their location. This argument supports the assumption that a niche is not necessarily limited to (geographical) borders and allows for including an international perspective within the framework of SNM. To conclude, by making two well supported assumptions, I argue that it is justified to use the analytical framework of SNM as a research tool for this study. It is used to map sociotechnical development, and to assess the opportunities and barriers for deployment of two conversions routes to produce second generation biofuels in the Netherlands.
Figure 3 – Cosmopolitanism (Raven, 2005)
Niche definition This sub-section includes a brief description of the concept ‘niche’ and how it is applied in this study. For a more thorough elaboration I refer to Raven (2005). A niche is a shielded or protected environment, where technological development is nurtured. This can be a R&D environment, in the case of the study by Van den Belt & Rip (1987) or a market environment (for example Schot 1992, Levinthal 1998). Schot ea. (1996) take a different approach and present the term ‘technological niche’. This is taken up and advanced by Raven. He describes a technological niche as follows: “A technological niche is situated in-between the variation and selection environment. In a technological niche, distinct selection mechanisms are created through (temporary) protection, e.g. in the form of subsidies or expectations about future markets. Protection enables a (temporary) exemption from dominant regime rules; there is space for a new set of rules to emerge. Technological niches are thus located between early technological variation
Gijs van der Meer - Thesis
21
in R&D niches on the one hand, and selection of the variations in market niches with distinctive selection criteria on the other”. (Raven 2005, p31) This study uses the niche definition by Raven, although the state of affairs of both technologies is considered quite premature. Defining the niche determines the scope of this study and therefore the results. The niche should include only the relevant experiments and actors. The definition is a compromise between a wide scope, certainly including all relevant experiments, and a narrow scope, increasing support for the results. Taking the above into account, the niche is defined to include both conversion routes to nd produce 2 generation biofuels from residues and agricultural waste. st With this decision 1 generation biofuels are excluded. It can be argued that both generations st belong to the same development. Experience with the application of 1 generation biofuels, and in particular the revealed drawbacks, is a major driver for development of the second generation. At the same time, first and second generation biofuels differ significantly in history and the actors that are involved, in the technologies that are applied and in the feedstock that is used. So, where first and second generation biofuels clearly meet, this study includes experiences that have been gained from production and use of first generation biofuels. The two conversion routes that this study focuses on can very well exist alongside each other. At the same time, they can be seen as competitive. In theory both conversion routes utilize the same feedstock; lignocellulosic biomass. And in the end, the products can be regarded substitutes in the (bio-) fuel regime. If, at all, one conversion route would become dominant over the other, this would be an issue in a later stage, when stabilization and structuration occurs. Currently this is not the case yet.
Analysis and data collection The study uses SNM to assess niche development over time. According to the analytical framework, this is realized by observing past and present experiments within the niche and subsequently analyzing internal niche processes. These internal niche processes are characterized by indicators; these can be considered tangible sub concepts of the internal niche processes. Sources that cover the experiments provide the data that is used to compile the indicators and subsequently perform the analysis. This sub-section specifies what indicators are required, how they are interpreted and how they can be obtained. The sub-section is mostly based on Raven (2005). Therefore, for more information, see Raven (2005).
Analysis Assessment of niche development is based on the analysis of three internal niche processes over time. These internal niche processes are: a. Voicing and shaping of expectations b. Network formation c. Learning processes In addition, extra attention is paid to international aspects. How these international aspects are included in the analysis is described in a fourth item: d. International perspective Below follows a brief outline for each of the internal niche processes and what will be points of interest; the indicators to look for. In addition, attention is paid to the international perspective.
Gijs van der Meer - Thesis
22
A. Voicing and shaping of expectations Expectations and promises about new technologies are important for the development trajectory. They convince actors to invest time and effort in something with no direct market value. Changing expectations indicate successful niche development. For successful niche development, expectations should: - Become more robust (Number and variety of actors that share the same expectations) - Rise in quality (Increasing support for expectations in experiments) - Become more specific (Increasing convergence with regard to how to realize expectations. This does not necessarily mean higher expectations) A distinction can be made between micro, meso and macro expectations. This distinction can support in determining the specificity of expectations. - Macro expectations are rather general future visions at the level of society. They tell what society is expected to look like, what major threats society has to cope with and what opportunities can be seized. These expectations provide long term guidance. - Meso expectations are more tangible and concern the general realization of the macro expectations in a nearby future. They concern tangible objectives, at sector level. What direction should a certain sector go? What functions should be fulfilled? - Micro expectations concern tangible short time objectives at the level of technology. How can functions be fulfilled? How can the technology be improved? What are the limitations of the technology? Where should R&D focus on? These expectations give shape to the realization of the meso expectations and form the problem solving level. Preferably, the expectations are balanced. A desirable future vision without an idea of the challenges ahead is unlikely to result in a successful innovation trajectory. B. Network formation The social network of actors surrounding technological development is important in that it carries the development; it provides and activates resources, it articulates demands and expectations. Niche development is therefore also characterized by the formation of a network of actors. The network consists of a number and variety of involved actors, from user and producers to regulating institutions and non-users (For example environmental organizations). This called the composition of the network. For successful niche development, the network of actors should include actors that are capable of initiating, maintaining and expanding the niche. There should be sufficient resources available. Besides, there should be actors that are capable of introducing and pursuing radical change. An important issue regarding the composition of the network is conflicting interests among the actors. The most obvious and important example is that between young, small, innovative enterprises with the aim to develop and market a certain new technology, and established dominant regime actors that have vested interests in the regime that the niche technology will encounter. The alignment within the network of actors is the second characteristic. Alignment can increase with regard to common strategies, beliefs, practices, visions and so on. Also here, the above mentioned issue between young and flexible enterprises versus established, resourceful firms is a point of attention. Indicators for alignment are: a history of cooperation; stable, formal and complex relations (interrelatedness). Another indicator is how the alignment or cooperation came about? There are both positive and negative effects related to established or new networks.
Gijs van der Meer - Thesis
23
C. Learning processes As the trajectory of technological development is characterized by uncertainty, learning is a central issue in niche processes. Learning takes place in various forms, for example about technological performance or economic feasibility, but also about legal issues, changing demands, social acceptance or desirability. - Learning takes place in a large variety of aspects. Examples are: Technology and infrastructure | Development of user context | Societal and environmental impact | Industrial development | Government policy and regulatory framework. - Of particular interest is the utilization of waste and agricultural residues as feedstock. This is not necessarily the most common way to operate, but it is the focus of this study. So have waste and agricultural residues been applied, or considered? If so, what are the experiences? And if not, why not? What is the future perspective of applying waste and agricultural residues? - Another issue that receives special interest is formed by the international aspects. This is highlighted below. Important in learning processes are: problem perception; approaching and dealing with the problem and subsequently; reflecting on the solution. Do learning processes reduce uncertainty or do they mainly reveal new challenges? Within learning processes, a distinction can be made between first and second order learning. First order learning can be described as learning how to reach the next step. A question of the second order would be; why to reach for the next step? – reflecting on the own objectives. An example within the field of biofuels is the desirability of first generation biofuels. Over time, desirability of first generation biofuels is questioned because of sustainability issues. Due to time constraints of the study, ‘learning processes’ are not included in the analysis. D. International perspective This study aims to include an international perspective, observed from the Dutch niche. The goal is to reveal opportunities and barriers that exist for foreign entrepreneurs to deploy initiatives in the Netherlands. Therefore, two issues require attention: - First of all, does the niche indeed extend beyond borders? Does an international field of development exist? Can interaction of internal niche processes be observed? If this is true, than Dutch actors should have a proper idea of the international state of affairs, how it compares to the state of affairs in the Netherlands, and what the incentives and intentions of foreign actors are. - At second place come the answers to these questions; the opportunities and barriers for deploying initiatives in the Netherlands.
Gijs van der Meer - Thesis
24
Sources The analysis of internal niche process requires data about the experiments. Data of both past and present experiments is needed to assess the dynamics of the innovation trajectory. The study considers a future outlook of approximately 5 years. Therefore, developments in the past are assessed, covering a time span of 5 – 10 years. The data is obtained from sources that cover the experiments. The following conditions apply to the sources: - Covering past & present experiments, - First hand (In contrary to indirect sources), - Point of view at the time of writing / speaking (Not retrospective), - Individual viewpoints (In contrary to collective viewpoints). This is a desk study, involving public sources. The available sources are: - Literature (Journals / research reports / conference reports / newspapers / press releases / policy documentation / legal permits / subsidy requests or approvals / corporate statements / annual reports / Internet sites / … ) - Interviews (In person / by phone) Availability of sources is high. A great share of R&D in the field of FT biodiesel and cellulose ethanol in the Netherlands received, or still receives public funding. This usually implies that results are made public. Furthermore, both subjects receive much attention, in R&D and the public debate. At present, it is a hot topic for the authorities and in policy. The report continues with the cases of FT biodiesel, followed by cellulose ethanol.
Gijs van der Meer - Thesis
25
Internal niche processes – FT Biodiesel The study consists of two cases. The present section concerns the analysis of the first case of this study: FT biodiesel. The analysis is carried out according to the design as it is drafted in the previous section. The section starts with a short explanation of FT biodiesel, followed by an inventory of activities in the Netherlands that are related to FT biodiesel. These activities provide the sources for the analysis, which are subsequently listed. The next step is formed by the actual analysis of the internal niche processes ‘Voicing and shaping of expectations’ and ‘Network formation’. The section ends with the international perspective that is derived from the analysis of the internal niche processes. The last three sub-sections reveal opportunities and barriers, which are presented at the end of the respective sub-sections.
FT Biodiesel in the Netherlands Before analyzing the development of FT biodiesel in the Netherlands, this sub-section addresses the questions; what is FT biodiesel, what activities took, and take place in the Netherlands and which activities in particular does this study focus on. What is Fischer Tropsch biodiesel? Fischer Tropsch (FT) biodiesel is a synthetic liquid fuel, produced from lignocellulosic biomass. The characteristics of FT biodiesel are comparable to mineral diesel. Therefore, as expressed in sub-section 3.3, FT biodiesel can serve as an easy to implement, sustainable alternative. The production process (or conversion route) consists of a series of subprocesses. This is illustrated in figure 4.
Figure 4 – Conversion route FT biodiesel
Figure 4 clearly shows the various sub processes in the production of FT biodiesel; pretreatment, gasification, gas conditioning and FT synthesis. The resulting wax is refined to the final product; FT biodiesel.
Gijs van der Meer - Thesis
26
From a technical point of view, FT biodiesel differs from conventional biodiesel (FAME, produced from conventional oils and lipids), on feedstock and production process. 9 Furthermore, these organic diesel substitutes differ on fuel specifications . FT biodiesel in the Netherlands Encouraged by the Kyoto protocol, the Dutch authorities initiated the so-called GAVE program in 1998 to support development and utilization of biofuels in the Netherlands. The objective was the reduction of CO2 emission in the transport sector. Within the GAVE program, the Dutch authorities awarded grants to study the development and production of FT biodiesel, which at that time only existed as a promise in the laboratory. The R&D projects were carried out in the early 2000s by Dutch organizations that possessed knowledge in the field of FT biodiesel. Part of these organizations continued their work and advanced their expertise in follow up projects. In 2003 the European biofuels directive was introduced, with the direct objective to introduce biofuels in the European transport sector. This directive created a market for biofuels and provides an incentive for all biofuel development since its introduction. FT biodiesel is not yet on the market today, not in, or outside the Netherlands. However, a number of Dutch organizations is still active in the field of FT biodiesel. These organizations possess significant knowledge on the sub-processes and collaborate to study the production of FT biodiesel. The past and present R&D projects resulted in expertise and created expectations, not only for the organizations themselves, but also for others, such as the authorities and NGOs. It can be argued that these past and present R&D projects fed niche processes. Therefore, they are the starting point of this niche analysis. An overview of the activities, or experiments, is presented on the next page.
Fischer Tropsch biodiesel experiments Year
Description
Who is involved?
2001 – 2003
R&D project to study the application of fast pyrolysis in the process of FT biodiesel production.
Shell & BTG
2002
Demonstration of technological feasibility to produce FT biodiesel.
Shell & ECN
2002
Feasibility study about the production of FT biodiesel at the Buggenum IGCC plant.
Nuon, TNO & Sasol Technology Netherlands
2005
Shell joins Choren (Germany) and contributes their FT synthesis technology to the demonstration plant of Choren.
Shell, Choren ea.
2007
Feasibility study about FT biodiesel production at the Buggenum IGCC plant.
Shell & Nuon
9
Nesté Oil claims that their hydro treated biodiesel (NExBTL) from oil and lipids does not differ from FT biodiesel (eg. Zwart 2006).
Gijs van der Meer - Thesis
27
Sources - FT biodiesel This sub-section specifies the selection of sources to analyze the development of FT biodiesel. As described in sub-section 2.3, the study is primarily based on written sources, combined with interviews. Together, these sources provide the data to analyze the internal niche processes. The objective of the study is to provide insight in the state of affairs and to provide an outlook of future development of FT biodiesel. The study considers a future outlook of approximately 5 years. Therefore, developments in the past are assessed, covering a time span of 5 – 10 years. Combining the past and present situation allows for mapping the development trajectory and provides ground to look forward. Consequently, sources and data from both past and present experiments are required. This division shows in the sources, covering the present and past situation. Primary sources that reflect the present-day situation are: -
th
BTG (2007), Factsheet pyrolyseolie, February 16 , 2007 Choren (2007), First Commercial BTL production facility – The Choren β-plant Freiberg ECN (2006), Technology options for large scale BtL ECN (2007), Large scale Fischer Tropsch diesel production – opportunities and challenges to shift from black (coal) to green (biomass) 10 Government Vision document (2007), De keten sluiten Milieudefensie (2006), Informatieblad - Biobrandstoffen in voertuigen Shell (2007), Shell Biofuels Shell (2007), Position towards biofuels Stichting Natuur en Milieu (2006), Standpunt Natuur en Milieu: Rijden op goede biobrandstoffen Stichting Natuur en Milieu & De Provinciale Milieufederaties (2008), Heldergroene Biomassa 11
In addition to these written sources, the following persons are interviewed : (The interviews are collected in a separate appendix: Interviews). Bethold Breman Ewald Breunesse Bart Rosendaal Ruben Smit
Sasol Technology Netherlands Shell Netherlands 12 Rosendaal Energy BV . ECN – department of Biomass Coal and Environment
10
The national Energy report 2008 by the Dutch government refers to Biobased Economy Visiedocument 2007. 11 The statements in the interviews are not necessarily corporate statements, but can reflect personal opinions. Unfortunately, Nuon could not cooperate in this study. 12 Rosendaal Energy BV. Is a producer of sustainable energy in general, and biodiesel from conventional oils and lipids in particular.
Gijs van der Meer - Thesis
28
Primary sources that reflect the situation in the past, approximately 5 – 10 years ago, are: -
ECN (2003), ‘Green’ Diesel Production with Fischer Tropsch Synthesis ECN & Shell (2002), Green diesel from biomass via Fischer Tropsch synthesis: New insights in gas cleaning and process design GAVE (1999), Analyse en evaluatie van GAVE-ketens GAVE (2003), Conventional Bio-transportation fuels Milieudefensie (2004), Visiestuk biomassa Ministry of VROM (2001), National Milieubeleidsplan 4 (NMP4) Shell & BTG (2001), Duurzame benzine en diesel uit biomassa via pyrolyse en het Fischer-Tropsch process Shell, ECN, BTG, et al (2002), Strategic Decision Analysis TNO (2002), Large-scale production of biofuels through biomass (co-) gasification and Fischer Tropsch synthesis Stichting Natuur en Milieu (2001), Personenverkeer & Milieu Stichting Natuur en Milieu & European Federation for Transport and Environment (2004), Sense and Sustainability
Additional sources are utilized in the study and when applied, they are referred to in the text. Together, they provide a varied and complete perspective of the development of FT biodiesel. All sources are public.
Voicing and shaping of expectations Voicing and shaping of the expectations is considered one of the three important internal niche processes. This sub-section first describes and then analyzes the expectations that are articulated, and given shape by the various organizations that are involved in the development of FT biodiesel. First, the past situation is drawn up, then the present situation, followed by the analysis. The analysis of the expectations should answer the following question: Do the expectations provide ground for investment, for advancing the technology, for searching for partners to cooperate? In other words, do the expectations give the development momentum? The second aim of the analysis is to reveal opportunities and barriers for the deployment of FT biodiesel.
Past situation This sub-section elaborates on the past situation and describes the expectations that actors held in the early 2000s. Government fuels interest for biofuels in the Netherlands The establishment of the Kyoto protocol in 1998 is an important point in time for the development of biofuels in the Netherlands. The Kyoto resolutions warn for global warming and climate change, attributed to increased emission of greenhouse gasses. The Netherlands sign the resolutions and consequently commit itself to the reduction of greenhouse gasses, in particular CO2. 13 Subsequently, on behalf of three ministries , the GAVE program is initiated in 1998. The objective of the GAVE program is to stimulate and speed up the market introduction of climate neutral gaseous and liquid fuels. The GAVE program aims for the development of climate neutral fuels that could be introduced around 2010 – 2015 on commercial grounds. The 14 criterion is a reduction of CO2 emission by 80% compared to their fossil alternative . A study carried out by Arthur D Little for GAVE (1999) evaluates a large number of options and concludes that ethanol, DME and FT diesel, all produced from lignocellulosic biomass, are the 13
Ministry of Housing, Spatial planning and Environment, Ministry of economic affairs and ministry of Transport and Water 14 GAVE (1999)
Gijs van der Meer - Thesis
29
most promising options. Conventional biofuels, produced from agro-feedstock, are left out of the study, because of their presumed limitations on CO2 emission and high costs. The threat of global warming and climate change is explicitly repeated in two policy documents; the National Milieubeleidplan 4 (NMP4, 2001), presented by the ministry of 15 Housing, Spatial Planning and Environment, and the Energy Report 2002 , presented by the ministry of Economic Affairs. Both documents also emphasize the desire for a transition towards a sustainable energy supply. However, biofuels do not receive special attention. Utilization of biomass, wind, water and solar power is encouraged alongside improvement of energy efficiency and development of advanced energy technology, such as clean fossil energy. Altogether, if the energy supply moves in the desired direction, it should be possible to deal with the problems that exist in the field of energy; energy related emissions, such as CO2 and NOx. In addition, NMP4 states that in contrary to past believes, the energy problem is not a matter of scarcity. Fossil sources are available and will be available for hundreds of years, due to new techniques for exploration and extraction. This energy supply provides time to search for alternatives. Availability is not the problem; it is the question whether energy sources are clean, safe, affordable and accessible at demand. In Energy Report 2002, the authors agree but do point to the issue of dependency on energy import from political instable regimes and suggest among other options diversification of energy sources. In the early 2000s, three R&D projects regarding FT biodiesel are carried out, all financially supported by the authorities, through different channels though. These projects are: -
-
Shell and ECN demonstrate the technical feasibility of FT biodiesel production. (2002, 16 supported by Foundation Samenwerkingsverband Duurzame Energie – SDE ) Shell and BTG carry out a study to combine pyrolysis with the production of FT 17 biodiesel. (2001 – 2003, within the EET program ) Besides the research proposal, no results are made public. However, in a publication of 2002, Shell, BTG et. all. do elaborate on the subject in a Strategic Decision Analysis study (referred to as: Shell, BTG, ECN ea 2002). TNO, NUON and Sasol Technology Netherlands perform a feasibility study about the possibility to produce FT biodiesel at the Buggenum Power Plant (2002, within the GAVE program)
These R&D projects serve as a reference for the state of affairs in the early 2000s from the perspective of research institutes and corporations that are active in the market. A perspective that is closer to the technology and the market. Market response Considering their activities, Shell and ECN are principal actors in FT biodiesel related R&D in the Netherlands. Their motive to engage in this field of research is outlined in Shell & ECN 2002. They start by referring to the increasing rise in attention for utilization of biomass in the 1970s, caused by uncertainty about security of energy supply. At present, there is again increased attention for this energy source. This current rise in interest is due to growing 15
The Energy Report 2002 by the ministry of Economic Affairs, mainly discusses power production and gas supply. Biomass is acknowledged to be the most important renewable energy source at the time of writing. However, a number of obstacles is identified that cause the market to hesitate to invest in biomass projects. These obstacles are given attention in a dialog between market actors and government bodies, resulting in the creation of a so-called Biomass Action Plan (2003). Like the Energy Report, the Biomass Action plan mainly focuses on power production and gas supply. Little attention goes out to transport fuels produced from biomass. It only mentions that a share of 5,75% of biofuels in the total consumption of transport fuels in 2010, as foreseen in EU guidelines, is very ambitious and reckons a share of 2% more likely 16 SDE is a foundation, aiming to combine public and private research. It is established in 1999 and receives financial support from the Dutch ministry of Economic affairs. 17 E.E.T. stands for Economy, Ecology and Technology. The EET program is established in 1996 by the Dutch ministry of Economic affairs, ministry of Housing, Spacial Planning and Environment and the ministry of Education, Culture and Science. It provides financial supports to collaborative R&D projects that combine these elements.
Gijs van der Meer - Thesis
30
concerns about global warming and climate change. Both are attributed to the emission of greenhouse gasses, among others CO2. As a result, the international community established the Kyoto protocol. A great contributor to the emission of greenhouse gasses is the transport sector that consumes large quantities of fossil fuels. So alongside a general interest in renewable energy sources, there is a search going on for renewable energy sources for the transport sector. In addition, the European Commission is working on a directive to replace a certain percentage of fossil fuels in the transport sector by renewable energy sources. Biomass is expected to be a very suitable renewable energy source to supply the transport sector. Biomass derived fuels – biofuels – are expected to be capable to reduce CO2 emission in the transport sector. In addition, the authors refer to GAVE (1999), carried out as part of the GAVE program, that concludes that FT biodiesel is among the most promising routes to produce biofuels. A similar point of view is expressed by Shell in its research proposal with BTG (2001). Biomass could very well be utilized to produce CO2 neutral fuels for transport and could reduce the use of fossil energy sources. However, in this proposal, the authors put more emphasis on the EU directive on biofuels as motivation for their research at hand. They point to the high economical and technical potential of FT biodiesel that could compete with other biofuels. TNO, Sasol and Nuon also comply with the motive to be active in the field of FT biodiesel as sketched by ECN & Shell in their publication of 2002. This group of actors has a specific focus for the co-production of FT biodiesel with power production. Another study in which Shell, ECN and BTG et al (2002) participated takes a broader perspective. They agree with the desire for a transition towards sustainable development and substitution of fossil fuels by fuels derived from biomass. The latter would reduce the use and therefore dependency on fossil fuels. This group of actors compares the utilization of biomass as renewable energy source with wind and photo voltaic power. Wind and PV will likely be cheaper in the near future than fuels derived from biomass. However, the utilization of biomass has the advantage that it can be applied as feedstock for chemicals and specialty chemicals as well, besides the production of fuels for the transport sector. Having said this, the authors acknowledge that even when choosing for biomass, there is great variety in conversion processes (biochemical, chemical or thermochemical) The choice for thermochemical conversion is based on the assumption that it is a omnivore process (able to process a wide variety of feedstock) and that the intermediary product syngas is particularly well suited as a platform technology from which can be chosen among further conversion to chemicals, specialty chemicals and fuels. In the study, the focus is on syngas with the specifications to fit FT synthesis. In addition to the above mentioned arguments, another advantage of FT biodiesel is stated by Shell & ECN 2002 and Shell & BTG 2001. As opposed to conventional biodiesel, FT biodiesel is a synthetic fuel, regarded to be a high quality, ultra clean diesel like product,. This makes FT biodiesel very compatible with the current infrastructure and results is clean combustion and lower emissions aside CO2 emission, such as sulfur and nitrogen oxide. While the above development is taking place in the Netherlands, NGOs do not articulate an opinion on utilization of biomass or future production and utilization of biofuels in particular. In a report by SNM (2001) on passenger traffic and environment, the focus is on air pollution and energy use. Biofuels are no issue. This changes a few years later when in 2004 both SNM and Milieudefensie do present their point of view, which is skeptical. According to them, biomass is better utilized in stationary applications and there are other options to lower CO2 emission in the transport sector. However, they do agree with the desire of a transition towards a sustainable energy supply and diversification of energy sources. Biomass could serve as a renewable energy source, alongside wind, water and solar. If biomass is utilized, than strict environmental criteria should be enforced. (SNM & T/E 2004, Milieudefensie 2004)
Gijs van der Meer - Thesis
31
State of the art The state of the art of FT biodiesel is most clearly illustrated by Shell and ECN 2002. Until 2001, gasification of biomass had been developed up to demonstration phase. FT synthesis had been applied on commercial scale by Shell and Sasol, however, based on syngas produced from natural gas or coal. Integrated biomass gasification and FT synthesis had not been demonstrated before. Up to now. Shell and ECN are the first, worldwide, to demonstrate the technical feasibility of integrated gasification of biomass and FT synthesis, at lab scale. Future FT biodiesel production The outlook on future production of FT biodiesel is one of large scale. In Shell & ECN 2002, the authors state “It is expected that the future of BG-FT systems will be large plants with oxygen blown gasifiers and maximized Fischer Tropsch synthesis” (p.12). The authors label the process of BG-FT an interesting route to reduce CO2 emission in transport (p.10). In the Strategic Decision Analysis by Shell, BTG ECN et al. the authors go further. Indeed, large scale is presumed, with central gasification and, due to the scale size, import of biomass. So much is clear. No statements are made regarding preferences for process configuration. There is a number of rather fundamental choices that were examined. The precondition for the study was a so-called ‘global’ scenario, with central fuel (end product) production. The opposite would be the ‘local’ scenario with distributed fuel production. Still, the option is open to distributed pretreatment or not. And if not, there is a choice for gasification technology to be made. Another approach is that of TNO, Nuon and Sasol (2002) in which FT biodiesel is combined with power production. In this approach, a biomass / coal mixture will be gasified and the produced syngas is applied for either power production or FT biodiesel production. The foreseen advantage is maximized utilization of gasification capacity in IGCC (integrated gasification combined cycle) power plants. The various organizations that are involved in the development of FT biodiesel share a strong anticipation of the EU directive for biofuels that is at hand. The authors often refer to the EU directive and the objectives for 2005, 2010 and 2020, illustrating a growing market for biofuels. However, no expectations about the development of FT biodiesel production in time are expressed. Only in ECN (2003) the authors express their expectations that FT biodiesel could be competitive with conventional biofuels in 2010, presuming large scale production. In Shell, ECN, BTG et al (2002), the authors study the scenario of large scale biomass gasification – and possible FT biodiesel production - in 2010 and consider the availability of a mature production process in 2007 a precondition. Focus of R&D To achieve this possible future production of FT biodiesel, where does R&D focus on? Shell and ECN 2002 state that the technically most critical and uncertain step is perceived to be syngas cleaning. That was the focus of their study, together with exploration about the design of an integrated BG-FT system, in particular with regard to the scale of operations. Concluding, the authors state: “The challenge is now to improve the gasification and gas cleaning technologies to achieve higher energy efficiencies and reduce costs” (p.12) Shell & BTG 2001 particularly aim at perceived problems accompanying the utilization of solid biomass, both in logistics and processing. Pretreating the solid biomass feedstock by means of pyrolysis is expected to tackle these problems. In the Strategic Decision Analysis 2002, the authors explicitly try to get more insight in the possible success of technical development and uncertainty in the projected manufacturing costs of syngas, looking at 2010. The results could be used to give direction to future R&D. Due to various trade offs though, the authors can not give an unambiguous answer what direction the development of FT biodiesel should go. In short, the status of FT biodiesel in the early 2000s can be described as follows; High expectations about the technology exist, but expertise is very limited and therefore uncertainty is high. On one hand, lab tests are carried out to proof certain principles and on the other hand, techno economic feasibility studies are performed to determine the optimal direction of development.
Gijs van der Meer - Thesis
32
Present situation This sub-section elaborates on the present situation and describes the expectations that actors hold in the year 2008. Biofuels in the Netherlands Today biofuels are a fact. In 2003 the EU biofuels directive came into force and was implemented in Dutch legislation, assigning objectives for the utilization of biofuels in the transport sector. In a report over 2007, the Dutch statistical agency CBS briefly summarizes 18 the state of affairs regarding biofuels in the Netherlands . Before 2006, utilization of biofuels was negligible. In 2006, biofuels accounted for 0.4% of total fuel consumption in transport. In 2007, the use of biofuels strongly increased and accounted for 2.8% of total fuel consumption, exceeding the government target for 2007 of 2%. Production of biofuels takes place in the Netherlands to a little extent and at the same time, additional production capacity is under construction. The majority of biofuels is imported. Up to today in 2008, FT biodiesel is not yet on the market. Government vision In the early 2000s, the government demonstrated to be an advocate of biofuels and provided support for a number of initiatives to speed up the introduction of advanced biofuels such as FT biodiesel. An important act was the initiation of the GAVE program by three ministries in 1998. Besides, the government expressed their desires in the NMP4 and the Energy Report of that time. This section specifies the course of these actions and the present vision. The Gave program was initiated to stimulate and speed up the market introduction of climate neutral gaseous and liquid fuels. It provided funds to carry out studies in the field of advanced - biofuels. Today, the main function of the GAVE program is to support the implementation of the EU biofuels directive. In practice, the primary function is to inform and support the Government ministry of Housing, Spatial Planning and Environment on biofuels related issues. Secondly, the program informs the market about government policy and state of affairs. Besides, GAVE aims to gather and combine knowledge and actors in the field of biofuels and from that perspective functions as a facilitator in R&D and deployment of initiatives. The program will remain to exist as long as the ministry of Housing, Spatial Planning and Environment desires. However, GAVE no longer has financial means to finance studies. There are other 19 government support programs that accommodate R&D in the field of biofuels . This is recalled further on in this text. Also in the early 2000s, the government articulated the desire for a transition towards a sustainable energy supply in the policy document NMP4. Focus should be on energy related emissions, of which the transport sector is a great contributor. Biofuels fitted within this desire, but were no particular point of focus. Although the NMP was published every 3 to 4 years, there has not been a follow up to NMP4 in recent years. However, the vision has been consolidated in the recent issues of the energy report, in the 2005 edition and recently in 2008. While the 2002 issue focused primarily at electricity and gas, the Energy Report of 2008 reflects the integral vision on energy in Dutch 20 Policy . In the management review of this latest report, the government vision is characterized by three main related issues, articulated as follows: “A fundamental change of energy supply is required to deal with the global challenges that exist within the field of energy: the rising demand for energy, increasing emission of CO2 and rising prices of energy. Energy supply should be made cleaner, smarter and more diversified”. (Ministry of Economic Affairs 2008b, p1) Also in contrary to the issue of 2002, biomass receives special attention within this government vision on energy supply. For an integral vision on utilization of biomass, the 18
CBS 2008, Duurzame Energie in Nederland 2007 st E-mail conversation with Ms. Te Buck – SenterNovem, November 21 2008. 20 th www.ez.nl (November 24 , 2008) 19
Gijs van der Meer - Thesis
33
Energy Report 2008 refers to a dedicated government vision document on Biomass utilization in the Dutch Economy. The so-called biobased economy is outlined in the vision document 2007. The vision document of 2007; ‘De keten sluiten’, expresses guiding macro expectations of the Dutch government regarding biomass utilization and the position of biofuels within this development. The vision document is a joint act of five ministries, indicating the diversity of 21 the matter . The main aim is a transition towards a sustainable energy supply, and at the same time to reduce the use of mineral oil. Three arguments are put forward to motivate the desire for a transition. 1. Climate change It is assumed that human inflicted GHG emission such as CO2, causes global warming and climate change. Reduction of the use of fossil energy sources, reduces the emission of CO2. 2. Security of supply Security of energy supply is expected to increase as dependency on import of fossil energy sources – oil and gas from politically instable regions – decreases. 3. Oil price The oil price has proved to be vulnerable to strongly increasing demand (China, India), combined with political tensions. There is an interest for a stable and reasonable price level. The above arguments involve the need for alternatives to mineral oil. The government has high expectations about the utilization of biomass to contribute to the desired transition. In fact, is argued, the Netherlands possesses a number of strengths that could be very valuable for the utilization of biomass. These strengths are; a strong international position in agro business, chemicals, logistics and knowledge institutes. These national strengths could be employed in a so-called biobased economy. At the same time, a biobased economy could contribute to the national CO2 emission reduction objectives. In a biobased economy, as this macro expectation is presented, biomass is utilized for food and non food purposes in an optimal way, regarding both primary material and economics. The non food purposes that are envisioned are; chemicals, materials and fuels. The current utilization of biomass for fuels, as driven by the EU biofuels directive, could serve as a first step in the direction of a future biobased economy. The government foresees a role in guiding the market in the desired direction. To encourage market actors, the current cabinet reserved €438M to spend on energy innovation over the 22 coming four years . These financial resources are intended for a wide range of topics, touching upon the biobased economy. Although the GAVE program no longer possesses financial means to support advanced biofuels development in particular, advanced biofuels can count on financial government support. Government programs that provide funds to study advanced biofuels are: EOS (Energie Onderzoeks Subsidie - Energy Research Subsidy), WBSO (Wet Bevordering Speur en Ontwikkelingswerk – Law to stimulate R&D, in SME) and Subsidy scheme Innovative 23 biofuels for transport as part of the Scheme for CO2 reduction .
21
Ministry of Agriculture, Nature and Food Quality; Ministry of Economic Affairs; Ministry of Housing, Spatial Planning and Environment; Ministry of Transport, Public Works and Water Management; Ministry of Development Cooperation. 22 The responsible ministers Cramer and Van der Hoeven announced this in a letter to the parliament on rd July the 3 2008. 23 In 2006, in the first of 5 tenders, €12M was awarded to four initiatives; Sunoil, Nedalco, N2 Energie, BioMCN. None of these organizations is active in the field of FT biodiesel. (Conversation with Mr. th Boerhave of SenterNovem, November 20 2008)
Gijs van der Meer - Thesis
34
Market response Organizations that have an interest in the market confirm part of the macro expectations that the government expresses. Rosendaal, Breman, Breunesse and Smit express their expectation that energy demand will increase and that there will be a future shortage of mineral oil and gas. This results in a volatile and increasing oil price. However, biofuels might not be the answer to increase security of supply. Breunesse and Breman point to the availability of coal and the proven technology of Coal to Liquid. However, this alternative for mineral oil does not offer reduction of GHGs, which is also acknowledged by the above four actors to be increasingly more important. Governments aim at ambitious targets to reduce GHG, such as CO2 and to implement renewable energy sources. One of the government’s acts regarding the reduction of GHGs and utilization of renewable energy sources is the implementation of the EU biofuels directive in Dutch legislation in 2003. This directive forced a market for biofuels in the EU. Up to today, this market is served with conventional biofuels. There are no advanced biofuels available such as FT biodiesel or cellulose ethanol. At present, biofuels are not competitive with fossil fuels. At the same time, consumers do not create a demand; they are not willing to pay for the presumed sustainability aspects. The market actors Shell, Rosendaal and Nedalco confirm that the government incentive is the 24 main reason to supply the presently available conventional biofuels . Besides their economics, conventional biofuels received more criticism due to other unsatisfying results of their application up to today; perceived competition with food 25 production, limited CO2 emission reduction and negative environmental and social impact . Even Rosendaal Energy BV, a producer of biodiesel (FAME) from conventional oil and lipids, studies alternatives for its conventional resources. Recently, the government acknowledged these shortcomings of the biofuels that are available today and adjusted the target for 2010 downwards from 5,75% to 4%. In a letter to the parliament, responsible minister Cramer expresses her expectation about next generation biofuels – second and third. Furthermore, she suggests to keep options open for diversification of the targets for 2020 and to include other forms of renewable energy for the 26 transport sector aside biofuels . By expressing her expectations about so-called second or third generation biofuels, Cramer touches upon an interesting issue in biofuels development, a division in generations. Commonly, conventional biofuels are labeled first generation, while advanced biofuels are labeled second generation. There are no formal criteria, but in general the typology is used to move away from the negative side effects that are currently associated with biofuels. Aspects of importance are: CO2 reduction, competition with food production, type of feedstock, conversion technology and fuel characteristics. FT biodiesel is generally considered to be a 27 second generation biofuel . All sources reflecting the present situation – as mentioned in sub section 3.2 - agree that the use of conventional biofuels from edible feedstock should be avoided and / or eventually discontinued, due to their limited environmental potential and negative side effects. Promises of FT biodiesel It is expected that FT biodiesel performs better on CO2 reduction than conventional biofuels. There is a shared expectation that FT biodiesel is capable of reducing CO2 emission in 24
Interviews with Breunesse, Rosendaal and Woldberg, 2008. NGOs, discussion in Dutch media and parliament, and international reports, for example: OECD – Economic Assessment of Biofuel Support Policies 2008, World Bank – Rising Food Prices, Policy Options and World Bank Response 2008, Gallagher review July 2008. 26 Minister Cramer, letter to the chairman of the House of Representatives (tweede Kamer) 13 October th 13 2008 27 Government vision document Biobased Economy 2007, www.vrom.nl November 2008, Stichting Natuur & Milieu 2006 & 2008, Milieudefensie 2006, Breunesse 2008 and Rosendaal 2008 indicate that the division between 1G and 2G is not that straightforward. Breunesse argues that FT biodiesel could be labeled 2,5G. 25
Gijs van der Meer - Thesis
35
28
transport . The estimates about the extent of CO2 emission reduction differ among 29 organizations and range from 50 – 90% . These estimates are hard to compare as there is no uniform method to calculate CO2 emission reduction. Furthermore, some organizations do not differentiate between biofuels, but consider 2G biofuels in general, such as the government and NGOs. In contrary to conventional biofuels, it is expected that production of FT biodiesel avoids the competition with food production. The production of FT biodiesel does not require edible feedstock, but can utilize waste and agricultural residues in stead. According to this argument, 30 competition with food production is avoided . The NGOs and Rosendaal do not fully agree. They argue that for assessing possible competition with food production, land use can not be neglected. Production of biomass still requires arable land and there are limitations to the level of waste and residues that can be utilized. Another advantage of FT biodiesel over conventional biodiesel, Shell states, are the desirable 31 fuel characteristics . While conventional biofuels can be used as substitute for fossil fuels to a certain extent without engine modifications, FT biodiesel is practically 100% compatible with fossil diesel. Shell performed very satisfying experiments with FT biodiesel that was produced 32 at Choren . State of affairs Although FT biodiesel has advantages over conventional biofuels, the product is not yet on the market. In fact, the technology to produce FT biodiesel is not yet mature. This is agreed by all sources reflecting the present situation. Shell collaborates with a German company called Choren. This company operates a pilot plant to produce FT biodiesel and is currently commissioning a commercial demonstration plant. On a global level, Choren is the first and only one to have reached this state of 33 development regarding FT biodiesel and there is no runner-up in sight . However, according to Breunesse, commercial availability of FT biodiesel could require another 10 years. Smit, Breman and Rosendaal do not articulate a time span, but agree that commercial FT biodiesel production is not near. Even the government acknowledges that 2G technology might require from 5 up to over 10 years of development before it will be available 34 (2012 – 2017) . Future FT biodiesel production This section specifies the expectations about future FT biodiesel production. These expectations relate to the business, production facilities and the market. The production of FT biodiesel is a complex process. There is no clear view on what future FT biodiesel production will look like. Breunesse, Smit and Breman agree that there need not be a single solution. However, the actors in the field all have their expectations of, and considerations about future FT biodiesel production and this is outlined below.
28
Government, Stichting Natuur & Milieu, Milieudefensie, Shell, Breman, Government: 50 – 90%, statement in the Biobased Economy vision document 2007, expectations are based on VIEWLS 2005. Stichting Natuur & Milieu 2006: 80% Shell articulates 90% CO2 reduction, based on a Life Cycle Analysis of Sundiesel, the FT biodiesel made by Choren. Milieudefensie 2006: 60%, based on CE 2005, Biofuels under development. 30 Government, Shell, Smit, Breman. 31 Acknowledged by Rosendaal and Smit. 32 Breunesse 2008, also: Shell press statement June 15th 2008 – BtL used in 24h of Le Mans. 33 Breman, Breunesse, Smit. 34 Expressed in their vision document Biobased Economy 2007. 29
Gijs van der Meer - Thesis
36
Scale It is expected that FT biodiesel can profit from economy of scale advantages. Consequently, future FT biodiesel production is expected to be large scale. This implies large plants, large investments and large actors that have the financial means to construct such a facility. 35 Accordingly, large quantities of feedstock will be required . Feedstock An important presumed advantage of FT biodiesel over conventional biofuels is the use of waste and agricultural residues, in stead of edible feedstock. This would avoid the competition with food production. After unsatisfying results with current biofuels, NGOs and the government are very aware of sustainability issues and both are working on sustainability criteria to prevent competition with food, but also take into account other environmental and 36 social issues such as biodiversity and local welfare . Sustainability of feedstock is an important aspect of sustainability of biofuels overall. To answer the question whether or not there is sufficient feedstock available, taking sustainability criteria into account, Stichting Natuur & Milieu 2008 recalls two studies (EEA 2006 & CE 2007). The first indicates that in 2030, within the EU, there will be sufficient biomass available to supply 15% of total energy consumption. In particular residues from forestry, agriculture and waste. The second study concludes that on a global level, there is a large potential of sustainably produced biomass in 2050. However, it should be pointed out that these figures are long term expectations and include the notion that action should be taken to actually make these resources available. In a remark on the utilization of waste and agricultural residues, Breunesse refers to Choren, frontrunner in the field of FT biodiesel production. This company will use waste wood and 37 wood chips from forestry for their demonstration plant that is currently being commissioned . This is still a controlled feedstock and not the presumed waste and agricultural residues. In addition, the utilization of more diverse feedstock will require additional R&D. Another remark on the utilization of waste and agricultural residues is made by Breman and Rosendaal. They point to the challenges in logistics and handling of lignocellulosic feedstock, such as waste and agricultural residues. This will require a dedicated logistical system for collection, conservation, handling and possibly pretreatment. And there is the question about the origin of the feedstock. The government vision on the biobased economy assumes import of biomass and emphasizes the need for sustainability criteria and a proper control system. Considering the existing large scale import of biomass – for cattle feed and the food and beverages industry – large scale import of biomass for biofuel production seems unquestioned. This is also reflected in the ECN study about large scale FT biodiesel (ECN 2007). The NGOs do not explicitly reject large scale import of biomass. However, there exist doubts about large scale import of biomass. Breunesse questions the Dutch desire of large scale import and suggests the utilization of existing streams of waste and residues. He also points to the balance of nutrients. In addition, Den Uil 2008 states that not everyone is convinced of large scale import of biomass.
35
According to Breman, Breunesse, Smit and Rosendaal. SNM 2008 – Heldergroene Biomassa, Vision document – Biobased Economy 2007. 37 Choren 2007. 36
Gijs van der Meer - Thesis
37
Configuration of operation Related to the above issues of scale and feedstock, is the possible future configuration of operation. As Breman, Breunesse, Smit and Rosendaal state, for production of FT biodiesel, economies of scale are beneficial. However, the availability of feedstock is distributed. In addition, transport and logistics of biomass increase the cost of feedstock. ECN (2007) carried out a study about the economics of various configurations for large scale FT biodiesel production, assuming overseas production of feedstock. ECN presents three possible configurations; -
Import of raw feedstock and central production close to the market, Import of pretreated feedstock and central production close to the market, Local production and import of end products.
ECN concluded that pretreatment near the source of feedstock can improve the overall economics, but local production of the end product is economically most interesting. However, other considerations, such as dependency on feedstock, political stability or existing 38 infrastructure also influence the decision about the preferred configuration . As Smit mentions, an advantage of processing biomass is the possibility to combine it with coal processing. This enables an alternative configuration of operation, that is, production of FT biodiesel combined with processing of coal. For instance in dedicated synthetic fuel production plants that combine biomass and coal as feedstock. Another option is to combine synthetic fuel production with power production, in an IGCC plant, that is fired with - a combination of coal and - biomass. This latter option was studied by TNO, Sasol and Nuon in 39 the early 2000s and recently by Shell and Nuon . In both cases, the IGCC power plant at Buggenum, owned and operated by Nuon, is used as test facility. Breunesse and Breman also consider this to be an interesting configuration of operation. Economics As stated earlier in this paragraph, biofuels are not yet competitive with fossil fuels. Furthermore, Breunesse adds that advanced biofuels such as FT biodiesel are presently more expensive than conventional biofuels. In contrary to Breman and Rosendaal, Breunesse keeps the option open that FT biodiesel can eventually compete with conventional biofuels. The other two strongly question the current and future economics of FT biodiesel. Rosendaal refers to the IEA report World Energy Outlook 2006. This report shows expected prices of biofuels in the year 2030 – See figure 5. The price of FT biodiesel will drop, but it will still be more expensive than conventional biodiesel. Breman confirms this point of view and adds that as far as he can judge, there are no developments at hand that could significantly reduce costs of FT biodiesel.
38 39
Den Uil 2008, Breunesse 2008. th Technisch Weekblad, March 7 2007.
Gijs van der Meer - Thesis
38
Figure 5 – World Energy Outlook (WEO 2006)
The expected unfavorable economics are attributed to a number of issues. First of all, the technology is complex and not yet mature. There are a number of technical challenges, which are being targeted in current R&D, discussed later on. These technical issues are generally the result of differences between processing coal (proven technology) and biomass (new application). (Smit, Breman). Second issue is the feedstock and its distributed availability. Breman estimates that even if the feedstock would be offered at zero cost, it would be an expensive feedstock at the location of fuel production, given the costs of collection, logistics and pretreatment. Rosendaal confirms this opinion. Furthermore, the complex technology requires large scale production, thus high capital costs and consequently high investment costs. On this point, Rosendaal mentions that the global financial crisis makes it very difficult to finance unproven technology. Lastly, Rosendaal points to the high energy consumption of the process. Taking into account that energy prices are expected to increase over time, this adds to the unfavorable economics of FT biodiesel. As Breman summarizes his point of view, the technical challenges can eventually be solved. But then still, the economics of FT biodiesel are not convincing. Smit, Breunesse and Rosendaal add that market conditions will determine whether or not industry will invest in FT biodiesel. This makes the case for FT biodiesel difficult and puts more emphasis on an external 40 incentive, such as the oil price or government regulation . The EU biofuels directive is 41 regarded to be a very important driver for FT biodiesel . However, the incentive as it 42 presently is might not be sufficient and dedicated support for advanced biofuels is desired . This illustrates the important role of the government in biofuels development in general and FT biodiesel in particular. While government action created a market for biofuels, she also receives criticism from the market actors. Uncertainty about government policy and changing
40
Shell 2007, Breunesse, Rosendaal, Breman. ECN 2007, Smit, Breunesse, Breman. 42 In the press statement in which Choren announces their plans for a third plant – sigma plant – a particular government incentive to support second generation biofuels is called indispensable. (Choren th press statement December 18 , 2007) 41
Gijs van der Meer - Thesis
39
objectives create an uncertain investment climate which, hampering the development and 43 deployment of biofuels . Focus of R&D Research and development in the field of FT biodiesel reflects the issues that are articulated in the above sections. The focus is on technological challenges and various configurations of operation, to arrive at optimal economics. Or, as stated in the presentation by ECN (2007) “Combining technologies to improve efficiencies and economics”. As an employee of ECN, Smit is well informed about R&D in the field of FT biodiesel. Breman agrees with Smit who states that the technical challenges are the result of the translation between the conversion of coal and biomass. Most of the technologies that are applied for FT biodiesel production, are rooted in coal processing. Coal to liquid is a proven conversion route. However, biomass differs in characteristics from coal and therefore, coal can not be substituted by biomass one on one. According to Smit, at international level R&D focuses on the following technical challenges: -
Pretreatment and feeding of biomass in entrained flow gasifier, Ash and slag behavior during gasification, Gas cooling and hot gas clean up.
Parallel to the technical challenges mentioned above, is a search for the optimal configuration of operation. A good illustration is formed by the study by ECN (2007). Another example is a joint project of Shell and Nuon about the production of FT diesel at an existing IGCC power 44 plant . In this way, a mixture of coal and biomass could be used as feedstock to produce a synthetic diesel, with a ‘bio’ component. The production of synthetic fuels from various feedstock is of particular interest to Shell, who sees this umbrella of conversion routes that 45 they call XtL, as the answer to the increasing demand for transport fuels . In between the technical challenges and the optimal configuration of operation is the research on pretreatment processes. As mentioned earlier, pretreatment could reduce overall cost of FT biodiesel production when feedstock is imported on large scale from overseas. ECN develops the technology of torrefaction (Together with pelletisation called the TOP process). BTG, involved in earlier R&D concerning the production of FT biodiesel, continued working on the technology of fast pyrolysis. This technology could be used as pretreatment process in the 46 production of FT biodiesel. Both torrefaction and pyrolysis are not yet mature technologies . Furthermore, Smit and Breman argue that activities in the field of biomass processing are scattered. There is no single actor that possesses knowledge and expertise about the overall conversion process. Therefore, a consortium of actors is required and more attention should go out to integration of the various process steps. Lastly, Breunesse and Rosendaal emphasize that development trajectories like FT biodiesel are commonly lengthy. Breunesse points to the present development by Shell of Gas to Liquid, which covers decennia. Competing technologies In the field of utilization of lignocellulosic biomass, FT biodiesel is not alone. This is most clearly put forward by the government, who explicitly does not point to a particular technology, when they articulate their high expectations for the utilization of biomass. However, others do. Rosendaal, for instance, argues that conventional biofuels are cheaper today and will be cheaper in the future. With alternative feedstock such as algae, sustainability aspects and 43
This is acknowledged by actors that are involved in FT biodiesel as well as those that are active in the field of cellulose ethanol. 44 th Technisch Weekblad, March 7 , 2007. Unfortunately, Nuon could not give additional information about this R&D project. 45 Breunesse 2008. 46 th ECN 2007; Breman 2008; BTG – Factsheet pyrolyseolie, February 16 , 2007.
Gijs van der Meer - Thesis
40
47
CO2 reduction can be satisfying and large volumes can be produced . In addition, by hydrogenating conventional biodiesel (FAME), a fuel is produced with similar characteristics 48 as synthetic diesel . Smit and Breman point to the competition in use of biosyngas, the synthesis gas that is produced from biomass gasification (See also sub section 3.1). This biosyngas can be utilized for other purposes than FT fuels. ECN 2006, presents a comprehensive overview. There is an existing syngas market, based on fossil sources. Apart of FT fuels, syngas serves as a 49 platform chemical to produce; ammonia, hydrogen, mixed alcohols, DME, methanol, CHP . Another interesting development is the technology of fast pyrolysis, according to Breman. This technology is being developed by BTG. The product, pyrolysis oil, can indeed be used as intermediate product in the production of FT biodiesel. However, it is expected that pyrolysis oil can also be directly refined and it has been successfully tested for co-firing in electricity 50 plants . Lastly, when considering alternatives to mineral oil, coal should not be neglected. Breman and Breunesse point to the large coal reserves. The availability of these reserves is less vulnerable to political turbulence and sudden price changes. Therefore, Coal to Liquid (CtL) presents a cheaper and proven alternative to supply the increasing market. In addition, if Carbon Capture and Storage (CCS) technology is successfully developed, Coal to Liquid and Gas to Liquid will be even more attractive. However, in the end, they do not offer the opportunity of significant CO2 reduction like Biomass to Liquid. To summarize the status of FT biodiesel in 2008: Over the years, expertise with FT biodiesel increased. The technology is demonstrated to function. However, it proved to be complex, technical challenges remain and the technology is not yet mature. Ultimately, technological issues can be overcome, but there are doubts about the future economics. Today, R&D focuses on the technical challenges that still exist, viable configurations of operation and general improvement of economics. FT biodiesel is still a promising biofuel, but its availability is not close. Its success seems to depend on external incentives.
Analysis of expectations After drawing up the expectations in the past and present situation, this sub-section continues with the analysis of the internal niche process. It starts by assessing the indicators of ‘voicing and shaping of expectations’: robustness, quality and specificity. Subsequently, the outcomes are aggregated to argue whether or not the niche process is successful. Lastly, the opportunities and barriers for deployment are derived from the analysis of the expectations. Robustness Perception of FT biodiesel has changed over the years. Not all past expectations are still expressed and some ‘young’ expectations are shared among the various actors in the field of FT biodiesel. It is therefore useful to present the analysis of robustness of expectations along a brief review of how FT biodiesel is regarded over time by various actors in the field. Initial expectations about FT biodiesel were driven by the EU biofuels directive. FT biodiesel was regarded to be a technologically and economically promising biofuel to anticipate the demand for biofuels. The product was particularly praised for the potential CO2 emission reduction, fuel characteristics and compatibility with existing fuel infrastructure. First time demonstration at lab scale took place and studies were carried out to plan the direction of further development towards economically viable production of FT biodiesel around 2010. A number of technological, economical and logistical challenges were revealed. However, there was no clear direction for optimal development.
47
Rosendaal refers to World Energy Outlook 2006. For example, the product NExBTL by Neste Oil; www.nesteoil.com. 49 ECN 2006 Synthesis Gas from biomass for fuels and chemicals. 50 th This is confirmed by BTG in their Factsheet pyrolyseolie, Februari 16 , 2007 48
Gijs van der Meer - Thesis
41
Today, FT biodiesel is still presented as a promising biofuel - and not as an alternative to mineral oil. Fuel characteristics are demonstrated in experiments, development of the production process has significantly advanced, but the process is still far from mature. Technological challenges remain and deployment of the process is not near. Most actors argue that the economics of FT biodiesel are unfavorable and that there are no direct future improvements that they know of. Besides, the number of Dutch actors that is active in the field of FT biodiesel has decreased. Present expectations that got more robust are the following: -
There is an increasing market for biofuels, in particular as a result of the EU biofuels directive and possibly in the future due to economic incentives, such as a rising price of mineral oil.
-
FT biodiesel is a desirable biofuel, capable of significant CO2 emission reduction, with very satisfying fuel characteristics, and very compatible with the existing fuel infrastructure. By utilizing waste and residue streams, the food vs. fuel issue is avoided. Therefore, FT biodiesel is a desirable alternative to conventional biodiesel (FAME).
-
An advantage of FT biodiesel is that it can be produced in a combination of biomass and coal (Biomass to Liquid & Coal to Liquid).
-
At present, the economics of FT biodiesel do not look favorable and therefore, deployment of FT biodiesel depends on external incentives.
-
There is indeed a search for alternatives to mineral oil; however, FT biodiesel might very well not be the answer. This is due to competing biofuels, competing technologies for biomass conversion and competing alternatives to mineral oil.
Quality The various experiments that have been carried out, increased support for a number of technological and non-technological expectations that are shared today. -
Experiments demonstrated that the production of FT biodiesel is a very complex process and that a mature production process is not available within a few years.
-
Utilization of waste and agricultural residues - a precondition to avoid the competition of food vs. fuel - will present additional challenges. These challenges are due to feedstock logistics, fluctuation of composition and impurities. Choren does not consider waste and agricultural residues for their next demonstration scale facility, the future Sigma plant.
-
Results from experiments did not provide support for improvement of economics. In contrary, the outlook on the economics of FT biodiesel is unfavorable.
-
Tests with SunDiesel, the product name of FT biodiesel produced by Choren, demonstrated that FT biodiesel is indeed a very satisfying biofuel, in particular with regard to fuel characteristics and compatibility with the existing fuel infrastructure.
-
In addition, studies based on the production of SunDiesel by Choren support the positive prospects about CO2 emission reduction potential. However, especially from the future perspective of large scale production, by means of an advanced production process – which is not yet available.
-
Utilization of conventional biofuels demonstrated that consumers are not willing to pay for biofuels and the perceived environmental benefits. There is no market demand without a government incentive.
Gijs van der Meer - Thesis
42
-
Furthermore, the utilization of conventional biodiesel (FAME) demonstrated undesired consequences of biofuels, in terms of costs, CO2 emission reduction, competition with food production – and related; the potential volume of conventional feedstock. This supports FT biodiesel as an alternative biofuel.
Concluding can be argued that the quality of the above expectations increased; experiments provided support for these expectations. However, like for the robustness of expectations, not all the expectations that increased in quality support the introduction of FT biodiesel. Specificity The division of expectations into macro, meso and micro expectations to support the analysis of specificity is difficult and of little support to the analysis. The reason is that important expectations have changed or are not shared among the actors. Moreover, the expectations that are expressed reveal few details, both in time and objective. The first impression of specificity must therefore be that expectations are hardly converging. As a substitute, a less sophisticated approach is used to assess specificity of expectations. The principal objective was to develop a process for commercial production of FT biodiesel, to be operational around 2010. Today in 2008, there is no mature process available for commercial production of FT biodiesel. Expectations about the availability of such a process are reserved. Availability of a mature process could easily be a similar period away from now; approximately 10 years. However, apart of the delayed development scheme of Choren, there are no confirmed expectations in time about intermediate results or progress that is at hand. In time, no increasing convergence of expectations occurred with regard to technological development. In spite of demonstration of the process and progress in technological development, present R&D focuses on similar challenges as in the early 2000s, without stating objectives in time about performance. No increasing convergence of expectations occurs about the optimal configuration of operation. Technological development influences the optimal configuration of operation, but there is no industrial preference yet. It is acknowledged though, that more viable configurations could exist alongside each other. Both technological development and viable configurations of operation aim for optimization of overall economics of production. These are not satisfying at present. No clear expectations are expressed how commercial production of FT biodiesel can be achieved. In fact, it is acknowledged that market conditions will determined whether or not industry will invest in FT biodiesel. Conclusion Expectations about FT biodiesel changed over time. Some expectations got more robust, both in favor of, and against the development and deployment of FT biodiesel. Part of the favorable and unfavorable expectations is supported by results from experiments that have been carried out. However, regardless of the technological progress over time; from proof of concept to the advancement of the production technology of FT biodiesel, increasing convergence with regard to realization of expectations hardly occurred. The process of voicing and shaping of expectations indeed occurred in the niche of FT biodiesel. However, only to a degree did voicing and shaping of expectations provide support for the development of FT biodiesel. It is questionable whether or not the expectations convince the actors to invest time and effort for further development and deployment of FT biodiesel.
Gijs van der Meer - Thesis
43
Opportunities and barriers Analyzing the process of voicing and shaping of expectations provides insight in the development of FT biodiesel in the Netherlands. Besides, the analysis also reveals a number of opportunities and barriers regarding its development. These opportunities and barriers are divided over two categories: -
Present opportunities and barriers: robust expectations, supported by results from experiments. Considered an actual opportunity or barrier for FT biodiesel at present. Potential opportunities and barriers: robust expectations that are not - yet - supported by experiments. These expectations are important to convince actors to invest time and effort.
-
Present opportunities and barriers +
FT biodiesel is a desirable biofuel; fuel characteristics are very satisfying and the fuel is proven to be very compatible with the existing fuel infrastructure.
-
The technology to produce FT biodiesel is far from mature. Present experiments demonstrate that FT biodiesel is a very complex process. Ultimately, technological challenges can be overcome, but it could very well require another 10 years to develop a mature, large scale process.
-
The present outlook on the economics of FT biodiesel does not look favorable and experiments did not provide support for improvement of future economics.
-
In addition, utilization of conventional biofuels demonstrated that consumers are not willing to pay for biofuels and the perceived environmental benefits. At present, there is no market demand without a government incentive.
Gijs van der Meer - Thesis
44
Potential opportunities and barriers +
The prospects of CO2 emission reduction are promising. It is generally expected that significant reduction of CO2 emission is possible. Based on experiences by Choren, Shell estimates that CO2 emission reduction of 90% is within reach.
+
There is an increasing market for biofuels, in particular as a result of the EU biofuels directive and possibly in the future due to economic incentives, such as a rising price of mineral oil.
+
It is expected that FT biodiesel avoids the drawbacks of conventional biodiesel (FAME), in terms of costs, CO2 emission reduction, the potential volume - and related: competition with food production.
+
An advantage of FT biodiesel is that it can be produced in a combination of biomass and coal (Biomass to Liquid & Coal to Liquid).
-
Avoiding the competition of food vs. fuel is in potential promising for FT biodiesel. However, the precondition to avoid this issue, utilization of waste and agricultural residues, is expected to present new challenges. These challenges are due to feedstock logistics, fluctuation of composition and impurities.
-
There is indeed a search for alternatives to mineral oil; however, FT biodiesel might very well not be the answer. There are competing biofuels, competing technologies for biomass conversion and competing alternatives to mineral oil.
Gijs van der Meer - Thesis
45
Network formation This sub-section is dedicated to the analysis of the second niche process: network formation. It starts by drawing up the composition of the network and the changes over time. This is repeated for the alignment of the network and followed by the analysis. Like for the previous niche process, the analysis addresses the question to what extent network formation contributes to successful niche development and what opportunities and barriers exist.
Composition The composition of the network, and the changes over time, are observed according to a number of characteristics: actor characteristics; the extent to which they are capable of introducing and pursuing change; whether or not they have the intention and right incentive to do so; and whether or not these interests and incentives conflict. Actor characteristics In the early 2000s, Dutch authorities gained interest in biofuels. They expressed their desire for biofuels, and initiated and supported a number of R&D projects targeting FT biodiesel. The 51 52 desire for biofuels and support programs (GAVE and EET ) were carried by four governmental departments: -
Ministry of Housing Spatial Planning and the Environment (VROM) Ministry of Economic Affairs (EZ) Ministry of Transport, Public works and Water management (V&W) Ministry of Education, Culture and Science (OC&W)
A number of (semi public) research institutes and business actors carried out the R&D projects or were already active in the development of FT biodiesel. These are: -
Energy research Centre of the Netherlands (ECN) TNO-MEP Sasol Technology Netherlands Shell / Shell Global Solutions International Nuon Biomass Technology Group (BTG)
ECN, TNO-MEP and BTG have expertise in thermochemical conversion of biomass. Sasol Technology Netherlands (Subsidiary of Sasol Ltd. - South Africa) and Shell are petrochemical conglomerates and the only two companies worldwide that have commercialized FT synthesis 53 for the production of transport fuels from coal and natural gas . Apart of possessing the technology and mastering the process of FT synthesis, Shell is involved in exploration and exploitation of mineral resources, a fuel retailer and partner of the automotive industry. Nuon is a Dutch public utilities company and owner of the IGCC electricity plant Buggenum, which co-fires biomass. And although Nuon obtained their independent and commercial status recently, these are all established organizations.
51
GAVE (1998 – today): VROM, EZ, V&W EET 1996 - 2003: VROM, EZ, OC&W (Since 2004: “Innovatiesubsidie Samenwerkingsprojecten”) 53 Breman 2008 52
Gijs van der Meer - Thesis
46
The present situation in 2008 shows a change in actors that is involved in the development of FT biodiesel. The national authorities are still a significant promoter of biofuels – following implementation of the EU biofuels directive. Financial support for R&D has declined, but the desire for utilization of biomass in general, together with biofuels has increased. And by implementing the EU biofuels directive, the authorities adopted the role of regulator, besides their position as policy makers. Today, the government vision on utilization of biomass is 54 carried by the following departments : -
Ministry of Housing Spatial Planning and the Environment (VROM) Ministry of Economic Affairs (EZ) Ministry of Transport, Public works and Water management (V&W) Ministry of Agriculture, Nature and Food quality (LNV) Minister of Development cooperation (OS)
Although the research institutes and business actors that were involved in development of FT biodiesel in the early 2000s mostly continued the work in their particular fields of expertise, not all aim at the production of FT biodiesel. Today, FT synthesis receives less attention at TNO-MEP than in the past. They focus on other ways of physical chemical conversion of biomass, such as pyrolysis, hydrothermal 55 upgrading and supercritical water gasification . BTG and Sasol Technology Netherlands continue their work on pyrolysis and FT synthesis respectively, however, without a particular focus on FT biodiesel. Nuon, ECN and Shell are still active in the development of FT biodiesel and cooperate in R&D projects. In addition, Shell joined the German company Choren in 2005. Choren operates an integrated pilot facility for the production of FT biodiesel. For the demonstration facility of Choren that is currently being commissioned, the Beta plant, Shell contributed expertise on 56 biomass gasification and their technology for FT synthesis . Related to the topic of FT biodiesel is an initiative that is coined by Port of Rotterdam, ECN, 57 Techno Invent and MICRO Chemie in 2005 . They presented a draft plan to establish a demonstration park for sustainable energy. According to the plan, a number of additional organizations is interested to become involved in a demonstration park, that would be based on biomass gasification. However, there is no explicit aim for FT biodiesel. While interest in biofuels increases and conventional biofuels are used, awareness of NGOs rises. By participating in the discussion on biofuels and expressing their views on biofuels, they can be considered part of the network too. This study considers the viewpoints of two Dutch NGO’s with a significant history; Stichting Natuur en Milieu and Milieudefensie. Furthermore, producers of conventional biodiesel are also part of the network as they are confronted with a potential competition to their product. This study incorporates the point of view of Rosendaal Energy BV., a young Dutch biodiesel producer. A brief description of these organizations is found in Appendix B. Introducing and pursuing change As can be derived from the previous section; all the actors combined, the network possesses significant resources for introducing FT biodiesel and pursuing change. These resources comprise knowledge and expertise, research facilities, capital and product supply infrastructure. In particular the collaboration of Shell and Choren adds valuable expertise and research facilities to the network. Besides, the network includes a link with the automotive industry and fuel consumers. Furthermore, today NGOs are also occupied by the development of biofuels, and government support increased.
54
Government vision document (2007), De keten sluiten Interview Johan van Groenestijn - TNO, 2008, Ruben Smit - ECN, 2008. 56 See further reference on Shell / Choren that follow 57 Port of Rotterdam et al (2005), Demonstratiepark Duurzame energie Rijnmond 55
Gijs van der Meer - Thesis
47
Interests and incentives Different actors have different reasons to participate in the development of FT biodiesel. Government Initially, the Dutch government was interested in the utilization of biomass from the perspective of a transition towards a sustainable energy supply and the reduction of CO2 emission. Both desires are a response to global warming and the threat of climate change, and the subsequent establishment of the Kyoto protocol. The problem with energy supply was in energy related emissions, not so much in availability. Energy sources were to be clean, 58 safe, affordable and accessible at demand . This government vision has changed to a certain extent. Today the government still desires a transition towards a sustainable energy supply and reduction of CO2 emission to meet the Kyoto protocol objectives. But more in particular, there is a need for a sustainable alternative to mineral oil, because of; - The treat of global warming and climate change, - Increased, and undesirable dependency on import of mineral oil and gas, - The increasing and volatile oil price. Moreover, the authorities are particularly interested in the utilization of biomass. Biomass could serve as a renewable resource for a range of food and non food purposes, such as fuels, chemicals and materials. This so-called ‘biobased economy’ could offer significant opportunities for the Dutch economy and fits with national capabilities in biotechnology, 59 logistics and agribusiness . NGOs The interest of both Stichting Natuur en Milieu and Milieudefensie is in preservation of the natural environment and the increase of social welfare. At first, NGOs were not occupied by the development and initial utilization of biofuels. This changed with the utilization of conventional biofuels in the Netherlands. Both acknowledge the threat of global warming and climate change and support a transition towards a sustainable energy supply, together with the desire to reduce the use of mineral energy sources. Biofuels could contribute to these desires; however, they should be covered by sustainability criteria, preventing negative environmental and social effects. FT biodiesel is 60 regarded to be an acceptable biofuel . Research institutes The objective of research institutes ECN and TNO is to be in the forefront of technological development, to advance public relevant knowledge and technology and bring it to the market. Both are active in the utilization of biomass as promising renewable resource for energy, chemicals and materials. In general their scope goes up to pilot scale demonstration. If desired, ECN and TNO carry out contract research and provide knowledge and consultancy services in the phases towards commercialization. Although they are not commercial, the research institutes are supposed to generate income, so they are interested in commercialization of knowledge. But it is not the 61 aim of the research institutes to commercialize FT biodiesel . Smit (2008) mentions that ECN presently does not develop technology that is directly related to the production of FT biodiesel. However, ECN does develop technology for the production of SNG (Substitute Natural Gas). Sasol and BTG have commercial interests. Both organizations participate in research and development that fits the development of FT biodiesel. Their knowledge and expertise can be
58
VROM (2001); NMP4, Ministry of Economic Affairs; Energy report 2002 Government vision document 2007; De keten sluiten 60 SNM 2006, SNM & De provinciale Milieufederaties 2008, Milieudefensie 2006 61 Interview Smit - ECN, Groenestijn – TNO, 2008 59
Gijs van der Meer - Thesis
48
valuable in the development of FT biodiesel, but they do not specifically aim at 62 commercialization of FT biodiesel . Business Shell has a long tradition in exploration and exploitation of fossil resources and as a transport fuel retailer. They acknowledge the increasing demand for energy and transport fuels and the depleting reserves of mineral oil. At the same time, throughout the world, various governments encourage the use of biofuels. This stimulated Shell to study the production of satisfying biofuels; satisfying in economics, potential volume, fuel characteristics and environmental performance. Shell is also a technology developer. The combination of an increasing demand for liquid energy carriers and the increasing desire for biofuels, led to the development of the XtL family. The XtL family covers the conversion of coal, gas and biomass to liquid, making use of FT synthesis. Shell has high expectations of the XtL family and invests in its development. Within this family of synthetic fuels, BtL - or FT biodiesel - has the potential to reduce CO2 63 emission . However, compared to GtL, BtL received far less attention and only recently Shell joined Choren. Besides FT biodiesel, Shell is involved in other biofuel initiatives, for example 64 Iogen. Shell also claims to be the world leader in distribution of conventional biofuels . Nuon is an interesting actor in the network. In 2002 Nuon showed interest in producing FT 65 biodiesel at their IGCC electricity plant in Buggenum . Their motive was said to make full use of gasification capacity and to produce FT biodiesel at times of low electricity demand. Today again, Nuon carries out a study about FT biodiesel production at the Buggenum plant, 66 together with Shell . It is unknown whether the motives of Nuon have changed over the past 67 years, as little is published about this project and Nuon would not cooperate for this study . Two relations exist between Nuon, Shell and the production of FT biodiesel. At first, Nuon plans to construct a major IGCC plant in Eemshaven, The Netherlands (Magnum Plant). This plant might offer similar opportunities as studied in 2002. It remains unclear whether Nuon has the intention to produce FT biodiesel. The second relations benefits Shell as the Buggenum plant makes use of Shell’s gasification technology. Shell could therefore learn from the expertise that was gained with their gasification technology at the Buggenum plant over the past years for biomass gasification. Rosendaal Energy anticipates a future shortage of mineral oil and is very interested in producing and supplying an alternative. However, development and large scale availability of alternatives requires a long time. Conventional biodiesel presents an available alternative, relatively environmental friendly and relatively compatible with the present fuel infrastructure and fleet. The EU biofuels directive provided the right incentive for the foundation of Rosendaal Energy BV., and the production and supply of conventional biofuels. At the same time, Rosendaal Energy is studying alternative feedstock to replace conventional oils and lipids that are associated with sustainability issues and the food vs. fuel discussion. Rosendaal emphasizes that the production of conventional biodiesel form oil and lipids is not compatible at all with FT biodiesel; there exist great differences in technology, feedstock and scale size.
62
Regarding Sasol: interview Breman 2008. Regarding BTG; BTG (2007), Factsheet pyrolyseolie, th February 16 , 2007, www.btgworld.com (2008)) 63 Mr Breman (2008) pointed to the future potential of Carbon Capture and Storage (CCS) in combination with XtL. 64 th Interview Breunesse 2008; Shell Biofuels 2007; Presentation by Graeme Sweeney; November 6 , 2007. 65 IGCC: Integrated Gasification Combined Cycle. Since 2000, biomass is co fired in the IGCC electricity plant located in Buggenum. This has resulted in valuable knowledge and ‘real life’ experience on biomass gasification, to both Nuon and Shell, who provided the gasification technology for the plant. See the report TNO (2002) for information on the R&D project of FT biodiesel production. 66 th Technisch Weekblad March 7 , 2007 67 After repeated contact, no information could be shared about present activities with Shell or other activities of Nuon related to FT biodiesel.
Gijs van der Meer - Thesis
49
Conflicting interests As long as biofuels remain an expensive alternative to mineral fuels, there is no direct competition between the two. Today a certain share of the transport fuels market is granted to biofuels by government regulation. This is a relatively new market that requires new knowledge, new technology and new products. Therefore, new opportunities exist that do not directly result in conflicting interests among the actors in the network. FT biodiesel promises to meet the sustainability criteria that are much discussed today (See appendix D) and in that perspective does not conflict with the interests of the government or NGOs in that context. In ‘Heldergroene Biomassa’, SNM & De Provinciale Milieufederaties (2008) argue that significant quantities of biomass can be made available without harming the environment. In the future, FT biodiesel could become a potential competitor to conventional biodiesel. However, Rosendaal is not convinced that FT biodiesel will pose a threat in the future.
Alignment The alignment of the network, and the changes over time, are also observed according to two characteristics: a history of cooperation; and whether or not the actors share practices, strategies and visions. History of cooperation Cooperation between the actors is examined since the R&D projects in the early 2000s. At that time, two R&D projects were initiated in the context of government support programs. The first project was part of the EET program, carried out between 2001 – 2003 by Shell and BTG. The second project was part of the GAVE program, carried out in 2002 by TNO, Nuon and Sasol. In the same period, ECN and Shell demonstrated the technological feasibility of FT biodiesel production. This R&D project was not initiated in the context of a government 68 program and both organizations still cooperate . Shell is also related to Nuon. Shell was a major partner in the development and construction of the IGCC plant at Buggenum in 1989, which is now owned and operated by Nuon. At this plant, both organizations currently carry out a joint feasibility study about the production of FT biodiesel. Furthermore, since 2005, Shell cooperates with Choren, the German developer and producer of FT biodiesel. TNO, BTG and Sasol Technology Netherlands have not reported any new joint R&D projects in the field of FT biodiesel since the R&D projects in the early 2000s. Shared visions, strategies and practices The research institutes and business actors are all active in the field of energy in general, and in FT biodiesel related aspects in particular. (Except Rosendaal Energy as a producer of conventional biodiesel) They are independent organizations and although their activities relate to FT biodiesel, there exists no shared strategy for R&D and deployment. For TNO and 69 ECN, commercialization of FT biodiesel is not the objective , BTG mainly focuses on 70 thermochemical biomass pretreatment and conversion processes , Sasol does not actively 71 study the utilization of syngas from biomass and transport fuels are not within the core 72 business of Nuon . Shell does have a strategy on FT biodiesel, but it is not shared among 73 the other actors in the network . However, by developing FT biodiesel and presuming that FT biodiesel meets the future sustainability criteria, the strategy and practice of Shell are in line with the government vision on biofuels. Only FT biodiesel is not - yet - available. In fact, the current government decision
68
Interview Smit – ECN, 2008. Interview Smit 2008, Groenestijn 2008 70 th BTG (2007), Factsheet pyrolyseolie, February 16 , 2007, www.btgworld.com (2008) 71 Interview Breman (2008) 72 www.nuon.com (2008) 73 Interview Breunesse (2008) 69
Gijs van der Meer - Thesis
50
to lower objectives for blending biofuels in 2010, together with the proposed establishment of 74 sustainability criteria suit the strategy of Shell very well .
Analysis of network formation Composition At first sight, the data show an increase in the number and variety of actors that is involved in FT biodiesel. More government departments are involved, along with NGOs. Together, they possess significant resources, infrastructure, knowledge and expertise to develop and deploy the production and commercialization of FT biodiesel. In addition, both policy makers and NGOs perceive FT biodiesel to be a satisfying biofuel. Only, the network lacks specific knowledge and expertise in feedstock logistics; lignocellulosic waste and residue streams. Although showing interest in biomass utilization, Port of Rotterdam does not present itself to take on this challenge. However, from the data it appears that the number of actors that is interested in, and actually pursues the development and commercialization of FT biodiesel, decreased over time. Research institutes and business actors do possess valuable knowledge and expertise. Nevertheless, these independent actors have their own agenda and do not have the intention to commercialize FT biodiesel. It can be argued that today, FT biodiesel is carried by a smaller number of research institutes and business actors. The initiative is in the hands of a limited number of actors, primarily Shell and its German partner Choren. In addition, many functions that are required in a network, such as the function of technology developer, investor, producer, distributor and link with consumers, link with the automotive industry, are fulfilled by a single actor; Shell. This puts much weight and decisive power in the hands of one actor. Still, as mentioned by Smit, Breman and Breunesse, a consortium of actors is required to further develop FT biodiesel. It seems therefore, that this relatively loose network is not hindered by conflicting interests, but rather by a lack of shared interests. Alignment Government interest appears to have been most important in bringing together various independent organizations to focus at FT biodiesel. Although cooperation between part of these organizations still continues, the other part follows their own agenda. The practices of the organizations can very well complement each other to further develop FT biodiesel, but they do not follow similar strategies or visions. From the data it appears that a vision that accommodates FT biodiesel in the near future is not shared by most of the actors. Conclusion The social network of actors surrounding the development of FT biodiesel does carry the development; it does provide and activate resources and it does articulate demands and expectations. In short, the network of actors can be considered resourceful, and capable of introducing and pursuing change. At the same time, the network seems to be rather loose and over time it showed that interests differ. The independent actors lack an aligned agenda, and much resources and decisive power are in the hands of a single actor. This principal actor, Shell, could activate (acquire) and combine resources. However, the internal incentive to speed up the development and deployment is low and the future outlook on FT biodiesel is characterized by unfavorable economics. The sources argue, Shell and Choren included, that an external incentive, such as market conditions or regulation, will determine the course of development. It is questionable whether or not the present incentive is sufficient to actually stimulate and speed up the development and commercialization of FT biodiesel. 74
Minister Cramer, letter to the chairman of the House of Representatives (tweede Kamer) 13 October th 13 2008
Gijs van der Meer - Thesis
51
Opportunities and barriers +
A very resourceful and capable network of actors exists in the Netherlands. Together, the actors possess valuable and complementary knowledge, expertise and technology for development and deployment of FT biodiesel.
-
The network of actors lacks an actor with specific expertise and knowledge in feedstock logistics and in particular logistics of agricultural waste and residues.
-
The network of actors is rather loose and appears not to have a shared interest. Consequently, there is no shared strategy or vision for development and deployment of FT biodiesel. However, further development and deployment of FT biodiesel requires a consortium of actors.
-
A significant share of resources and an actual motive and interest for development and deployment of FT biodiesel is in the hands of one actor; Shell. Therefore, initiative is in the hands of Shell. As the principal actor, Shell does possess the resources to activate other actors and to involve them.
-
The production of conventional biodiesel and FT biodiesel are not compatible at all. Therefore, existing producers of conventional biodiesel have no advantage at all when considering the production of FT biodiesel.
Gijs van der Meer - Thesis
52
International perspective The international perspective is based on the observations that are made for the two preceding internal niche processes. The sub-section serves to assess the assumption that is made in the research design as well as to reveal opportunities and barriers that exist for foreign actors to deploy initiatives in the Netherlands. Although already illustrated to some extent in the first two sections of this study, this subsection starts with an outlook on activities in the field of FT biodiesel that are carried out abroad. Subsequently, it follows the internal niche processes to derive relevant international aspects. These aspects are analyzed and opportunities and barriers are derived from the outcome.
Perception of niche actors The sources in this study agree that Choren, with its R&D partner Shell, is by far the most advanced in developing an integrated production process for FT biodiesel. They do not 75 mention other initiative in this field of development . An inventory by Evans (2008) points out two other initiatives in the field of FT biodiesel. These initiatives, however, are not close to the state of development that Choren has achieved. - Flambeau River Paper Mill (USA) - Stora Enso / Nesté (Finland) While Smit argues that there is increased interest for FT biodiesel at international level, Breman does not notice it. Smit states that producers of gasifiers, such as Siemens and GE – and obviously Shell – are interested. They are familiar with coal gasification and are now considering the possibilities of biomass gasification. Breman adds that he does notice an increasing interest in FT synthesis, particularly from petrochemical conglomerates such as: ExxonMobil (USA), ConocoPhilips (USA), Statoil (Norway), ENI (Italy), IFP (France). Besides, Sasol always has been and still is active in the field of FT synthesis, though not specifically targeting the utilization of syngas from biomass. Both sources confirm that Choren sets the example in FT biodiesel at international level. Smit adds that success of Choren is in the interest of FT biodiesel in general and therefore carefully observed by the international research community. To what extent have local circumstances affected Choren? Have local circumstances determined the course of development? - The corporate history of Choren dates from 1990. Since 1992, Choren focuses on 76 using biomass for energy purposes, through gasification and refining. - Choren is located in Freiberg, Germany, an area that can be considered a 77 ‘gasification centre’. 78 - Choren enjoys government financial support. Voicing and shaping of expectations According to the sources in this study, favorable macro considerations exist for accommodating development and deployment of FT biodiesel in the Netherlands. The Dutch authorities emphasize these opportunities in their vision document Biobased Economy 2007; - Geographical location and existing infrastructure; in particular Rotterdam harbor and port facilities, - National strengths: knowledge and expertise in agribusiness, logistics and chemicals. Besides, in the Netherlands, another important favorable macro conditions applies, which is a stable political / economical investment climate. As Den Uil (2008) rightfully adds, the 75
Smit, Breunesse, Breman (2008) www.choren.com (January 2009) 77 Smit (2008) 78 Choren presentation (2007) 76
Gijs van der Meer - Thesis
53
Netherlands / Port of Rotterdam, offers similar opportunities for the production of second generation biofuels as for first generation biofuels. This is reflected by the (planned) 79 construction of production capacity for conventional biofuels in the Netherlands . At present, there is no mature production process for FT biodiesel available. In the field of development, Choren / Shell are the unquestioned frontrunners. The current state of affairs 80 and future plans are as follows : -
-
Alfa plant (pilot facility) is operational since 2000. Beta plant (demonstration facility), incorporating Shell Fischer Tropsch synthesis technology – start of commissioning is announced in April 2008. Expected start of production is delayed compared to intentions; expected at the end of 2009. Sigma plant (small scale production facility). In December 2007, Choren selected Schwedt, Germany as a suitable location for their Sigma plant. The decision for actual construction depends on experience with the Beta plant.
This illustrates that actual, small scale deployment of production of FT biodiesel is not near. Breunesse, Breman and Rosendaal confirm that technological development of this kind is a slow process. Up scaling and utilization of new feedstock require significant effort. Furthermore, the possible future production facility is intended to be located in Germany; Schwedt. Shell expresses her ambitions for the so-called XtL family, utilizing coal, gas and possibly biomass as feedstock, to produce liquid transport fuels. In the interview, Breunesse (2008) states that Shell prefers central production, with the possibility to process a divers input into a homogeneous output. The development of gas to liquid (GtL) is ongoing for decades and has just reached industrial scale with the construction of the Qatar facility. BtL is still far away from industrial scale production. The actors in the network mention an interesting option for the production of FT biodiesel, that is; combined with processing of coal, either for dedicated fuel production or combined with electricity production. Nuon, TNO and Sasol studied the latter option in the early 2000s and today, Shell, ECN and Nuon cooperate in a similar study. Nuon plans the construction of a 81 large IGCC, ‘multi-fuel’ electricity plant, based on Shell gasification technology . However, it is unknown whether this R&D projects actually aims for the production of FT biodiesel.
Network formation As discussed in the above section, Shell joined Choren in 2005. Other important investors / partners of Choren are the German state, VW and Daimler, putting emphasis on development to take place in Germany. Choren states to be active in China and the USA as well. 82 Therefore, it is unlikely that activities will be deployed in the Netherlands.
Analysis The Netherlands possess valuable knowledge and expertise and offer attractive infrastructural facilities and macro conditions to locate large scale biofuel production facilities, in particular to supply the European market.
79
Port of Rotterdam (2008), Verdubbeling Rotterdamse overslag biobrandstoffen, announcement on th February 29 , 2008 80 th Choren (2008), press release December 18 2008, Choren (2007), First Commercial BTL production facility – The Choren β-plant Freiberg, presentation for th th 15 European Biomass Conference, May 10 , 2007, Berlin th Choren (2008), press release April 14 2008, th Choren (2008), Tom Blades in a news item on www.topagrar.com, October 24 2008 81 st Nuon (2006), Nuon Magnum Nieuwsbrief, 1 issue, October 2006 82 Choren presentation (2007)
Gijs van der Meer - Thesis
54
Shell pursues XtL for future production of liquid fuels, possibly incorporating FT biodiesel. The company prefers a central production facility with the capability to process a divers input into a homogeneous output, like the case of the Shell Pernis facility. Such a facility benefits the above mentioned macro conditions. Now, could similar conditions encourage Shell to locate an integrated XtL facility in the Rotterdam area? In theory they could. However, up to today this option is only hypothetical as technological development is far from mature. It is therefore highly unlikely that the three branches of the XtL family will be joined within 10 years from now. Recently, Shell joined Choren. It is therefore assumed that Shell, being the principal actor in the Dutch Network of FT biodiesel, will focus their effort on Choren / Germany, in stead of deploying new initiatives in the Netherlands. Other important partners / investors of Choren are the German state and major German enterprises. It is therefore highly unlikely that this consortium with a strong German component will choose the Netherlands to locate any future facilities following on the intended Sigma plant.
Figure 6 – Speech of the German Federal Chancellor Angela Merkel at the start of th commissioning of the Choren Beta plant, April 17 2008. (www.choren.com - April 2009)
Conclusion Activities in the international field of development of FT biodiesel are limited. Choren / Shell are the unquestioned frontrunners and are therefore the actors to keep track of. However, development goes slowly. The planned future initiatives by Choren, are intended to be located in Germany. Activities that might be deployed in the middle long term, in approximately 10 years, are likely also situated in Germany, due to a strong German component in the consortium that funds and supports Choren. Consequently, the Netherlands are likely not the first choice to locate new facilities in the short or middle long term; within 10 years from now.
Gijs van der Meer - Thesis
55
Opportunities and barriers +
The Netherlands offer attractive macro conditions and valuable knowledge, expertise and infrastructural facilities for deploying any large scale biofuels initiative.
+
A combined coal and biomass gasification facility, like the large scale IGCC multifuel plant that Nuon plans to construct, could facilitate the production of FT biodiesel.
-
Choren / Shell are the unquestioned frontrunners in the international field of development of FT biodiesel. The consortium has a strong German component though, including the German government. Protectionism related to government grants is likely, keeping development within German borders as much as possible. It is therefore unlikely that any initiatives of Choren / Shell will be deployed in the Netherlands within 10 years.
Gijs van der Meer - Thesis
56
Internal niche processes – Cellulose ethanol The report continues with the second case: cellulose ethanol. Like the previous section, this section starts with a brief explanation of the technology: cellulose ethanol, followed by an inventory of activities in the Netherlands that are related to cellulose ethanol. These activities provide the sources for the analysis, which are subsequently listed. The next step is formed by the actual analysis of the internal niche processes ‘Voicing and shaping of expectations’ and ‘Network formation’. The section ends with the international perspective that is derived from the analysis of the internal niche processes. The last three sub-sections reveal opportunities and barriers, which are presented at the end of the respective sub-sections.
Cellulose ethanol in the Netherlands Ethanol is part of the alcohol family, just like methanol, propanol and butanol. Ethanol has characteristics that reflect those of gasoline and can therefore be applied as alternative fuel in the transport sector. Conventional ethanol is produced from organic, sugar or starch 83 containing sources, such as grain, sugar cane and corn . Cellulose ethanol is produced from another organic source: lignocellulosic biomass. The processes to produce conventional and cellulose ethanol follow a similar route, but the latter involves more complex sub processes. A brief explanation follows to point to the differences between the two processes.
Figure 7 – Conversion route cellulose ethanol
Both processes consist of the following sub-processes, which are illustrated in figure 7: -
83
Pre-treatment Hydrolysis Fermentation Distillation
Small quantities of ethanol are produced from petroleum. (Berg and Light, 2004)
Gijs van der Meer - Thesis
57
Fermentation of sugars yields ethanol which is distilled (and dehydrated) to achieve the right degree of purity. Pretreatment and hydrolysis are applied to mobilize sugars from the feedstock. Mobilization of fermentable sugars from conventional sources is proven technology, available on commercial scale. Mobilization of fermentable sugars from lignocellulosic biomass and subsequent fermentation is where R&D focuses on. This conversion process is technically feasible, but not yet available on commercial scale. In short, the conversion process is as follows. Lignocellulosic biomass mainly consists of cellulose, hemi-cellulose and lignin. Lignin can not be fermented and is therefore a residual product. During pretreatment, the lignocellulose structure is broken down to release the cellulose and hemicellulose. By means of hydrolysis, these polymer sugars are converted to monomer sugars, respectively glucose (C6) and xylose (C5). Fermentation of C6 sugars is common technology, by means of commercial available yeast, while fermentation of C5 sugars is still a challenge. A number of Dutch organizations have a long tradition in industrial biotechnology in general and the conversion of lignocellulosic biomass to ethanol in particular. These organizations are active in the field of cellulose conversion and ethanol production. They carried out several joint R&D projects, receiving international recognition. Carrying out the R&D projects resulted in expertise and knowledge. They also fed expectations, not only for the actors themselves, but for related actors as well, such as the authorities and environmental organizations. These collaborations and R&D projects are the starting point of this niche analysis. An overview is presented in a table on the next page.
Gijs van der Meer - Thesis
58
Cellulose ethanol experiments Year
Description
Who is involved?
2000 – 2001
R&D project: GFV/WKK-procede. Explorative study of commercialization of cellulose ethanol. (KIEM 20117)
ATO BV. (WUR – AFSG), ECN, Royal Nedalco BV., Shell Global Solutions International BV., Delft UT
2001 - 2002
R&D project: ThermoZym, cellulose conversion for the production of ethanol. (KIEM 01006)
Royal Nedalco BV. TNO – MEP TNO – Voeding
2002 - 2003
R&D project: Pre-treatment of lignocellulose with biological acid recycling. (KIEM 02003)
ATO BV. (WUR – AFSG) TNO – MEP Port of Rotterdam Techno Invent BV.
2002 – 2007
R&D project: Co-production of bioethanol, lactic acid, electricity and heat from lignocellulosic biomass. (EET K01116)
ECN Royal Nedalco BV., Purac biochem BV. Shell Global Solutions International BV., WUR – Agrotechnology & Food Sciences Group, WUR – Food Chemistry Group, WUR – Food & Bioprocess Engineering Group, TNO – Science & Industry, TNO – Quality of Life
2003 - 2007
R&D project: Development of lignocellulose pretreatment process applying biological acid recycling; the Biosulfurol process.
TNO – MEP WUR – AFSG Techno Invent BV.
2003
Discovery and modification of C5 yeast.
Delft UT (Kluyver Centre), Bird Engineering, Royal Nedalco BV.
2006
Start up of a private initiative to produce cellulose ethanol.
N2 Energie BV (Today: Bio-Rights BV)
2007 - 2010
R&D project: Bioethanol from sugar beet pulp.
ECN, Royal Nedalco BV., Delft UT, Dyadic Nederland BV.
Gijs van der Meer - Thesis
59
Sources – cellulose ethanol This sub-section specifies the selection of sources to analyze the development of cellulose ethanol. As described in sub-section 2.3, the study is primarily based on written sources, combined with interviews. Together, these sources provide the data to analyze the internal niche processes. The objective of the study is to provide insight in the state of affairs and to provide an outlook of future development of cellulose ethanol. The study considers a future outlook of approximately 5 years. Therefore, developments in the past are assessed, covering a time span of 5 – 10 years. Combining the past and present situation allows for mapping the development trajectory and provides ground to look forward. Consequently, sources and data from both past and present experiments are required. This division shows in the sources, covering the present and past situation. Primary sources that reflect the present-day situation are: -
Bio Rights (2008), Van afval naar brandstof (Former N2 Energie BV.) Government Vision document (2007), De keten sluiten Milieudefensie (2006), Informatieblad - Biobrandstoffen in voertuigen N2 Energie (2008), Converting cellulose from waste to fuel ethanol Nedalco (2007), The right to food or fuel? Nedalco et al (2007), Towards bioethanol from sugar beet pulp: the pectin challenge Reith et al. (2007), Co-production of bioethanol, lactic acid, electricity and heat from lignocellulosic biomass Shell (2007), Position towards biofuels Stichting Natuur en Milieu (2006), Standpunt Natuur en Milieu: Rijden op goede biobrandstoffen Stichting Natuur en Milieu & De Provinciale Milieufederaties (2008), Heldergroene Biomassa Van Groenestijn (2007), Bioethanol kan veel goedkoper Van Groenestijn et al (2007), Pre-treatment of ligno-cellulose with biological acid recycling (The Biosulfurol process) 84
In addition to these written sources, the following persons are interviewed : (The interviews are collected in a separate appendix). Rob Bakker Ewald Breunesse Johan Groenestijn Henk Nijman Herman den Uil Mark Woldberg
WUR / Agrotechnology & Food Sciences Group Shell Netherlands TNO – Quality of Life N2 Energie BV. ECN – department of Biomass Coal and Environment Royal Nedalco
84
The statements in the interviews are not necessarily corporate statements, but can reflect personal opinions.
Gijs van der Meer - Thesis
60
Primary sources that reflect the situation in the past, approximately 5 – 10 years ago, are: -
Bakker, R.R.C. (2002), Co-productie van hernieuwbare transportbrandstoffen, groene chemicaliën, elektriciteit en warmte uit biomassa reststromen ECN et al (2000), GFV/WKK-procédé GAVE (1999), Analyse en evaluatie van GAVE-ketens – Management Summary GAVE (2003), Conventional Bio-transportation fuels GAVE (2003), Ligno Cellulosic Ethanol – a second opinion Milieudefensie (2004), Visiestuk biomassa Ministry of VROM (2001), National Milieubeleidsplan 4 (NMP4) Nedalco et al (2001), Thermozym, celluloseconversie voor de productie van ethanol Novem (2003), Lignocellulosic ethanol – A second opinion. Stichting Natuur en Milieu (2001), Personenverkeer & Milieu Stichting Natuur en Milieu & European Federation for Transport and Environment (2004), Sense and Sustainability TNO MEP et al (2002), Ontsluiting van ligno- cellulose met biologische zuurrecycling
Additional sources are utilized in the study and when applied, they are referred to in the text. Together, they provide a varied and complete perspective of the development of FT biodiesel. All sources are public.
Voicing and shaping of expectations Voicing and shaping of the expectations is considered one of the three important internal niche processes. This sub-section first describes and then analyzes the expectations that are articulated, and given shape by the various organizations that are involved in the development of cellulose ethanol. First, the past situation is drawn up, then the present situation, followed by the analysis. The analysis of the expectations should answer the following question: Do the expectations provide ground for investment, for advancing the technology, for searching for partners to cooperate? In other words, do the expectations give the development momentum? The second aim of the analysis is to reveal opportunities and barriers for the deployment of cellulose ethanol.
Past situation This sub-section elaborates on the past situation and describes the expectations that actors held in the early 2000s. Vision on cellulose ethanol The establishment of the Kyoto protocol in 1998 is an important point in time for the development of biofuels in the Netherlands. The Kyoto resolutions warn for global warming and climate change, attributed to increased emission of greenhouse gasses. The Netherlands sign the resolutions and consequently commit itself to the reduction of greenhouse gasses, in particular CO2. 85 Subsequently, on behalf of three ministries , the GAVE program is initiated in 1998. The objective of the GAVE program is to stimulate and speed up the market introduction of climate neutral gaseous and liquid fuels. The GAVE program aims for the development of climate neutral fuels that could be introduced around 2010 – 2015 on commercial grounds. The 86 criterion is a reduction of CO2 emission by 80% compared to their fossil alternative . A study carried out by ADL (1999) for GAVE evaluates a large number of options and concludes that ethanol, DME and FT diesel, all produced from lignocellulosic biomass, are the most promising options. Conventional biofuels, produced from agro-feedstock, are left out of the study, because of their presumed limitations on CO2 emission and high costs. 85
Ministry of Housing, Spatial planning and Environment, Ministry of economic affairs and ministry of Transport and Water 86 GAVE 1999
Gijs van der Meer - Thesis
61
The threat of global warming and climate change is explicitly repeated in two policy documents; the National Milieubeleidplan 4 (NMP4, 2001), presented by the ministry of 87 Housing, Spatial Planning and Environment, and the Energy Report 2002 , presented by the ministry of Economic Affairs. Both documents also emphasize the desire for a transition towards a sustainable energy supply. However, biofuels do not receive special attention. Utilization of biomass, wind, water and solar power is encouraged alongside improvement of energy efficiency and development of advanced energy technology, such as clean fossil energy. Altogether, if the energy supply moves in the desired direction, it should be possible to deal with the problems that exist in the field of energy; energy related emissions, such as CO2 and NOx. In addition, NMP4 states that in contrary to past believes, the energy problem is not a matter of scarcity. Fossil sources are available and will be available for hundreds of years, due to new techniques for exploration and extraction. This energy supply provides time to search for alternatives. Availability is not the problem; it is the question whether energy sources are clean, safe, affordable and accessible at demand. In Energy Report 2002, the authors agree but do point to the issue of dependency on energy import from political instable regimes and suggest among other options diversification of energy sources. Besides the GAVE program, another government support program exists that supported a number of important R&D projects regarding cellulose ethanol. It is called the EET program, an abbreviation of Economy Ecology and Technology. This program was initiated in 1996 by 88 three ministries . It does not explicitly target biofuels. In the early 2000s, no commercial production of cellulose ethanol is taking place, worldwide. A number of R&D projects in the field of lignocellulose conversion are carried out in the Netherlands. These R&D projects receive funding from the EET program and involve Dutch research institutes and business actors. The projects are listed in the table Cellulose ethanol experiments on page 64. The participants in the R&D projects are actively studying the possibility to utilize a residue stream as resource, abundantly available at low costs; lignocellulosic biomass. This feedstock could be applied for the production of chemicals, fuels and materials. However, there is no process available to mobilize the fermentable sugars from this lignocellulosic biomass in an efficient, economic and environmentally friendly way, possibly employed at industrial scale. The research institutes and business actors acknowledge that this feedstock does present an opportunity as renewable resource and in that perspective fits with the government desire for a transition towards a sustainable energy supply. Nedalco, as an ethanol producer, perceives a growing desire for ethanol as a biofuel, capable of reducing CO2 emission in the transport sector. However, biofuels from conventional agro-feedstock should be avoided, given the expensive feedstock, limitations on volume and limited environmental performance. Ethanol that is produced from lignocellulosic biomass in stead of agro-feedstock offers a far better perspective. The research institutes affirm this point of view, although keeping a wider perspective on the possible destination of the resource. In 2002, following on two earlier studies, the 4 year R&D project ‘Co-production’ (2002 – 2007) is launched. This project aims at the production of fuels and lactic acid from lignocellulosic biomass. In the proposal for this project, the benefits of bioethanol as a renewable transport fuel, capable of reducing CO2 emission, are emphasized. In addition, the participants repeat the benefits of cellulose ethanol over conventional ethanol that is 89 produced from agro-feedstock . 87
The Energy Report 2002 by the ministry of Economic Affairs, mainly discusses power production and gas supply. Biomass is acknowledged to be the most important renewable energy source at the time of writing. However, a number of obstacles is identified that cause the market to hesitate to invest in biomass projects. These obstacles are given attention in a dialog between market actors and government bodies, resulting in the creation of a so-called Biomass Action Plan (2003). Like the Energy Report, the Biomass Action plan mainly focuses on power production and gas supply. Little attention goes out to transport fuels produced from biomass. It only mentions that a share of 5,75% of biofuels in the total consumption of transport fuels in 2010, as foreseen in EU guidelines, is very ambitious and reckons a share of 2% more likely 88 The EET program is established in 1996 by the Dutch ministry of Economic affairs, ministry of Housing, Spacial Planning and Environment and the ministry of Education, Culture and Science. It provides financial supports to collaborative R&D projects that combine these elements 89 Bakker (2002)
Gijs van der Meer - Thesis
62
Another large R&D project dealing with the conversion of lignocellulosic biomass is initiated 90 after a feasibility study in 2002 . In the research description, the authors argue that current processes are to expensive, due to high costs for energy, auxiliary materials (such as enzymes) and / or investment costs. Therefore, the objective of this research project is to develop an alternative process for the mobilization of fermentable sugars from lignocellulosic biomass. In this way, lignocellulosic biomass could serve as a renewable feedstock for chemicals and fuels and contribute to the desire to reduce CO2 emission. Another act of a prominent business actor in the same era, 2002, is the decision of Shell to 91 participate in Iogen . Iogen, a Canadian biotech company with a tradition in the production of enzymes, is developing a process for the production of cellulose ethanol. While the above development is taking place in the Netherlands, NGOs do not articulate an opinion on utilization of biomass or future production and utilization of biofuels in particular. In a report by SNM (2001) on passenger traffic and environment, the focus is on air pollution and energy use. Biofuels are no issue. This changes a few years later when in 2004 both SNM and Milieudefensie do present their point of view, which is skeptical. According to them, biomass is better utilized in stationary applications and there are other options to lower CO2 emission in the transport sector. However, they do agree with the desire of a transition towards a sustainable energy supply and diversification of energy sources. Biomass could serve as a renewable energy source, alongside wind, water and solar. If biomass is utilized, then strict environmental criteria should be enforced. (SNM & T/E 2004, Milieudefensie 2004) State of the art and focus of R&D In the late 1990s, the interest of Dutch research institutes and business actors to derive fermentable sugars from lignocellulosic biomass increased. Lignocellulosic biomass and more in particular the fermentable sugars that can be derived from it, present an attractive resource to produce renewable fuels, chemicals and materials. At the time, the conversion of lignocellulosic biomass to fermentable sugars is technically demonstrated. However, as stated in the description of EET KIEM project GFV/WKK (ECN et al 2000): “Despite the progress of recent years, the currently available technology is not yet suitable for large scale, costs effective and ecological sound production of cellulose ethanol from residual streams”. Therefore, this explorative study is initiated to map the approach for further development and commercialization. Roughly three approaches in pretreatment and hydrolysis can be defined; - Thermal mild acid pretreatment, followed by enzymatic hydrolysis, - Dilute acid pretreatment, followed by non-enzymatic hydrolysis, - Concentrated acid pretreatment, followed by non-enzymatic hydrolysis. 92
Two feasibility studies follow on the EET KIEM project GFV/WKK. The first is Thermozym . The consortium in this project focuses on a conversion process based on thermal mild acid pretreatment and enzymatic hydrolysis. This feasibility study results in the 4 year R&D project ‘Co-production’ (2002 – 2007). In this large R&D project, the following themes are targeted: - Physical / chemical pretreatment for the mobilization of (hemi-) cellulose from the lignocellulose structure. - Optimization of enzymatic cellulose hydrolysis with commercially available industrial enzymes. - Application of lignocellulose hydrolysates for ethanol and lactic acid fermentation. Within this domain, prevention of formation of inhibiting side products and fermentation of C5 sugars are major issues. - Power and heat production from non fermentable biomass fractions and process integration with specific attention for optimal energy integration and reduction of water use. - Application of bioethanol in blends with fossil fuels. The second feasibility study that follows on EET KIEM project GFV/WKK is KIEM 02003: ‘Pretreatment of lignocellulose with biological acid recycling’. This feasibility study targets a 90
TNO MEP et al (2002) Shell (2007), Position towards biofuels 92 Nedalco et al (2001) 91
Gijs van der Meer - Thesis
63
different conversion process; that is, the route via concentrated acid pretreatment. The participants of this study argue that high yields of extracting fermentable sugars from lignocellulosic biomass can be achieved with the other pretreatment processes. However, these processes are expensive due to high costs of energy, auxiliary materials (such as enzymes) or investment costs. The technology that the participants aim for, should make use of the proven efficacy of concentrated acid pretreatment, while avoiding the existing drawbacks by closing the energy and materials cycle of this process. Subsequently, costs for auxiliary materials are reduced and energy efficiency is increased. The challenge in this route is in integration of various steps of the process. This feasibility study is also followed by a large 4 year R&D project. 93
The above outlook on the state of affairs is confirmed in Novem (2003) . Furthermore, this report adds an international perspective on the development of cellulose ethanol. The authors state that much R&D is carried out on the subject around the world, in particular in Sweden, Spain, the US and Canada. The state of affairs in these countries reflects that of the Netherlands. On a worldwide level, there is no environmental friendly conversion process surpassing lab scale. Promising initiatives are: Iogen (Canada) and ETEK, Sweden (today: SEKAB). Another organization to keep track of, according to the authors, is Abengoa. During the next decade (2002 – 2012), substantial improvements are foreseen in pretreatment technology and xylose (C5 sugar) fermentation. Based on the efforts at international level, a mature technology for production of cellulose ethanol is foreseen around 2010 – 2015.
Present situation This sub-section elaborates on the present situation and describes the expectations that actors hold in the year 2008. Biofuels in the Netherlands Today biofuels are a fact. In 2003 the EU biofuels directive came into force and was implemented in Dutch legislation, assigning objectives for the utilization of biofuels in the transport sector. In a report over 2007, the Dutch statistical agency CBS briefly summarizes 94 the state of affairs regarding biofuels in the Netherlands . Before 2006, utilization of biofuels was negligible. In 2006, biofuels accounted for 0.4% of total fuel consumption in transport. In 2007, the use of biofuels strongly increased and accounted for 2.8% of total fuel consumption, exceeding the government target for 2007 of 2%. Production of biofuels takes place in the Netherlands to a little extent and at the same time, additional production capacity is under construction. The majority of biofuels is imported. Up to today, cellulose ethanol is not yet on the market. Vision on cellulose ethanol Government Biomass holds a prominent position in the envisioned transition towards a sustainable energy supply and the desire to decrease the use of mineral oil. In fact, biomass will not only serve as a feedstock for renewable transport fuels, but for a wide range of applications such as food, feed, renewable chemicals and materials. Biorefining will provide a technology platform for optimal utilization of biomass. This vision is outlined in the policy report “De keten sluiten” (2007)
93
The authors of this report, that is written for the GAVE program, are employees at ECN – unit Biomass, Royal Nedalco and ATO BV. They are participants in the Dutch R&D projects on the subject. 94 CBS 2008, Duurzame Energie in Nederland 2007
Gijs van der Meer - Thesis
64
Ultimately, this so-called biobased economy contributes to the shift away from an economy based on mineral resources as we live in today. Three urgent issues in society give reason for the desire to decrease the use of mineral oil: -
Climate change and CO2 emission, Security of energy supply, The increasing – and volatile - oil price.
The EU biofuels directive is established in 2003 and biofuels can serve as an initial step towards a biobased economy. However, current biofuels are not satisfying, due to possible interaction with food production, limited CO2 emission reduction and undesired environmental / social side effects. This causes the government focus to shift to second generation technology that should avoid the disadvantages of conventional biofuels. Furthermore, the need for sustainability criteria is recognized. The establishment of sustainability criteria is regarded to be an issue for the national or rather EU authorities. The authorities also acknowledge a role to establish a market for biobased products and support technological development. NGOs Both Stichting Natuur & Milieu (SNM) and Milieudefensie acknowledge the threats of global warming and climate change and support the desire to reduce the use of mineral oil. They agree that the transport sector is a large consumer of mineral oil and consequently an important contributor to CO2 emission. However, their opinions on the utilization of biofuels differ. In “Position towards Biofuels” (2006), SNM does consider 2G biofuels – as opposed to the undesired conventional biofuels - a suitable option, capable of reducing CO2 emission in the transport sector. Nevertheless, sustainability criteria are required. At the same time, there are other suitable options to reduce CO2 emission in the transport sector. Milieudefensie argues in a publication of 2006: Informatieblad Biobrandstoffen in voertuigen’, that the alternative options to reduce CO2 emission in transport should be deployed first of all. Examples are: reduction of vehicle weight and engine power, improving public transport, lowering maximum speed etc. Furthermore, Milieudefensie refers to studies that conclude that biomass is better applied in stationary applications, resulting in higher environmental benefit. However, if biofuels are employed in the end, then under strict sustainability criteria. Research institutes Bakker, Van Groenestijn and Den Uil assert that lignocellulosic biomass is a very attractive feedstock, which can be applied for the production of a wide range of products, such as renewable fuels, chemicals and materials. Therefore, the search for an economic, environmental friendly process for large scale conversion of lignocellulosic biomass is ongoing. They notice that research and development have intensified over the past years. At present, R&D focus mainly on the production of cellulose ethanol, due to the high interests in this product as a biofuel and given the advantages of cellulose ethanol over conventional ethanol: economics, volume, CO2 reduction, food vs. fuel. Besides, lignocellulosic biomass could serve as an alternative for mineral oil. The desire for an alternative to mineral oil is grounded in: -
Government regulation, in particular the EU biofuels directive and the US equivalent, Decreasing supply of mineral oil, thus increasing and volatile oil price and a desire to decrease dependency on mineral oil, Potential CO2 reduction capacity, related to the desire for a sustainable society.
It is acknowledged that numerous organizations are involved in the highly competitive international field of lignocellulose conversion. There is high variety in the kinds of organizations and the processes that are being developed. The various types of processes have their specific dis- / advantages, but are in essence viable for commercialization. Van Groenestijn claims that concentrated acid processes will outperform enzymatic processes. On the other hand, concentrated acid processes are behind in development, possibly giving them
Gijs van der Meer - Thesis
65
a competitive disadvantage. In the end, also van Groenestijn admits that both processes can be deployed. However, it is agreed that today, in 2008, there is no well functioning process in demonstration phase. There are no signs of a dominant design for commercialization. The present obstacles are techno-economical. Current processes for cellulose conversion, and the required auxiliaries – most particularly enzymes -, can not yet compete with the production of conventional ethanol. Instead of only ethanol, research institutes are more interested in the wider variety of purposes that lignocellulosic biomass can serve as a feedstock. This would result in optimal utilization of the resource, and possibly optimal added value. Biofuels can be a first step in the direction of a so-called biobased economy and the production of fuels and chemicals can exist along side each other.
Figure 8 - Biobased Economy (Goverment vision ‘De keten sluiten’, 2007)
Market actors Besides the ongoing search for an alternative feedstock for ethanol production, that traditionally drove Nedalco, there is an increasing market demand for ethanol as a biofuel, mainly due to the EU biofuels directive. This increasing demand attracts new market actors such as Shell, N2 Energie (Bio Rights), DSM and Avantium / Cosun. Conventional bioethanol, produced from agro-feedstock has drawbacks; it is expensive, limited in volume, limited in CO2 reduction and there are sustainability issues. It is agreed by all actors that the use of conventional feedstock to produce biofuels is not desirable. Therefore, there is an ongoing search for alternative feedstock; lignocellulosic biomass, which requires alternative conversion processes. According to the sources, at present, there is no process available that can produce cellulose ethanol at competitive ground with conventional ethanol or fossil fuel. Breunesse states that Shell await the results of Iogen to estimate future costs of production. Besides, the current EU ethanol market is very difficult. This is elaborated in more detail in the paragraph ‘Market & Government action’.
Gijs van der Meer - Thesis
66
An increasing number and diversity of organizations becomes active in the field of cellulose ethanol production, in the Netherlands and at international level. Woldberg states that competition in R&D is high. At the international level of development, there is an emphasis on thermal mild acid pretreatment combined with enzymatic hydrolysis. However, the sources state that in essence, multiple approaches are viable for commercialization and can eventually exist alongside each other; there is no single solution. The actors estimate that the production of cellulose ethanol is a few years away from commercialization. The investment decision for the production of cellulose ethanol depends 95 on government regulation, the ethanol market and the oil price. In recent years, various initiatives are continued or started by Dutch actors, as is listed below. -
-
Using the results of the R&D project CO-production, Nedalco has the intention to construct a production facility for cellulose ethanol, using wheat bran as feedstock. 96 Preparations start in 2006, but are put on hold in 2008 . In 2007, Nedalco and a consortium of partners start of 4 year R&D project to make use of sugar beet pulp for the production of cellulose ethanol; ‘Project Pectin Challenge’. Shell first acquired a share in Iogen in 2002. In July 2008, Shell announces to 97 increase their share in Iogen from 26,3 up to 50% . In 2006, N2 Energie is established. This Dutch entrepreneur aims at the production of cellulose ethanol, by deploying a so-called Gravity Pressure Vessel. Today, the 98 company is called Bio-Rights BV. DSM shows increasingly more interest in utilization of lignocellulosic biomass. In 2004, the conglomerate presents a position paper to promote the Dutch and European sector of white (industrial) biotechnology. In 2008, DSM announced to participate in an international consortium to study the 99 concept of biorefining, based on biochemical conversion of lignocellulosic biomass. In 2009, Avantium and Cosun announce the start of a two-year joined development program to further develop a sugar based biofuel / bioplastic, that Avantium has developed. This sugar- (carbohydrate) based biofuel / bioplastic differs from 100 ethanol.
State of the art and focus of R&D Development of processes to convert lignocellulosic biomass into fermentable sugars has a long tradition. Up to today, no commercial production of cellulose ethanol takes place, worldwide. There is no economic, environmental friendly process available that can be employed at large scale. Nevertheless, in the Netherlands and at international level there is much activity in the field of lignocellulose conversion, resulting in a variety of technological 101 approaches . A number of processes are proven at lab scale, various pilots are operational and some are near demonstration phase. Iogen, Canada, has reached an advanced state of development, but is relatively quiet lately. Altogether, a great number and variety of organizations put significant effort into the development of an economic, large scale production process for conversion of lignocellulosic 102 biomass in general and production of cellulose ethanol in particular. A prominent achievement of Dutch actors, that received international recognition, is the discovery and improvement of an effective organism for fermentation of C5 sugars. As is explained in sub section 4.1, conversion of lignocellulosic biomass primarily yields two types 95
Breunesse, Woldberg, Den Uil (2008) Woldberg, 2008 97 th Shell (2008), media release July 15 2008 98 Nijman 2008, Bio Rights 2008 99 th DSM 2004, DSM press release of February 27 , 2008 100 th Avantium and Cosun (2009), joint press release, January 21 2009 101 A very extensive overview is presented by Dober & Pezza (2007) in a presentation on the Cellulosic th Biofuels Cluster Meeting; March 20 , 2007. 102 (Bakker 2008, Van Groenestijn 2008, Den Uil 2008, Van Groenestijn et al (2007)) 96
Gijs van der Meer - Thesis
67
of sugars, C5 and C6 sugars. While fermentation of the second is well known and mastered for decades, an effective yeast for fermentation of C5 sugars has posed a challenge for a long time. In 2003, a Dutch consortium discovered and improved an effective yeast for the 103 fermentation of these C5 sugars . This presented a major improvement in the development of cellulose ethanol, receiving international recognition, and providing the Dutch consortium with a valuable asset in negotiations with - foreign – organizations in the field of cellulose ethanol development. However, up to today, commercial fermentation of C5 sugars does not take place yet. In a publication of 2004, the Dutch consortium that discovered and improved the yeast, expresses the expectation that industrial scale fermentation of C5 sugars can take 104 place in about 5 years from now. According to Van Groenestijn (2008), a rough distinction can be made regarding pretreatment processes and subsequent hydrolysis, based on the acid content of the pretreatment process. This distinction is useful for elaborating on the developments in cellulose ethanol production and is as follows; a. Thermal mild acid pretreatment and enzymatic hydrolysis (0,3% acid content) b. Dilute acid pretreatment and chemical hydrolysis (3% acid content) c. Concentrated acid pretreatment and chemical hydrolysis (70% acid content) The following elaboration about the present state of affairs is composed around two advanced Dutch initiatives and one young initiative. Together, these three Dutch initiatives are characteristic for the variety & state of the art in the international field of development of cellulose ethanol. In addition, another Dutch initiative is briefly highlighted: d. Avantium production process This concerns the chemically catalyzed production process by Avantium, resulting in a sugar based biofuel / bioplastic – not ethanol. A. Thermal mild acid pretreatment & enzymatic hydrolysis State of the art in the Netherlands Another significant achievement in the field of cellulose ethanol in the Netherlands was realized by a Dutch consortium in the 4 year R&D EET project ‘Co-production’ (2002 – 2007). This project demonstrated the technological, economical and ecological feasibility of cellulose ethanol production, based on wheat bran and given current prices and available enzymes. Furthermore, the project resulted in a conceptual and detailed design of a cellulose ethanol production process. Nedalco had the intention to construct an actual production plant according to the results in the EET project, which would make Nedalco the first cellulose 105 ethanol producer in the world. However, construction of the cellulose ethanol production 106 plant is put on hold due to the current unfavorable economics of the business case. (Woldberg 2008 & EET CO Production 2007) Focus of R&D In 2007, a new 4 year R&D project was initiated by a consortium of Dutch organizations, including Nedalco. This project “Pectin challenge” (listed in table Cellulose ethanol experiments at page 64) aims at the utilization of sugar beet pulp. Sugar Beet pulp is a 107 lignocellulose feedstock that is very attractive for the production of cellulose ethanol . The challenge in this project lies in one of the components of sugar beet pulp; pectin. Aside hemicellulose and cellulose, sugar beet pulp consists of pectin. One of the objectives of the 103
See list of experiments in sub section 4.1. The consortium consists of Delft UT, Nedalco, Bird Engineering. 104 Pronk (2004), Woldberg 2008, Den Uil 2008 105 Dober & Pezza (2007) 106 Woldberg 2008, Reith et al (2007) 107 This opportunity was also recognized by Rabobank (2003). However, at the time of writing, it was acknowledged that the technology to process sugar beet pulp was not available.
Gijs van der Meer - Thesis
68
consortium is to find an effective enzyme for hydrolysis of this component, resulting in galacturon acid. The second objective is to develop an effective yeast for the subsequent 108 fermentation of galacturon acid into ethanol. Dyadic Netherlands, included in the Pectin Challenge consortium will also focus on enzyme 109 development for hydrolysis of wheat bran, another interesting feedstock for Nedalco . Furthermore, much development is gong on in pretreatment of lignocellulosic biomass, to prepare the separate components for hydrolysis. Van Groenstijn (2008) states that TNO is interested in studying and comparing various pretreatment processes that are being developed by various organizations worldwide. DSM is involved in a R&D consortium, targeting effective and economic enzymes for the concept of biorefining. The concept of biorefining envisions utilization of lignocellulosic biomass for fuels, chemicals, materials and medicine. International perspective Den Uil, Bakker, Van Groenestijn and Woldberg (2008) state that in the international field of development, the production of cellulose ethanol has reached the phase of pilot scale, near demonstration. They acknowledge that Iogen has advanced plans of constructing a commercial demonstration plant – possibly in Germany. However, it has been relatively quiet lately around Iogen, which could be both a positive or negative sign. The current pilot facility of Iogen is said to experience troubles, the process is not functioning flawlessly. Other companies working on processes that reached an advanced state of development are: Abengoa, Mascoma, Sunopta and Biogasol. The above sources mention that the major challenge in development is: integration of the various steps in the process. Second is the search for effective and economic – cocktail of enzymes, in combination with effective and economic pretreatment processes. Traditionally, the development of pretreatment processes and enzymes development are carried out by separate organizations. At present, this is changing – which is further elaborated on in the 110 following paragraph Future production of cellulose ethanol . Then, the challenge is in up scaling the process and construction of a production facility. As Breunesse (2008) mentiones, in a demonstration facility it becomes clear what the costs of production will actually be like. B. Concentrated acid pretreatment and chemical hydrolysis State of the art in the Netherlands and focus of R&D In the early 2000s, while most of the attention in the field of cellulose conversion went to enzymatic hydrolysis, a Dutch consortium including TNO and ATO B.V. (Today: AFSG, affiliated to WUR) decided to study an alternative pretreatment and hydrolysis process, based on concentrated acid. After a feasibility study and a 4 year EET R&D project, the Dutch consortium presented a promising pretreatment and hydrolysis process in 2007, named Biosulfurol. Parts of this process have been demonstrated in separate lab scale tests. The next step is an integrated pilot scale demonstration and further up scaling. This trajectory is expected to require approximately 30 months. The developers of the Biosulfurol process are looking for a partner 111 to facilitate the trajectory towards commercialization and application of the process . International perspective According to Van Groenestijn (2008), in earlier years, most attention went out to enzymatic hydrolysis and compatible pretreatment processes. As a result, fewer organizations invested in a concentrated acid process. Today, Van Groenestijn argues, there is increasing recognition for concentrated acid processes in the international field of development. Besides 108
Nedalco et al (2007), Towards bioethanol from sugar beet pulp: the pectin challenge th Dyadic (2007), press release January 16 2007 110 Iogen has a history in enzyme development and production, and combines this expertise with development of pretreatment processes. 111 Van Groenestijn 2008 & Van Groenestijn et al 2007. TNO magazine july 2007: “Research consortium is in contact with North European and South American companies for further development of the Biosulfurol process”. 109
Gijs van der Meer - Thesis
69
the Biosulfurol process, there is a competing concentrated acid process on the market, called the Arkenol process, developed in the USA and applied by the company Bluefire (USA). Van Groenestijn states that Bluefire is eager to construct cellulose ethanol production facilities, applying the Arkenol process. Apparently, lacking capital is obstructing their desire to construct a production facility, not the technology. Although the Arkenol process is in a more advanced state of development, Van Groenestijn, states that the Biosulfurol process is expected to outperform it. C. Dilute acid pretreatment and chemical hydrolysis State of the art in the Netherlands and focus of R&D In 2006, another Dutch initiative was launched, initially called N2 Energie BV, today BioRights BV. This young company was established to exploit a recent US patent. This patent covers the utilization of a certain reactor, called Gravity Pressure Vessel (GPV), for hydrolysis of physically pretreated lignocellulosic biomass. Subsequently, this hydrolysate is fermented to ethanol. The combined pretreatment / hydrolysis process is considered a dilute acid process. It does not involve enzymes. The GPV is an uncommon reactor, earlier applied once in the Netherlands for an oxidation process. Utilization of the GPV for combined pretreatment / hydrolysis of lignocellulosic biomass is a novelty, worldwide. At present Bio-Rights is running lab tests. In these tests, process conditions are simulated to study the behavior of the biomass feedstock. Bio-Rights expects to start the construction of a pilot facility at the end of 2008 / start of 2009. 112 Preparations have started. International perspective According to Van Groenestijn (2008), dilute acid pretreatment and hydrolysis is a long studied process, primarily studied in Sweden. Sekab, a Swedish ethanol producer, operates a pilot facility since 2004, based on dilute acid pretreatment and hydrolysis (previously, this R&D project was previously known under the name of ETEK). According to Van Groenestijn, Sekab struggles with inhibiting side products that hamper fermentation. The solution is sought in either removing the inhibiting side products or developing a yeast that resists these side products. R&D thus focuses on these issues. Woldberg (2008) is not very much impressed by Sekab. As far as he can judge, Sekab is experiencing difficulties with their cellulose ethanol pilot facility. He doubts whether Sekab is actually aiming at employment of the technology and production of cellulose ethanol. D. Avantium production process th
In a press release of October 22 2007, Avantium states that research of their production process to produce Furanics is ongoing for several years now. The principle is demonstrated at lab scale. Subsequently, the product was analyzed and engine tests have been successfully carried out, providing promising results. Initially, more extensive engine tests 113 were planned for 2008, but are now planned for 2009 . st In a press release of January 21 2009, the start of an approximately two year research program is announced, together with Cosun. Avantium will continue to focus on the development of an efficient, chemically catalyzed production process, while Cosun focuses on the selection, isolation and purification of suitable components from agricultural waste streams. Depending on the results of this first phase, the companies intend to scale up the production technology and implement it on commercial scale.
112 113
Nijman 2008, Bio Rights (2008) Roerink (2007)
Gijs van der Meer - Thesis
70
Future production of cellulose ethanol As discussed in the previous section, there is much activity in the field of lignocellulose conversion, resulting in a variety of approaches. Although not all are as advanced as the other, all offer perspective for commercialization. At present, there is no industrial preference, no dominant design. In recent years, R&D focused primarily at enzymatic hydrolysis and compatible pretreatment processes. Today, development in that direction is still going on, while at the same time, interest in concentrated acid processes is increasing, partly due to 114 unsatisfying results in enzyme development . (Den Uil & Bakker & Van Groenestijn, 2008) Not only is there variety in technology for cellulose ethanol production, there is also variety in configuration of operation and in organization. This variety is driven by a competitive search for a viable business case for cellulose ethanol production. This search for a viable business case has to do with a combination of related elements. Woldberg (2008) provides a nice illustration when he argues that for Nedalco production of - cellulose - ethanol is a matter of 115 feedstock vs. process vs. scale. A fourth element is formed by feedstock logistics . Logistics of waste and agricultural residues, the preferred feedstock for the production of cellulose ethanol, is acknowledged to a serious challenge. (Woldberg, Rosendaal, Breman 2008) First of all, biomass is not a uniform product. Nedalco uses the following categorization: -
Class 1: sugar, starch, Class 2: lignocellulose, low lignin content, eg. wheat bran, corn fiber, sugar beet pulp, Class 3: lignocellulose, high lignin content, eg. corn stover, wood chips.
In essence, different processes or technologies are required for the conversion of different types of feedstock. Particularly biochemical and enzymatic processes are selective. Here the choice has to be made between optimization of a specific process for a specific stream of feedstock, or to employ a robust process, that can convert a variety of feedstock. The concentrated acid process Biosulfurol is said to be a robust process, as well as the process that is being developed by Bio-Rights, based on dilute acid pretreatment and hydrolysis. (Woldberg, Den Uil, Breunesse, Bakker, Nijman, Van Groenestijn, 2008, Van Groenestijn et al 2007) In addition, Woldberg argues that different organizations operate form different starting points, resulting in different business cases. A distinction can be made between: a. Existing ethanol producers, such as Nedalco, looking for the ‘next best thing’. b. The ethanol related process industry as it exists in the USA. Examples are: POET and ICM. c. Technology developers, looking a superior technology. Examples are numerous; Iogen, Sunopta, Mascoma, Verenium, Range Fuels. d. A fourth category consists of major process engineers, such as Grupo M&G, Mitsui, Man FE. These enterprises notice an increasing market and possess the means and capabilities to acquire technologies and compose a production process. A company that is named often is Abengoa, the European leader in conventional ethanol production. It is a resourceful company, with a very capable R&D department, active on three continents. Abengoa puts much effort in R&D and has high ambitions with respect the production of cellulose ethanol.
114
Van Groenestijn (2008) is convinced that concentrated acid processes, such as Biosulfurol, offer a better perspective for commercial production of cellulose ethanol then processes that involve enzymes. However, development of concentrated acid processes is less advanced. At the same time, there is more momentum in the development of enzymatic processes and compatible pretreatment processes, pushing for progression in this direction. This is a drawback for the Biosulfurol process. 115 According to Woldberg, Nedalco considers agro-logistics a specific capability; one that the company does not possess. Nedalco avoids this issue by locating their production facilities close to the source of their feedstock.
Gijs van der Meer - Thesis
71
Therefore, for a viable business case, feedstock, process, scale and logistics are important and offer different approaches towards commercialization. At present, this shows in a number of approaches. Configuration of operation - Hybrid ethanol production; combined production of conventional and cellulose ethanol. Two prominent examples are: project Liberty by POET (USA) and Abengoa BCyL (Spain). A hybrid plant can make advantage of existing agro-logistics, utilities 116 and parts of the production process. - On-site utilization of residual streams. In this approach, the production of cellulose ethanol is located near the source of the residual stream. It avoids the issue of agro117 logistics and is the philosophy of, for example, Nedalco. - On-site enzyme production. This approach is employed by Iogen, a company that is both an enzyme developer and producer. It results in a slight logistical and 118 commercial advantage . Organization - There is an increase noticeable in collaboration between actors in the field of cellulose ethanol. Examples are: co-development of enzymes and technology: 119 Dupont and Danisco; DSM, Abengoa and others; Nedalco and Dyadic . - Apart of their collaboration with Dyadic in the EOS R&D project ‘Pectin challenge’ , Nedalco also cooperates with principal US technology developers Mascoma and 120 Sunopta . Market & government action At present, cellulose ethanol is not yet competitive with conventional ethanol or fossil fuels. At the same time it has appeared that consumers do not create a demand for biofuels. Therefore, government regulation provides the incentive to supply ethanol as a biofuel. In other words, by implementing the EU biofuels directive, the government created a market for ethanol as biofuel. (Breunesse, Bakker, Woldberg, Rosendaal, Den Uil, Van Groenestijn 2008) At the moment, this is a difficult market, particularly emphasized by Woldberg and acknowledged by Den Uil (2008). Woldberg sums up: - Feedstock prices have risen, also for wheat bran, the feedstock that Nedalco planned to utilize for the production of cellulose ethanol, - The European ethanol market is dominated by imported ethanol from Brasil, setting the maximum price, - Changing government regulation and objectives cause uncertainty, hampering investment, - Uncertainty exists about the establishment and content of sustainability criteria for biofuels. Therefore, given the current state of the art and the conditions on the European ethanol market, a lot depends on government action.
116
Woldberg 2008, www.projectliberty.com (2008), Abengoa Bioenergy (2008) Woldberg 2008 118 Van Groenestijn 2008 119 Van Groenestijn 2008, Bakker 2008, Woldberg 2008. 120 st th Woldberg 2008, Nedalco press release March 1 , SunOpta press release July 6 , 2006 117
Gijs van der Meer - Thesis
72
When will commercial production take place? When do actors in the field of cellulose ethanol expect that commercial production might take place? First of all, Woldberg expects that this will happen in the USA, as this is the most 121 attractive market . Nevertheless, Nedalco was close with their process design and business case, that was eventually put on hold in mid 2008. The general expectation is that the production of cellulose ethanol is near. However, none of the sources can give a time estimate. Bakker states that the development of cellulose ethanol is just before commercialization. Van Groenestijn expects that it will take a few years. BioRights expects to start production in mid 2009, given that the construction of their production facility can start in early 2009. In Vision Document ‘De keten sluiten’ (2007), the authorities presume that second generation biofuels are available in 5 to 10 years from the now, corresponding to 2012 – 2017. What stands out is that the production of cellulose ethanol could start in the near future. However, there is a difference between construction of the first industrial scale production facility and commercial availability of cellulose ethanol. Van Groenestijn clearly illustrates the development by referring to Iogen. This company has significant expertise in cellulose ethanol production and operates a demonstration plant since 2004. Iogen considered the construction of a commercial scale plant in Germany. If they decide to start construction, Van Groenestijn argues, it will take 1,5 year before production can start. Significant production capacity is much further away. So given the availability of a mature technology, large scale production of cellulose ethanol will take time. This confirmed by Breunesse (Shell is a major shareholder of Iogen). Development of such technological processes is time consuming. Utilization of new types of feedstock and upscaling requires time and effort. In addition, he argues, the demonstration plant of Iogen will shed light on future production costs, important for a future investment decision. This slow pace of development is confirmed by John Neeft, coordinator of the Dutch GAVE program, in his presentation about second generation biofuels at a conference in November 122 2008. The following expectations are asserted about other initiatives: - Before the Biosulfurol process can be employed in a large scale production process, Van Groenestijn (2008) estimates that approximately 30months of R&D are required. - Avantium and Cosun cooperate in a two year development agreement. After this period, the companies decide whether or not to continue development towards 123 commercialization. - In a presentation of November 2008, Abengoa Bioenergy states that start-up of their hybrid cellulose ethanol demonstration plant in Spain (BCyL) is planned for 2008. - POET expects to start the construction of their hybrid plant (project Liberty) in 2009, 124 starting operation in 2011. Lastly, a few notes should be made about production of cellulose ethanol. First, not all developments are publicly announced. In the competitive field of cellulose ethanol, some companies choose not to reveal their achievements and state of the art. Second, in line with the above mentioned variety in approaches, there is variety in – near - future production, for example in the feedstock that is used (‘accessible’ class 2 vs. ‘difficult’ class 3), whether or not C5 sugars are fermented and whether or not the production takes place combined with the production of conventional ethanol (hybrid).
121
In a presentation for the 2G day by SenterNovem, John Neeft, coördinator of the GAVE program illustrates the activity in the field of second generation biofuels. He shows that most activity takes place in North America and emphasizes the US policy to promote second generation biofuels. (Neeft, 2008) 122 Neeft (2008) 123 st Avantium & Cosun (2009), joint press release January 21 2009 124 th POET (2008), news item of August 19 , 2008.
Gijs van der Meer - Thesis
73
Analysis of expectations After drawing up the expectations in the past and present situation, this sub-section continues with the analysis of the niche process. It starts by assessing the indicators of ‘voicing and shaping of expectations’: robustness, quality and specificity. Subsequently, the outcomes are aggregated to argue whether or not the niche process is successful. Lastly, the opportunities and barriers for deployment are derived from the analysis of the expectations. Robustness The movement of cellulose ethanol over the years is characterized by a significant increase of the number and variety of actors. Although not all of these actors pursue the same goals, they do share expectations. The data show that the initial expectation, about utilization of lignocellulosic biomass for a range of purposes, is still important today and shared among an increased number and variety of actors. In addition, new expectations rose over the years and concern the employment of cellulose ethanol as a biofuel. These expectations also got more robust. In fact, from the data it appears that there are no major expectations that oppose the utilization of lignocellulosic biomass in general and cellulose ethanol in particular. Initial expectations - There is a high potential for utilization of lignocellulosic biomass for multiple purposes, such as; fuels, chemicals, and materials. This potential concerns costs, volume, availability, and sustainability aspects. - There is an increased desire for alternatives to mineral oil, due to the decreasing supply, the increasing and volatile oil price and dependency on import. Lignocellulosic biomass has a high potential to serve as an alternative resource to mineral oil. Recent expectations - CO2 emission poses a threat to society. A transition towards a sustainable energy supply is therefore desirable. - It is expected that cellulose ethanol offers the possibility to reduce CO2 emission in transport. Biofuels might not be the ultimate solution, but do present a more or less ready solution for the near future – among few alternatives. For the longer term, other options to reduce CO2 emission in transport exist as well. - It is expected that sustainability aspects of biofuels will be more and more important. Subsequently, there will be an increasing emphasis on sustainability criteria. - It is expected that cellulose ethanol is a satisfying biofuel regarding sustainability aspects, avoiding the drawbacks of conventional ethanol. - The production of cellulose ethanol, as a biofuel, could serve as stepping stone towards a biobased economy; involving extended utilization of lignocellulosic biomass for a range of purposes. - As a result of increasing demand for ethanol, due to the EU biofuels directive, cellulose ethanol is at present the most attractive product to produce from lignocellulosic biomass. However, ethanol can also serve as a resource for the chemicals industry, as is intended in the vision of the biobased economy. - In general there is a perceived increase in the desire for sustainable products and processes.
Gijs van der Meer - Thesis
74
Quality The various experiments that have been carried out in the Netherlands provide support for a number of technological and non-technological expectations. These expectations, which are outlined below, increased in quality. Support for expectations regarding technology -
Technical feasibility of lignocellulose conversion by means of two distinct processes is demonstrated at pilot scale in two separate R&D projects. (Thermal mild acid pretreatment & enzymatic hydrolysis – ‘Co-production’. Concentrated acid: Biosulfurol process) - Environmental sound performance of two processes for the conversion of lignocellulose is demonstrated at pilot scale. (Thermal mild acid pretreatment & enzymatic hydrolysis – ‘Co-production’. Concentrated acid: Biosulfurol process – lab / pilot scale) - A suitable yeast for the fermentation of C5 sugar to ethanol is discovered and improved. Subsequently, fermentation of C5 sugars to ethanol is demonstrated in the 125 EET project ‘Co-production’. - The potential of low cost lignocellulosic biomass conversion is demonstrated in the Biosulfurol project; pilot scale. All the above results support the expectation about the potential of utilizing lignocellulosic biomass as attractive feedstock for a range of purposes, and in particular ethanol. -
However, there is consensus that the production of cellulose ethanol is not yet mature, several technical challenges remain: in process integration and up-scaling, availability of effective & economic enzymes. In addition, differences in feedstock present challenges. Development of a robust conversion process or none selective enzymes / appropriate cocktail of enzymes proved to be difficult.
-
Concerning the use of cellulose ethanol as a biofuel, the potential CO2 emission reduction in transport is supported by results in experiments (‘Co-production’; pilot scale, Shell – Iogen; demonstration scale) Furthermore, conventional ethanol is applied in fuel blends, supporting the expectations about cellulose ethanol as a biofuel.
Support for non-technical expectations -
Experiments in recent years have demonstrated that economic feasibility is still an obstacle, given available technology and enzymes. Nedalco eventually decided to freeze their plans for the construction and deployment of a cellulose ethanol plant as their business case was no longer viable. Difficulties over economic feasibility are confirmed at international level, worldwide no commercial production of cellulose ethanol is taking place. However, it is expected that costs of the production of cellulose ethanol will go down.
Application of conventional ethanol as a biofuel demonstrated two issues, the first relates to environmental aspects, the second to economical feasibility: - Utilization of conventional ethanol as a biofuel demonstrated undesired consequences of the use of biofuels, in term of costs, CO2 reduction, competition with food production - and related; the potential volume of conventional ethanol. This supports cellulose ethanol as an alternative biofuel. - Application of conventional biofuels demonstrated that consumers are not willing to pay for biofuels, there is no market demand without a government incentive. This does support the importance of government action in the biofuels market.
125
Pronk (2004), Reith et al (2007)
Gijs van der Meer - Thesis
75
Specificity In the Netherlands, development of cellulose conversion advanced from proof of concept to pilot scale experiments and subsequently; conceptual plant design. This trajectory approaches realization of the main expectation; large scale utilization of lignocellulosic biomass. Over the years, little detailed expectations are asserted. Still today, the expectations are not detailed. This might be attributed to the premature state of development and the competitive field of development. The following aspects should be taken into account when assessing the specificity of expectations: -
-
Differences in conversion process; not all expectations apply to all conversion processes that are being developed. Difference in utilization of various feedstock. This distinction refers to the notion that Woldberg of Nedalco expressed; there is variety in feedstock, possibly rated as easy, or difficult to process. Therefore, a mature process for a certain easy feedstock is not necessarily capable of processing other feedstock. Difference between availability of a mature production process vs. commercial production. This is a techno-economic issue, very well illustrated by Nedalco’s business case, which has been put on hold while a process design was available, anticipating the use of commercially available enzymes.
The most general expectation involves the availability of a mature process for lignocellulose conversion in general. In the early 2000s, sources indicated that such a process could be available around 2010 – 2015. Today, the sources estimate that the availability of a mature production process is near, with a few years from now. No exact year is mentioned. In 2007, Nedalco announced plans for the construction of a cellulose ethanol production facility, making it a world premiere. However, due to economic circumstances, this project for industrial scale production has been put on hold. Another rather general expectation involves the potential of CO2 emission reduction. Past expectations did not express a degree of CO2 emission reduction. The ADL report of 1999 assesses biofuels that would be capable of achieving 50% CO2 emission reduction. The authors present cellulose ethanol as a promising option. Today, actors do express their expectations about CO2 emission reduction, however, these range from 50% up to 90%, thus not showing convergence. Concerning expectations about what feedstock to apply, I refer to the above mentioned division in feedstock, according to Woldberg. Initially, no explicit distinction is made about the feedstock; all lignocellulosic biomass - waste and agricultural residues - is assumed appropriate. Today, the difference is acknowledged, along with the consequences on the conversion process. Thus, expectations got more specific. Expectations about a suitable approach to arrive at a viable conversion process show something interesting. What appears from the sources can be considered a division of expectations into: ‘between’ and ‘within’ approaches, regarding; -
Thermal mild acid pretreatment and enzymatic hydrolysis (enzymatic process) Concentrated acid pretreatment and chemical hydrolysis (concentrated acid process).
Gijs van der Meer - Thesis
76
Starting with the division of expectations within the approach that is based on enzymatic process. From the data, it appears that the expectations of Dutch actors about the enzymatic approach are converging. Initially the actors express expectations about the basics of the process, such as improvements of pretreatment technology and xylose (C5 sugar) fermentation. Today, the technology is available and considered more or less mastered. The next step towards realization of expectations takes three approaches. 1. Technological development, aiming at the improvement of enzymes and pretreatment processes. 2. Starting from available technology to arrive at a viable business case through process integration, optimization and up-scaling. 3. Searching for a viable business case in viable alternative configurations and organizational benefits. These approaches are particularly illustrative for the international level of development, but are also practiced in the Dutch niche to certain extent. The expectations follow progress in practice. Consequently, the expectations can be considered to converge. However, parallel in the early 2000s, research and development of a different conversion process was initiated, involving concentrated acid pretreatment and chemical hydrolysis. Results were satisfying and the actors decided to advance this conversion process. The sources indicate that doubts rose about the progress of enzyme development, and thus enzymatic conversion processes. Today, the sources argue that both approaches can be viable in the near future. This indicates diversion of expectations between the approaches. A division into macro, meso and micro expectations gives some support to the analysis of specificity. The macro expectation about the utilization of lignocelulosic biomass is still valid and became more specific over time. The expectation involving reduction of CO2 emission is also still expressed. It did not get become more specific though. Still, both of these macro expectations can be considered to guide expectations at the meso and micro level. Much of the expectations that are expressed can be considered meso expectations. Their horizon is in between the macro and micro expectations and they prescribe how a sector could develop. As the above text illustrates, meso expectations are expressed in the form of; the type of feedstock, the differences in feedstock, possible conduct of operation and viable business cases. These expectations became more specific over time. The sources indicate much activity in the area of R&D and show continuing technological progress. However, little detailed micro expectations are expressed, nor in time or objective. What can be concluded is that macro expectations continued to guide meso and micro expectations over time. The technology advanced to a state where it influences meso expectations. However, meso expectations both converge and diverge, depending on the technology. Conclusion The movement that is involved in development of cellulose ethanol in the Netherlands grew over the past years. An increased number and variety of actors share important expectations that fuel the development. A division can be made in early expectations particularly aiming at utilization of lignocellulosic biomass and more recent expectations about the potential of cellulose ethanol as a biofuel. In both cases, expectations got more robust. Most of the expectations are supported by results in experiments. Ongoing technological progress supports the expectations about the utilization of lignocellulosic biomass and cellulose ethanol as a biofuel. However, the experiments did not result in convincing support for short term economic feasibility of cellulose ethanol as a biofuel. Although not overconfident, the quality of expectations increased. Specificity of expectations is ambiguous. The movement is dividing over various approaches to fulfill the expectations of utilization of lignocellulosic biomass and the production of cellulose ethanol. Over all, these movements target increasingly more specific goals. However, the fact that the movement splits up indicates that there is no single undisputed way
Gijs van der Meer - Thesis
77
to reach the goals, illustrating divergence of expectations. Then again, it is expected that there is no single solution. The process of voicing and shaping of expectations can therefore be considered fairly successful. Expectations fuel the development of cellulose ethanol, while the niche builds up momentum. Opportunities and barriers Analyzing the process of voicing and shaping of expectations revealed a number of opportunities and barriers for the development and deployment of cellulose ethanol in the Netherlands. These opportunities and barriers are divided over two categories: -
Present opportunities and barriers: robust expectations, supported by results from experiments. Considered an actual opportunity or barrier for cellulose ethanol at present. Potential opportunities and barriers: robust expectations that are not - yet - supported by experiments. These expectations are important to convince actors to invest time and effort.
-
Present opportunities and barriers -
Technology for the production of cellulose ethanol is not yet mature, several technical challenges remain; in process integration, up-scaling and availability of effective and low cost enzymes. In addition, differences in feedstock present challenges.
-
Initiatives over the past years have demonstrated that economic feasibility is still an obstacle, given available technology and enzymes.
-
Application of conventional biofuels demonstrates that consumers are not willing to pay for biofuels, there is no market demand without a government incentive.
-
And following on the above argument, the present government incentive is not strong enough.
Potential opportunities and barriers Technology + Technical feasibility of two effective and environmental friendly processes for conversion of lignocellulosic biomass to ethanol is demonstrated at pilot scale. One of these conversion processes is capable of processing a specific ‘easy’ feedstock and ready for up-scaling. A mature and more versatile production process is expected within a few years. +
Successive technological achievements support the high potential of utilization of lignocellulosic biomass for multiple purposes, such as fuels, chemicals and materials. This potential concerns costs, volume, availability, and sustainability aspects.
Gijs van der Meer - Thesis
78
Potential opportunities and barriers - continued Cellulose ethanol as a biofuel + It is expected that cellulose ethanol avoids the drawbacks of conventional ethanol, in terms of costs, CO2 emission reduction, competition with food production - and related; the potential volume. +
It is expected that sustainability aspects of biofuels will be more and more important. Subsequently, there will be an increasing emphasis on formal sustainability criteria. Cellulose ethanol is expected to live up to the foreseen sustainability aspects.
+
Experiments support the expectation that cellulose ethanol offers the possibility to reduce CO2 emission in transport.
+
Conventional ethanol is applied in fuel blends, supporting expectations about the compatibility of cellulose ethanol in the present fuel infrastructure.
-
Biofuels might not be the ultimate solution to reduce CO2 emission in the transport sector, but they do present a more or less ready solution for the near future – among few significant alternatives. For the longer term, other options to reduce CO2 emission in transport exist as well.
Towards a biobased economy + There is an increased desire for alternatives to mineral oil, due to the decreasing supply, the increasing and volatile oil price and dependency on import. Lignocellulosic biomass has a high potential to serve as an alternative resource to mineral oil. +
In general there is a perceived increase in the desire for sustainable products and processes.
+
It is expected that the desire for CO2 emission reduction will remain, along with the desire for a transition towards a sustainable energy supply.
+
At present, cellulose ethanol is the most attractive product to produce from lignocellulosic biomass. Besides, ethanol can serve as a bulk chemical.
+
Furthermore, the technology for biochemical conversion of lignocellulosic biomass and the production of cellulose ethanol is suitable, valuable and intended for application in a so-called biobased economy.
+
Therefore, the production of cellulose ethanol, as a biofuel, could very well serve as a stepping stone towards a biobased economy; involving extended utilization of lignocellulosic biomass for a range of purposes.
Gijs van der Meer - Thesis
79
Network formation This sub-section is dedicated to the analysis of the second niche process: network formation. It starts by drawing up the composition of the network and the changes over time. This is repeated for the alignment of the network and followed by the analysis. Like for the previous niche process, the analysis addresses the question to what extent network formation contributes to successful niche development and what opportunities and barriers exist.
Composition The composition of the network, and the changes over time, are observed according to a number of characteristics: actor characteristics, the extent to which they are capable of introducing and pursuing change, whether or not they have the intention and right incentive to do so and whether or not these interests and incentives conflict. Actor characteristics In the early 2000s, Dutch authorities gained interest in biofuels. They expressed their desire for biofuels and initiated and supported a number of R&D projects targeting cellulose ethanol. 126 127 and EET were carried by four The desire for biofuels and support programs GAVE governmental departments: -
Ministry of Housing, Spatial Planning and the Environment (VROM) Ministry of Economic Affairs (EZ) Ministry of Transport, Public works and Water management (V&W) Ministry of Education, Culture and Science (OC&W)
A number of (semi public) research institutes and business actors was already active in the field of conversion of lignocellulosic biomass or the development of cellulose ethanol in particular, and carried out the R&D projects. These organizations are: -
ATO BV. (today WUR AFSG: Agrotechnology and Food Sciences Group) TNO - MEP / TNO - Voeding (Today: Science & Industry and Quality of life) Delft University of Technology Bird Engineering Energy research Centre of the Netherlands (ECN)
ATO BV is a research institute affiliated to Wageningen University and Research Centre. (WUR). TNO is a Dutch semi-public research institute. Both institutes have a tradition in the utilization of lignocellulosic biomass in general, and pretreatment and mobilization of fermentable sugars from lignocellulosic biomass in particular. Delft University of Technology (Delft UT) has significant expertise in biotechnology and in particular industrial fermentation, including yeast modification and improvement. Delft UT 128 participates in the Kluyver Centre for Genomics of Industrial fermentation . Bird Engineering is a commercial research institute, active in the same field. Energy research Centre of the Netherlands (ECN) has a long history in utilization of biomass, in particular by means of thermochemical conversion. In the field of cellulose ethanol, ECN 129 especially employs its expertise in systems analysis and optimization.
126
GAVE (1998 – today): VROM, EZ, V&W EET 1996 - 2003: VROM, EZ, OC&W (Since 2004: “Innovatiesubsidie Samenwerkingsprojecten”) 128 The Kluyver Centre is a consortium of Delft University of Technology, the universities of Groningen, Leiden and Utrecht, VU University Amsterdam, NIZO food research and TI Food and Nutrition. (www.kluyvercentre.nl) 129 Den Uil (2008) 127
Gijs van der Meer - Thesis
80
Apart of the national authorities and research institutes, a number of business actors are involved in cellulose ethanol. -
Royal Nedalco BV. Shell / Shell Global Solutions International Purac Biochem Techno Invent Port of Rotterdam
Royal Nedalco BV. (Nedalco) is an important business actor in the early network of cellulose ethanol. The company has a tradition of more than a century in the production of ethanol (alcohol) for consumption and technical applications. The company is also active in R&D related to ethanol production. Shell Global Solutions International participated in the major EET project ‘Co-production’ (2002 – 2007) and the preceding feasibility study. The R&D division of the petrochemical conglomerate contributed their expertise in transport fuels and fuel infrastructure. Apart of the R&D department Shell Global Solutions International, the petrochemical conglomerate Shell expanded their involvement in the field of cellulose ethanol by acquiring a share in the Canadian company Iogen Corporation (Iogen) in 2002. Iogen is a biotechnology company, with a tradition in enzyme development and production. The company specializes in cellulose ethanol Purac is a producer of lactic acid and lactic acid derivatives, interested in the production of 130 these products from lignocellulosic biomass . Techno Invent BV. is an entrepreneurial engineering agency, specializing in environmental technology and sustainable energy. Lastly, Port of Rotterdam is a major European port and hub for agricultural products and other 131 goods and commodities. At the same time, the port district is a busy industrial region . The present situation in 2008 shows a change, and mostly increase in actors that are involved in the development of cellulose ethanol. The national authorities are still a significant promoter of biofuels – following on the EU directive. Financial support for R&D has declined, but the desire for utilization of biomass in general, together with biofuels has increased. And by implementing the EU biofuels directive, the authorities adopted the role of regulator, besides their position as policy makers. Today, 132 the government vision on utilization of biomass is carried by the following departments : -
Ministry of Housing Spatial Planning and the Environment (VROM) Ministry of Economic Affairs (EZ) Ministry of Transport, Public works and Water management (V&W) Ministry of Agriculture, Nature and Food quality (LNV) Minister of Development cooperation (OS)
All the research institutes that were involved in the early 2000s are still active in the same field of expertise, and still cooperate in the development of cellulose ethanol.
130
The company is a subsidiary of CSM, a Dutch producer and supplier of bakery products. Besides their involvement in a feasibility study related to cellulose ethanol, Bakker (2008) states that Port of Rotterdam is an important client of WUR – AFSG for contract research. 132 Government vision ‘De keten sluiten’ (2007) 131
Gijs van der Meer - Thesis
81
The number and variety of Dutch business actors that are involved in the development of cellulose ethanol increased. It is not known whether Purac BV. still studies utilization of lignocellulosic biomass. However, they did not aim specifically at cellulose ethanol in the first place. So excluding Purac BV., the present network constitutes the following organizations: -
Royal Nedalco BV. Shell / Shell Global Solutions International Techno Invent Port of Rotterdam Dyadic Nederland BV. (subsidiary of Dyadic International Inc). N2 Energie BV / Bio-Rights BV DSM Avantium Cosun
The business actors that were involved in cellulose ethanol in the early 2000s continue their work. Over the past years, Nedalco has joined forces with foreign companies in the development of cellulose ethanol. In July 2006, Nedalco signed an agreement with 133 134 SunOpta , and in March 2007 with Mascoma . Both companies are prominent US technology developers, specializing in conversion of lignocellulosic biomass in general, and cellulose ethanol in particular. Furthermore, in 2007, a new R&D project is launched by Nedalco, ECN and Delft UT. This consortium is joined by a subsidiary of the US biotechnology company Dyadic, for its expertise in enzyme development. At the same time, new initiatives are deployed. N2 Energie BV, today continuing under the name of Bio-Rights BV., is a young entrepreneur. This company develops a production process and intends to start production of cellulose ethanol in the near future. DSM is a Dutch conglomerate, active in the fields of ‘Life Sciences’ and ‘Material sciences’. DSM has a long tradition in applied advanced biotechnology and will incorporate advanced biofuels in its corporate policy from 2010 onwards. The company focuses on biochemical production of cellulose ethanol and biorefining. In 2008, DSM announced that the company will lead a research consortium that is granted a subsidy from the US department of Energy, 135 to study and improve technology for biorefining . Other partners in the consortium are: Abengoa Bioenergy New Technologies (Spain / USA), Sandia National Laboratory (USA), Los Alamos Laboratory (USA). Avantium is a Dutch technology company, specialized in the area of advanced, high throughput R&D. The company develops and intends to commercialize a biofuel produced from sugars and other carbohydrates – not ethanol though. For further development, Avantium collaborates with Cosun. Cosun is a Dutch producer and supplier of natural 136 ingredients and food stuffs for the international food industry . Cosun also processes organic residues into products for non-food applications. Nedalco is a subsidiary of Cosun. While interest in biofuels increases and conventional biofuels are employed, awareness of NGOs rises. By participating in the discussion on biofuels and expressing their views on biofuels, they can be considered part of the network too. This study considers the viewpoints of two Dutch NGO’s with a significant history; Stichting Natuur en Milieu and Milieudefensie. A brief description of these organizations is found in Appendix C. Introducing and pursuing change As can be derived from the previous section, the network possesses significant resources for introducing cellulose ethanol and pursuing change. The network possesses excellent competences and facilities to carry out research and development in the field of cellulose ethanol, both by semi public research institutes as well as private companies.
133
th
SunOpta announcement July 6 , 2006 st Nedalco Press release March 1 2007 135 th DSM Press release February 27 , 2008. 136 th Joint press release by Royal Cosun and Avantium, January 21 , 2009. 134
Gijs van der Meer - Thesis
82
Shell has extensive expertise with logistics, infrastructure and blending of ethanol and 137 gasoline . As a producer of conventional ethanol, Nedalco is familiar with the supply of 138 ethanol as transport fuel since 2005 . However, concerning feedstock logistics, the corporate strategy aims at on-site utilization of waste and residue streams and Nedalco does not consider itself capable of establishing a system for agro-logistics. Port of Rotterdam could contribute knowledge and expertise in feedstock logistics. The network includes financially strong actors, especially Shell and DSM. Furthermore, today NGOs are also occupied by the development of biofuels, and government support for advanced biofuels, such as cellulose ethanol, increased. Interests and incentives Different actors have different interests for participating in the development of cellulose ethanol. Government Initially, the Dutch government was interested in the utilization of biomass from the perspective of a transition towards a sustainable energy supply and reduction of CO2 emission. Both desires are a response to global warming and the threat of climate change, and the subsequent establishment of the Kyoto protocol. The problem with energy supply was in energy related emissions, not so much in availability. Energy sources should be clean, 139 safe, affordable and accessible at demand. This government vision has changed to a certain extent. Today the government still desires a transition towards a sustainable energy supply and reduction of CO2 emission to meet the Kyoto protocol objectives. But in contrary to a decade ago, a clear need for a sustainable alternative to mineral oil is expressed, because of; - The treat of global warming and climate change, - Increased and undesirable dependency on import of mineral oil and gas, - The increasing and volatile oil price. Second, the government is very interested in the utilization of biomass. Biomass could serve as a renewable resource for a range of food and non food purposes, such as fuels, chemicals and materials. This so-called ‘biobased economy’ could offer significant opportunities for the Dutch economy and fits with national capabilities in biotechnology, logistics and 140 agribusiness. NGOs The interest of both Stichting Natuur en Milieu and Milieudefensie is in preservation of the natural environment and the increase of social welfare. At first, NGOs were not occupied by the development and initial utilization of biofuels. This changed with the utilization of conventional biofuels in the Netherlands. Both acknowledge the threat of global warming and climate change and support a transition towards a sustainable energy supply, together with the desire to reduce the use of mineral energy sources. Biofuels could contribute to these desires; however, they should be covered by sustainability criteria, preventing negative environmental and social effects. Cellulose 141 ethanol is regarded to be an acceptable biofuel . Research institutes ECN, TNO and WUR / AFSG are active in the utilization of biomass, as promising renewable resource for energy, chemicals and materials. Delft UT and Bird Engineering are active in industrial biotechnology and in particular fermentation. 137
Shell & Biofuels 2007 Presentation Woldberg September 11th 2007. 139 VROM (2001), NMP4, Ministry of Economic Affairs (2002), Energy report 2002 140 Government vision document 2007; De keten sluiten 141 SNM 2006, SNM & De provinciale Milieufederaties 2008, Milieudefensie 2006 138
Gijs van der Meer - Thesis
83
The objective of the research institutes is to create and advance public relevant knowledge and to be in the forefront of (bio-) technological development. Depending on the conduct of business (semi-public or commercial) the institutes emphasize commercialization of knowledge and expertise. In general their scope goes up to pilot scale demonstration. If desired, they carry out contract research and provide knowledge and consultancy services in the phases towards 142 commercialization . ECN, TNO and WUR / AFSG, are especially interested in the utilization of lignocellulosic biomass as a low cost, high volume feedstock, which is at the same time renewable. More specific, these research institutes are interested in the development and commercialization of an effective, economic and ecologically friendly process for conversion of lignocellulosic biomass. The increasing attention for biofuels and alternatives for mineral oil have put an emphasis on ethanol production, although the whole range of possible applications is still acknowledged. Business Royal Nedalco BV. The interests of Nedalco have slightly changed over time. As a producer of ethanol from conventional feedstock, Nedalco constantly explores opportunities for its business. Already in the late 1990s Nedalco noticed the opportunity of utilizing lignocellulosic biomass as a low cost, high volume feedstock for the production of ethanol. However, this alternative feedstock required a different conversion process. Although Nedalco does not consider itself a technology developer, the company started research and development in utilization of lignocellulosic biomass as resource for ethanol production. (Together with research partners) Over time, interest in ethanol as a biofuel increased. In particular government regulation created a new and significant market for ethanol. This intensified the interest of Nedalco to develop an effective, economic and environmentally friendly process for the conversion of lignocellulosic biomass and the production of ethanol; cellulose ethanol. In particular in the USA, Canada and Europe, there is an increasing search for such a process, in a competitive environment. Therefore, valuable knowledge and expertise of Nedalco and its research partners are commercialized. Shell / Shell Global Solutions International Shell notices an increasing demand for biofuels, caused by government regulation in various countries worldwide. As a fuel supplier, Shell has an interest to supply a satisfying biofuel; satisfying in the sense of low cost, high potential volume and decent fuel characteristics. Therefore, Shell explores the possibilities to produce such a satisfying biofuel. The conglomerate is involved in a number of initiatives, of which FT biodiesel is the most prominent, and in line with other interests of Shell. Shell also identified the potential of cellulose ethanol, something beyond the scope and expertise of the conglomerate. Therefore, Shell acquired a share in Iogen. Iogen is an important developer of technology to produce cellulose ethanol. Shell acknowledges that there will be a market for biofuels, either through government regulation or possibly due to economical conditions in case of a rising oil price. Techno Invent Techno Invent is a technology developer, active in the field of environmental technology and sustainable energy. The interest is in development and commercialization of technology. The company itself is primarily active in R&D, pilot and demonstration projects, while Green Energy Technologies (GET) focuses on commercialization and exploitation. GET is established by Techno Invent and RL Participaties BV. Port of Rotterdam Port of Rotterdam is to some extent involved in advanced biofuels, such as cellulose ethanol. The organization participated in the feasibility study of 2002 – 2003 (See table Cellulose ethanol experiments at page 64). In 2005, a consortium including Port of Rotterdam 142
Groenestijn, Bakker, 2008
Gijs van der Meer - Thesis
84
presented a draft plan for the initiation of a demonstration park for sustainable energy and 143 suggested biomass gasification as platform technology . Besides, the port accounts for a 144 high throughput of conventional biofuels . In addition, Bakker states, Port of Rotterdam is an important client for WUR / AFSG regarding contract research about utilization of agroresources. The interest of Port of Rotterdam in utilization of agro-resources is confirmed and emphasized th in an announcement of January 27 2007. In this announcement, Port of Rotterdam states its expectations about a changing economy; the fossil based economy will be replaced by a nonfossil based economy. Port of Rotterdam presents itself, and other national port regions as important regions to advance this biobased economy. Port of Rotterdam perceives opportunities in a changing economy and presents itself as an important centre of development and deployment, independent of the technology (biochemical or thermochemical) or product (food, feed, fuels, chemicals, materials). N2 Energie BV / Bio-Rights BV N2 Energie BV / Bio-Rights BV. is established with the interest to commercialize a patent, comprising a reactor and corresponding process that can be applied for the production of cellulose ethanol. Therefore, the primary interest is to develop an effective, economic and environmentally friendly process for the production of ethanol. The EU biofuels directive provided the right incentive. However, second to the EU biofuels directive is the notion of a future shortage of mineral oil. By developing a process for the production of ethanol, an alternative for mineral oil is developed. DSM In 2004 DSM presented a position paper on white – industrial – biotechnology. In this position paper, DSM promotes the use of agricultural (by) products for the production of fine and bulk chemicals, based on sugars, by means of physical chemical processing (possibly using enzymes). They argue that industrial biotechnology offers opportunities for economy, environment and society. Emphasizing industrial biotechnology could exploit European strengths, such as the significant enzyme industry and a high level of knowledge in the field of food technology and fine chemistry. Besides, there is a political and public sentiment to improve industrial sustainability. Furthermore, it fits with European objectives (Lisbon Convention) to become the most competitive and dynamic knowledge based economy in the world by 2010. Also on national level, there is an important capacity of industrial biotechnology, in companies like: Unilever, Heineken, Grolsch, Bavaria, Campina Friesland 145 Coberco Dairy Foods, Cosun, CSM, Avebe, DSM, Akzo Nobel etc. th In a press release of February 27 2008, DSM announces a joint development program, financially supported by the US Department of Energy. In this R&D program, DSM will cooperate in an international consortium to develop the technology platform for conversion of cellulose based bio resources. For DSM, this R&D project fits very well with its corporate vision 2010. In this vision, white or industrial biotechnology is characterized as an ‘Emerging Business Area’, of principal importance. DSM states to desire a position as a supplier of integrated technology for so-called second generation processes for the production of fuels and biobased chemicals. Avantium & Cosun Avantium is a technology company that has developed a sugar-based (carbohydrate) alternative for mineral oil to produce biofuels and bioplastics. Cosun has a background in utilizing agro-feedstock and waste and is exploring opportunities to increase the added value of their feedstock. Together, they agreed to further develop a satisfying production process. If the development program is successful, the companies intent to scale up the process to commercial scale. Ultimately Avantium intends to deliver a product that is competitive with mineral oil. But at present, the product is presented as a next generation biofuel, with both excellent fuel properties (high energy density and mixability with conventional fuels) and competitive production costs. This implies that the expected demand for – improved – biofuels, due to the EU biofuels directive provides the incentive. 143
Port of Rotterdam et al (2005) Port of Rotterdam news: February 29th 2008 145 DSM (2004) White Biotech position paper 144
Gijs van der Meer - Thesis
85
As a bioplastic, the product is presented to be cheaper than oil-based plastics, with attractive properties. This implies an interest in an alternative to mineral oil and at the same time 146 increasing desire for sustainable products such as bioplastics . Conflicting interests In this early state of development where large scale production of cellulose ethanol (or utilization of lignocellulosic biomass for fuels, chemicals and materials) does not take place yet, no conflicting interests appear. There are no signs of colliding businesses, use of resources or directly competing products. At present, competition exists in the development of viable conversion processes for utilization of lignocellulosic biomass. However, it is acknowledged that various processes can exist alongside each other. Besides, many processes that are developed today are said to be selective. This gives way to deployment of various processes, for the conversion of various types of feedstock. Concerning cellulose ethanol as a fuel; as long as biofuels remain an expensive alternative to mineral fuels, there is no direct competition between the two. Today a certain share of the 147 transport fuels market is granted to biofuels by government regulation . This is a relatively new market that requires new knowledge, new technology and new products. Therefore, new opportunities exist that do not directly result in conflicting interests among the actors in the network. When cellulose ethanol arrives at the biofuels market, there will be competition with conventional biofuels. Concerning the utilization of lignocellulosic biomass in general, a number of actors assume a future biobased economy. In that case, competition could exist between different purposes, sharing the same feedstock. However, Breunesse and Den Uil argue that the existing division between fuels and chemicals can remain to exist and different applications do not necessarily interfere. By far the largest share of mineral oil is used for transport. This is confirmed by Bakker, who adds that this is certainly true for the near future. In the longer run, the division might change as our system of mobility might change. In the longer run, competition might exist between biobased products and fossil based products. Concerning sustainability aspects, cellulose ethanol promises to meet the sustainability criteria that are much discussed today (See appendix D) and in that perspective they do not conflict with the interests of the authorities or NGOs. In SNM & T/E (2008) – Heldergroene Biomassa, Stichting Natuur en Milieu argues that significant quantities of biomass can be made available without harming the environment.
Alignment The alignment of the network, and the changes over time, are also observed according to two characteristics: a history of cooperation; and whether or not the actors share practices, strategies and visions. History of cooperation There is a considerable cluster of actors centered around Nedalco (A subsidiary of Cosun). This cluster consists of Nedalco, WUR – AFSG, TNO, ECN and Delft UT. Besides, Nedalco, Delft UT and Bird Engineering are in a joint venture together. This cluster focuses on thermal mild acid pretreatment and enzymatic hydrolysis. In the past few years, Nedalco established cooperation agreements with the foreign companies SunOpta and Mascoma. In the present R&D project ‘Pectin challenge’, the consortium is joined by a subsidiary of the foreign company Dyadic International.
146
Avantium press release October 22th 2007 and Avantium and Cosun Joint press release January th 21 2009 147 Breunesse argues that in the case that biofuels become economically much more attractive, the minimum share of biofuels might change to a maximum share, due to limited compatibility of conventional biofuels with the existing fleet.
Gijs van der Meer - Thesis
86
Another consortium of actors focused on another approach, resulting in the Biosulfurol process. These actors are: TNO, WUR – AFSG and Techno Invent. The feasibility study for this project included Port of Rotterdam. In the interview in July 2008, Nijman stated that Bio-Rights (then named N2 Energie) does not have a history of cooperation with other organizations. In November of that year, they state to cooperate with Delft UT. Concerning the cooperation between Avantium and Cosun, there are no signs of earlier joint initiatives. This also applies to DSM and the international research consortium that was recently established to develop the concept of, and technology for biorefining. DSM does have a history in cooperation with Iogen. However, it is not known whether or not this relation is important in present activities. Shared strategies, practices, visions Various visions blend together in current practices. Most prominent is the vision of utilization of lignocellulosic biomass, and the development of an effective, economic and environmental friendly process to make this possible. Second, is the objective to produce cellulose ethanol. To achieve this, practices differ. There is variety in the initiatives regarding approaches, in particular at process or technological level. These initiatives largely operate separately from the other. Several actors state that there is a very competitive – international - field of 148 development. The development of advanced utilization of lignocellulosic biomass in general, and future production of cellulose ethanol in specific is in line with the present government vision, aiming for a transition towards a biobased economy. This vision of a biobased economy is supported by various actors, such as TNO, WUR / AFSG, DSM and Port of Rotterdam. It is recognized that the production of cellulose ethanol could function as stepping stone towards extended use of the feedstock, for a wider range of applications. Furthermore, cellulose ethanol fits within the expectations of satisfying biofuels by the government and NGOs.
Analysis of network formation Composition The sources indicate an increase in number and variety of actors in the network. Over time, international relations are established as well. The network covers a wide range of functions, from R&D and future production to legal matters in regulation. From the data, it appears that the network lacks a dedicated actor with knowledge and expertise in agro-logistics. And although Port of Rotterdam continues to show interest in biomass utilization, the actor does not present itself to take on the challenge of agro-logistics. However, some approaches, like Nedalco, avoid the necessity of agro-logistics. The sources do not question the function of distribution, blending and retail of cellulose ethanol, likely because conventional ethanol is already traded and utilized today as a fuel. Altogether, the actors possess significant resources for introducing and pursuing change. When analyzing the interests and incentives, it shows that there exists a shared drive to advance the development of cellulose ethanol. The interests and incentives slightly differ, but can still be considered aligned or complementary. The primary interest is in development and commercialization of – a conversion process for – utilization of lignocellulosic biomass, by means of biochemical conversion. Of secondary interest is the production of cellulose ethanol, that is regarded an alternative for mineral oil at the same time. Within the field of cellulose ethanol development, several initiatives are carried out, taking different approaches, resulting in diversity in initiatives; the Nedalco cluster, the BioSulfurol cluster, Bio-Rights, the DSM consortium, Avantium / Cosun. This diversity in initiatives makes the development as a whole more stable. Progress does not depend on one actor, or a small 148
Bakker, Van Groenestijn, Woldberg (2008)
Gijs van der Meer - Thesis
87
number of actors. The initiatives are rather independent from each other; there is competition to a certain extent, which is even further stimulated by developments at international level. In the USA, there is a very competitive and attractive market for cellulose ethanol technology. According to the sources, the various young and old initiatives that are deployed in the Netherlands, consist of both established and young organizations. For the older initiatives, the Nedalco cluster and the BioSulfurol cluster, internal interests are driving the development, i.e. utilization of lignocellulosic biomass as low cost, high volume, renewable feedstock. Today the internal drive got stronger by the external incentive of the demand for biofuels, caused by the EU biofuels directive. The younger initiatives Bio-Rights, Avantium / Cosun and the DSM consortium are to a greater extent driven by the external incentives of the increasing demand for biofuels, the increasing desire for an alternative to mineral oil and the desire for sustainable products and processes. The internal interests and the present external incentives are in line. At present, no direct conflicting interests show from the sources. This might change when development approaches large scale application. However, the sources question whether the present direct external incentive for cellulose ethanol is strong enough, considering the present unfavorable market conditions for ethanol. This emphasizes the role of the national and European authorities. What appears from the analysis is that the network consists of a large share of actors that is involved in technology development. Not all have the intention to actually produce cellulose ethanol. This could result in a disparity between technology development and commercialization, and actual production of cellulose ethanol. Avantium straightforwardly states that they intent to license the technology when a mature production process is 149 developed . It remains unclear whether or not the financially strong actors, such as Shell and DSM, actually have the intention to invest in production. At the same time it is unclear whether or not the actors with the intention to produce cellulose ethanol; Nedalco and BioRights, will be financially capable. This issue is particularly relevant as there exists a competitive and attractive (technology) market in the USA, providing a market for commercialization of knowledge and technology, without actually pursuing production in the Netherlands. Together with the above mentioned issue of the external incentive (market conditions) this raises the question; who will produce cellulose ethanol in the Netherlands? Alignment The data show a number of separate, parallel ongoing initiatives. The initiatives all consist of a number of cooperating actors. Many forms of cooperation exist, particularly joint R&D, even at international level. Other types of – formal - cooperation exist in the form of contract research and joint venture. In some cases, the initiatives are related by independent actors, such as research institutes. As mentioned in the above text, there are both old and young initiatives. The older initiatives, the Nedalco cluster and the Biosulfurol cluster, were established based on shared interests, before government attention for cellulose ethanol as a biofuel for the transport sector increased. These initiatives received government support though. The younger initiatives are primarily driven by more recent, external incentives and established as a consequence, without a shared history. There is a number of separate, parallel ongoing initiatives. Additional actors are: the national and European authorities, and NGOs. These actors do not all pursue similar goals. However, their visions are aligned. They all share the vision of utilization of lignocellulosic biomass, by means of biochemical conversion, for a range of applications. The shared vision, but differing goals, results in differing, but complementary practices and strategies. More specific, the actors aim for pretreatment and hydrolysis for mobilizing fermentable sugars. The production of ethanol requires subsequent fermentation to ethanol. Another product that can be produced by means of fermentation is for example lactic acid. Another example is Avantium, 149
th
Interview with Tom van Aken, CEO Avantium, December 12 2007
Gijs van der Meer - Thesis
88
which develops an alternative sugar based biofuel / bioplastic. (possibly an alternative to the fermentation process). This shows that the strategies are aligned in the short term. In addition, part of the strategies for the longer term is shared as well, depending on the individual interests. On the short term, the focus is on cellulose ethanol. The longer term offers opportunities for a so-called biobased economy, requiring similar technology and processes. Conclusion The social network of actors surrounding the development of cellulose ethanol does carry the development; it does provide and activate resources and it does articulate demands and expectations. In short, the increasing and expanding network of actors can be considered resourceful, and capable of introducing and pursuing change. There is diversity in initiatives, both young and old in terms of the period that they are ongoing, as well as the organizations that are involved. Development of a number of complementary and competing approaches is ongoing, driven by internal and external incentives for development and deployment. Interests and visions are aligned and / or complementary. However, an external incentive is required to speed up the introduction and overcome the present difficult market conditions for the production of cellulose ethanol.
Opportunities and barriers +
A very resourceful and capable network of actors exists in the Netherlands. Together, the actors possess valuable and complementary knowledge, expertise and technology for development and deployment of cellulose ethanol.
+
The movement that pursues development and deployment of cellulose ethanol is considered stable, because of diversity in initiatives and actors. Development does not depend on a single actor or a small number of actors. In addition, the movement is driven by both internal and external incentives, aiming at short and longer term goals.
-
The network of actors lacks an actor with specific expertise and knowledge in feedstock logistics and in particular logistics of agricultural waste and residues.
-
Arguably, given the current state of the art, the present external incentive (market conditions) is not sufficient for market introduction of cellulose ethanol.
-
Arguably, the network lacks an actor with the interests and means to deploy the production of cellulose ethanol in the Netherlands.
Gijs van der Meer - Thesis
89
International perspective The international perspective is based on the observations that are made for the two preceding internal niche processes. The sub-section serves to assess the assumption that is made in the research design as well as to reveal opportunities and barriers that exist for foreign actors to deploy initiatives in the Netherlands. Although already illustrated to some extent in the first two sections of this study, this subsection starts with an outlook on activities in the field of cellulose ethanol that are carried out abroad. Subsequently, it follows the internal niche processes to derive relevant international aspects. These aspects are analyzed and opportunities and barriers are derived from the outcome.
Perception of niche actors The sub sections ‘Voicing and shaping of expectations’ and ‘Network formation’ of this section, clearly show that development of cellulose ethanol is an international development, crossing national borders. This is not something of the last few years, but already occurred in the early 2000s and before, when R&D was carried out in particular in the USA, Canada, 150 Sweden and Spain. The international character of development of cellulose ethanol is explicitly confirmed in the interviews. The present state of the art is divers, given the variety in approaches as discussed in the previous sections. What can be concluded is that on a global level, no industrial scale production of cellulose ethanol takes place in 2008; the state of the art is pre-commercial. Frequently, announcements are made about successful pilot tests and plans for up-scaling. However, what is known from public sources is that up to today there is no initiative that surpassed demonstration scale. Iogen (Canada) is frequently named to have reached the most advanced stated of development, being close to up-scaling its integrated demonstration facility. However, it has been relatively quiet lately, according to the sources in this study. Van Groenestijn (2008) mentiones that Bluefire (USA) is eager to start construction of a production facility based on concentrated acid pretreatment and chemical hydrolysis. Furthermore, both hybrid production facilities, by Abengoa (Spain) and POET (USA), are under construction. Other leading companies that are mentioned by the sources in this study are: Mascoma (USA) and Sunopta (USA). Both of these prominent technology developers are partners of Nedalco. Abengoa is a frequently named prominent European actor. Other European organizations that are mentioned are Biogasol (Denmark) and Sekab (Sweden). An extensive global overview of activities is presented by Dober & Pezza (2007) in a th presentation on the Cellulosic Biofuels Cluster Meeting; March 20 , 2007. Development of cellulose ethanol primarily takes place in the USA, Canada and Europe. According to the sources in this study, national circumstances have contributed to the course of development. Already in the early 2000s, this is acknowledged in Gave (2003). The USA, Canada, Sweden and Spain are presented as countries that are active in development of cellulose ethanol, operating under supportive government regulation. Bakker and Van Groenestijn confirm that countries with a history in biotechnology and favorable government regulation are prominent actors today. They argue that a great share of R&D in this area is government funded, thus spent within the national borders. This is still witnessed in European research projects today. These projects depend on funding from national governments. National governments donate to these projects, however, mostly under the condition that ‘own’ organizations are involved. Two important national circumstances support development of cellulose ethanol in the USA. At first, the USA accommodate an important conventional ethanol industry, that searches for new opportunities. Secondly, the national authorities have high expectations of cellulose 150
GAVE (2003), Ligno Cellulosic Ethanol – a second opinion
Gijs van der Meer - Thesis
90
ethanol to achieve the objective of replacing 30% of transportation fuels with biofuels in 151 2030. There is a significant budget for R&D in the field of cellulose ethanol and an attractive future market. Do activities in the international field of cellulose ethanol development interact or interfere? From the study, a number of indications suggest that they do. Bakker, Van Groenestijn, Breunesse and Woldberg state that development takes place at the international level. Expectations that are expressed by one actor fuel objectives of other actors. Like in the Netherlands, at international level goals are aligned or complementary, however, possibly following different strategies. Actors compete and cooperate in this international field of development. However, Bakker, Van Groenestijn and Woldberg state that commercial interests are high. This results in a highly competitive environment where results are patented, only partially publicized or kept secret altogether. In one case, Van Groenestijn even suspects deliberate sharing of false information by a foreign actor.
Voicing and shaping of expectations According to the sources in this study, favorable macro considerations exist for accommodating development and deployment of cellulose ethanol in the Netherlands. The Dutch national authorities emphasize these opportunities in their vision document Biobased Economy 2007; -
Geographical location and existing infrastructure; in particular Rotterdam harbor and port facilities, National strengths: knowledge and expertise in agribusiness, logistics and chemicals.
Besides, in the Netherlands, another important favorable macro condition applies, that is a stable political / economical investment climate. The Netherlands / Port of Rotterdam offers 152 similar opportunities for advanced biofuels as it does for conventional biofuels. The last few years have shown an increase of (planned) construction of production facilities for 153 conventional biofuels in the Netherlands. Another issue with an international aspect to it, which is expressed in the expectations section, regards the feedstock. Large scale production requires large quantities of feedstock; lignocellulosic biomass. Den Uil states that although the Netherlands have a tradition in processing and distributing large quantities of agro-feedstock, there is no consensus for large scale import of raw feedstock to produce cellulose ethanol. Breunesse suggests exploiting domestic waste and agricultural residues, in accordance with Woldberg and Nijman. However, what will be more important in the decision to invest in production facilities in the Netherlands are the market circumstances. Woldberg and Den Uil argue that at present, the European ethanol market is very difficult. Woldberg sums up: -
Feedstock prices have risen, also for wheat bran, the feedstock that Nedalco planned to utilize for the production of cellulose ethanol, The European ethanol market is dominated by imported ethanol from Brasil, setting the maximum price, Changing government regulation and objectives cause uncertainty, hampering investment, Uncertainty exists about the establishment and content of sustainability criteria for biofuels.
There are no signs that these circumstances will change any time soon. An increase in demand for Brazilian ethanol, can be compensated by increased production capacity and decreased import levies resulting from WTO negotiations. 151
nd
US DOE news, august 2 2006 (www.energy.gov) Den Uil (2008) 153 th Port of Rotterdam (2008) news item of February 29 2008 152
Gijs van der Meer - Thesis
91
On the other hand, the US ethanol market is very attractive, as is illustrated in the above section International perspective. Woldberg is convinced that a true breakthrough in the development of cellulose ethanol will take place in the USA.
Network formation What appears from the network analysis is an increase of international collaborations between Dutch and foreign actors, mostly from the USA. A second notion from the network analysis demonstrates that for the Dutch network, the right interests exist, supported by the external incentive that is offered by the EU biofuels directive, an increasing desire for an alternative to mineral oil and an increased desire for sustainable products and processes. However, it is not certain that the external incentives are strong enough to initiate production of cellulose ethanol in the Netherlands. Nedalco, for instance, monitors the US market and considers production of cellulose ethanol over there. Other Dutch actors; the Biosulfurol consortium, DSM and Bio Rights, also consider commercialization of technology and expertise by exporting it. A third notion that is derived from the network analysis, is the question who actually has the intention and resources to start production of cellulose ethanol. For the Dutch actors, this is not so clear. In European perspective, the sources of this study frequently mention Abengoa. This capable and resourceful company is constructing a conventional ethanol plant in the Rotterdam port area.
Analysis The Netherlands possess valuable knowledge and expertise and offer attractive infrastructural facilities and macro conditions to locate large scale biofuel production facilities, in particular to supply the European market. However, large scale production of cellulose ethanol is not in question yet. At present, there is no mature production process available. Furthermore, large scale production requires more than a mature production process, for example effective feedstock logistics. Large scale production of cellulose ethanol is not expected within 5 years from now; before 2013. As discussed in the above sections, pre-commercial development will likely remain within the national borders of the countries in which it is carried out. Furthermore, development at this stage does not require the infrastructural facilities and macro conditions that the Netherlands offer. At present, the European ethanol market is difficult and not very attractive for commercial initiatives. The US market on the other hand, is attractive for commercial initiatives. Part of the Dutch actors is related to US actors and almost all consider commercialization of knowledge and expertise abroad.
Gijs van der Meer - Thesis
92
Conclusion Under the given circumstances; the state of the art and economic incentives, it is unlikely that potential foreign cellulose ethanol producers will settle in the Netherlands. At the same time, Dutch actors consider the possibility to commercialize their knowledge and expertise abroad. However, given technological progress and improving economic conditions, opportunities exist for production of cellulose ethanol from waste and agricultural residues in the Netherlands. These will likely be exploited by Dutch actors. Future large scale production of cellulose ethanol can certainly profit from the conditions that the Netherlands offer. A company to keep track of is Abengoa. Abengoa is a promising European actor in the field of cellulose ethanol and is already constructing a conventional ethanol production facility in Rotterdam.
Opportunities and barriers +
The Netherlands offer attractive macro conditions and valuable knowledge, expertise and infrastructural facilities for deploying any large scale biofuels initiative.
-
Given the present state of the art and in particular the present market conditions, the incentive to deploy cellulose ethanol activities in the Netherlands is arguably not strong enough.
-
In addition, an attractive alternative is offered by the US market, attracting foreign actors.
Gijs van der Meer - Thesis
93
Conclusion Based on the results of the analysis of both FT biodiesel and cellulose ethanol, this section presents the conclusions of the study. The conclusions answer the research question, which is supported, and preceded by two sub questions. In addition, a comparison is made between the two conversion routes, regarding the development up to today, followed by the future outlook.
Sub question 1 The first sub question of the study concerns the internal niche processes. It is recalled below and answered separately for both FT biodiesel and cellulose ethanol. Mind that learning processes are not included in the study. What opportunities and barriers can be derived from the internal niche processes; voicing and shaping of expectations, network formation and learning processes?
FT biodiesel Voicing and shaping of expectations Expectations about FT biodiesel changed over time. Some expectations got more robust, both in favor of, and against the development and deployment of FT biodiesel. Part of the favorable and unfavorable expectations is supported by results from experiments that have been carried out. However, regardless of the technological progress over time; from proof of concept to the advancement of the production technology of FT biodiesel, increasing convergence with regard to realization of expectations hardly occurred. The process of voicing and shaping of expectations indeed occurred in the niche of FT biodiesel. However, only to a degree did voicing and shaping of expectations provide support for the development of FT biodiesel. It is questionable whether or not the expectations convince the actors to invest time and effort for further development and deployment of FT biodiesel. Network formation The network of actors that carries the development of FT biodiesel can be considered resourceful, and capable of introducing and pursuing change. At the same time, the network seems to be rather loose and over time it showed that interests differ. The independent actors lack an aligned agenda, and much resources and decisive power are in the hands of a single actor. This principal actor, Shell, could activate (acquire) and combine resources. However, the internal incentive to speed up the development and deployment is not strong and the future outlook on FT biodiesel is characterized by unfavorable economics. The sources argue, Shell and Choren included, that an external incentive, such as market conditions or regulation, will determine the course of development. It is questionable whether or not the present incentive is sufficient to actually stimulate and speed up the development and commercialization of FT biodiesel.
Gijs van der Meer - Thesis
94
Opportunities and barriers The opportunities and barriers that are derived from the niche internal processes are listed below. A more detailed listing of opportunities and barriers is found in their respective sections. The listing of opportunities and barriers follows the presentation in their respective sections and starts with the present and potential opportunities and barriers, derived from the niche process of expectations, followed by those that are derived from the niche process of network formation.
Present opportunities and barriers +
FT biodiesel is a desirable and compatible biofuel.
-
The technology to produce FT biodiesel is far from mature.
-
The outlook on the economics of FT biodiesel is not favorable.
-
At present, there is no market demand for biofuels without a government incentive.
Potential opportunities and barriers +
The prospects of CO2 emission reduction are promising.
+
The market for biofuels is expected to increase.
+
It is expected that FT biodiesel avoids the drawbacks of conventional biodiesel (FAME).
+
FT biodiesel can be produced in a combination of biomass and coal.
-
Avoiding the competition of food vs. fuel, by utilization of waste and agricultural residues, is expected to present new and considerable challenges.
-
FT biodiesel experiences serious competition from other biofuels and other alternatives for mineral oil.
Gijs van der Meer - Thesis
95
Opportunities and barriers from network formation +
In the Netherlands, there exists a very resourceful and capable network of actors.
-
The network lacks specific expertise and knowledge in feedstock logistics and in particular logistics of agricultural waste and residues.
-
The network of actors is rather loose and does not share principal interests or an aligned vision.
-
The initiative is in the hands of one actor; Shell.
-
The production of conventional biodiesel and FT biodiesel are not compatible at all.
Gijs van der Meer - Thesis
96
Cellulose ethanol Voicing and shaping of expectations The movement that is involved in development of cellulose ethanol in the Netherlands grew over the past years. An increasing number and variety of actors share important expectations that fuel the development. A division can be made in early expectations particularly aiming at utilization of lignocellulosic biomass, and more recent expectations about the potential of cellulose ethanol as a biofuel. In both cases, expectations got more robust. Most of the expectations are supported by results in experiments. Ongoing technological progress supports the expectations about the utilization of lignocellulosic biomass and cellulose ethanol as a biofuel. However, the experiments did not result in convincing support for short term economic feasibility of cellulose ethanol as a biofuel. Although not overconfident, the quality of expectations increased. Specificity of expectations is ambiguous. The movement is dividing over various approaches to achieve the expectations of utilization of lignocellulosic biomass and the production of cellulose ethanol. Overall, these movements target increasingly more specific goals. However, the fact that the movement splits up indicates that there is no undisputed way to reach the goals, illustrating divergence of expectations. Then again, it is expected that there is no single solution. The process of voicing and shaping of expectations can therefore be considered fairly successful. Expectations fuel the development of cellulose ethanol, while the niche builds up momentum. Network formation The increasing and expanding network of actors can be considered resourceful, and capable of introducing and pursuing change. There is diversity in initiatives, both young and old in terms of the period that they are ongoing, as well as the organizations that are involved. Development of a number of complementary and competing approaches is ongoing, driven by internal and external incentives for development and deployment. Interests and visions are aligned and / or complementary. However, an external incentive is required to speed up the introduction and overcome the present difficult market conditions for the production of cellulose ethanol. Opportunities and barriers The opportunities and barriers that are derived from the niche internal processes are listed below. A more detailed listing of opportunities and barriers is found in their respective sections. The listing of opportunities and barriers follows the presentation in their respective section and start with the present and potential opportunities and barriers, derived from the niche process of expectations, followed by those that are derived from the niche process of network formation.
Gijs van der Meer - Thesis
97
Present opportunities and barriers -
Technology for the production of cellulose ethanol is not yet mature.
-
Economic feasibility is still an obstacle, given available technology and enzymes.
-
At present, there is no market demand for biofuels without a government incentive.
-
And following on the above argument, the present government incentive is not strong enough.
Potential opportunities and barriers Technology + A mature and more versatile production process is expected within a few years. +
The potential of utilization of lignocellulosic biomass for multiple purposes is high.
Cellulose ethanol as a biofuel + It is expected that cellulose ethanol avoids the drawbacks of conventional ethanol. +
Sustainability aspects of biofuels are expected to increase in importance. Cellulose ethanol is expected to live up to the foreseen sustainability criteria.
+
Cellulose ethanol is expected to offer significant reduction of CO2 emission in transport.
+
Cellulose ethanol is expected to be sufficiently compatible with the present fuel infrastructure.
-
Biofuels might not be the ultimate solution to reduce CO2 emission in the transport sector.
Gijs van der Meer - Thesis
98
Potential opportunities and barriers – continued Towards a biobased economy + There is an increasing desire for alternatives to mineral oil. Lignocellulosic biomass has a high potential to serve as an alternative resource to mineral oil. +
There is a perceived increase in the desire for sustainable products and processes.
+
It is expected that the desire for CO2 emission reduction will remain, along with the desire for a transition towards a sustainable energy supply.
+
At present, cellulose ethanol is the most attractive product to produce from lignocellulosic biomass. Besides, ethanol can serve as a bulk chemical.
+
Furthermore, the technology to produce cellulose ethanol is very suitable for application in a so-called biobased economy.
+
The production of cellulose ethanol can very well serve as a stepping stone towards a biobased economy.
Opportunities and barriers from network formation +
In the Netherlands, there exists a very resourceful and capable network of actors.
+
There is a varied and stable movement that pursues development and deployment of cellulose ethanol.
-
The network lacks specific expertise and knowledge in feedstock logistics and in particular logistics of agricultural waste and residues.
-
Given the current state of the art, the present external incentive is not sufficient for market introduction of cellulose ethanol.
-
Arguably, the network lacks an actor with the interests and means to deploy the production of cellulose ethanol in the Netherlands.
Gijs van der Meer - Thesis
99
Sub question 2 The second sub question of the study, dealing with the international perspective on both conversion routes, is recalled below and answered separately for both FT biodiesel and cellulose ethanol. What opportunities and barriers for deployment of foreign initiatives in the Netherlands can be derived from the internal niche processes?
FT biodiesel Activities in the international field of development of FT biodiesel are limited. Choren / Shell are the unquestioned frontrunners and are therefore the actors to keep track of. However, development goes slowly. Those future initiatives by Choren that are already proposed, are intended to be located in Germany. Activities that might be deployed in the middle long run will likely also be situated in Germany, due to a strong German component in the consortium that funds and supports Choren. Consequently, the Netherlands are likely not the first choice to locate new facilities in the short or middle long term; within 10 years from now.
Opportunities and barriers +
The Netherlands offer attractive macro conditions and valuable knowledge, expertise and infrastructural facilities for deploying any large scale biofuels initiative.
+
An IGCC multi-fuel plant could facilitate the production of FT biodiesel.
-
Any initiatives on the short and middle long term by Choren / Shell will most likely be deployed in Germany.
Gijs van der Meer - Thesis
100
Cellulose ethanol Under the given circumstances; the state of the art and economic incentives, it is unlikely that potential foreign cellulose ethanol producers will settle in the Netherlands. At the same time, Dutch actors consider the possibility to commercialize their knowledge and expertise abroad. However, given technological progress and improving economic conditions, opportunities exist for production of cellulose ethanol from waste and agricultural residues in the Netherlands. These will likely be exploited by Dutch actors. Future large scale production of cellulose ethanol can certainly profit from the conditions that the Netherlands offer. A company to keep track of is Abengoa. Abengoa is a promising European actor in the field of cellulose ethanol and is already constructing a conventional ethanol production facility in Rotterdam.
Opportunities and barriers +
The Netherlands offer attractive macro conditions and valuable knowledge, expertise and infrastructural facilities for deploying any large scale biofuels initiative.
-
Given the present state of the art and in particular the present market conditions, the incentive to deploy cellulose ethanol activities in the Netherlands is arguably not strong enough.
-
In addition, an attractive alternative is offered by the US market, attracting foreign actors.
Gijs van der Meer - Thesis
101
Research question Combining the answers in both preceding sub questions allows for answering the research question in this study, as articulated below: What are the opportunities and barriers for the production of FT biodiesel and cellulose ethanol in the Netherlands within the next 5 years, applying waste and (agricultural) residues as feedstock?
FT biodiesel In the first place, techno-economical barriers hamper development and production of FT biodiesel. It is unlikely that a mature, large scale production process will be available within 10 years from now. In addition, in the present and near future state of development, waste and agricultural residues are not the first choice in feedstock. Consequently, production of FT biodiesel from this type of feedstock is even further away. Lastly, the centre of development is at Choren, Germany. National partners and national funding will pose a barrier for deployment of activities beyond the national borders, at least until large scale commercial production comes within reach. Cellulose ethanol Reasonable opportunities exist for large scale production of cellulose ethanol in the Netherlands within 5 – 10 years. These opportunities involve specific residue streams. Utilization of agricultural waste is a specific conduct of business that requires additional attention for technology, logistics and economics. At present, exploitation of these opportunities is hampered by techno-economical conditions.
Gijs van der Meer - Thesis
102
Comparison and outlook The starting points in the early 2000s for both FT biodiesel and cellulose ethanol match. Both FT biodiesel and cellulose ethanol were regarded as promising biofuels, capable of reducing CO2 emission in transport. In the years that followed, both conversion routes have been developed up tot demonstration scale. Today, FT biodiesel and cellulose ethanol are still presented as promising biofuels. However, the analyses in this study reveal considerable differences in development, with consequently different outlooks on their future deployment. This sub-section points out the similarities and differences in the development up to today and their consequences on future development and potential deployment.
History of development - Niche processes This sub-section considers the development of FT biodiesel and cellulose ethanol from the early 2000s up to today and illustrates the similarities and differences by looking at the analyses of this study that focused on niche development of both conversion routes. Similarities At first sight there are many similarities in the development of both biofuels. Interest in these biofuels increased significantly in the early 2000s and both were labeled as ‘promising’ for deployment around 2010. Dutch actors possess significant knowledge and expertise in both areas and over the years, technical feasibility of both concepts was demonstrated at lab scale. Development up to demonstration scale followed. Today, both FT biodiesel and cellulose ethanol are presented as equally promising biofuels for the near future. Production does not take place yet as the technology is not yet mature and their introduction not economically feasible. For both biofuels, the external incentive is not strong enough. Differences However, a closer look reveals differences. The main difference in the development is actually present since the start in the early 2000s. Though parts of the process were known and demonstrated, the integrated concept of FT biodiesel was new. Development started in the early 2000s with the aim of producing a satisfying CO2 neutral fuel. Subsequently, this resulted in very satisfying fuel characteristics of FT biodiesel today. Cellulose ethanol on the other hand was accommodated by an older, ongoing development that aimed for utilization of lignocellulosic biomass, for a wider range of purposes. The emphasis on ethanol, as a transport fuel, grew from the desire for biofuels and is relatively young - seen from the development as a whole. A resulting difference is that FT biodiesel is not intended, nor regarded to be a substitute for mineral oil, while cellulose ethanol is, or at least the intermediate products in the production process. The groups of actors that are involved in the development of both biofuels – the networks also clearly differ. While the number and variety of actors involved with the development of FT biodiesel decreased, the number and variety for cellulose ethanol increased. Besides, the network of cellulose ethanol is not dominated by a few actors, like for FT biodiesel. In contrary, an increasing number of related, or independent initiatives take different approaches to develop a feasible production process for cellulose ethanol. The above is also reflected in the international perspective on the development of both biofuels. While the international field of development of FT biodiesel is limited, that of cellulose ethanol is varied, highly active and competitive. Lastly, development of both biofuels up to today revealed that FT biodiesel proved to be a complex and expensive process. Besides, the outlook on the future economics is unfavorable. Cellulose ethanol also proved to be more complex than expected. However, the wider movement that targets cellulose ethanol takes on the challenges. They search and find ways to avoid the obstacles. Deployment is nearer and future economics look more favorable.
Gijs van der Meer - Thesis
103
Outlook on future development The analyses in this study explain why production does not take place yet – for both conversion routes. At the same time they present indications for future development and deployment. These are elaborated in this section. Particular attention is paid to the issue of mobility versus the so-called biobased economy. The present opportunities and barriers, which are derived from the expectations analysis, explain why no production is taking place of neither cellulose ethanol nor FT biodiesel at the moment. The potential opportunities and barriers are the actual expectations that fuel the development towards future deployment. Subsequently, these potential opportunities and barriers are supported, or not, by opportunities and barriers from the network analysis. It can be concluded that the case for future deployment of cellulose ethanol is stronger than the case for FT biodiesel. This is illustrated next: The development of cellulose ethanol joined an already existing movement and is therefore driven by both internal and external incentives. These internal incentives are not connected to the external incentive – the demand for biofuels and CO2 emission reduction – that are the primary drivers for FT biodiesel. This issue relates to the focus on future deployment. FT biodiesel is specifically developed as a CO2 neutral transport fuel. Consequently, the characteristics as a fuel are very satisfying. The focus in the field of cellulose ethanol is much wider though. There is a greater emphasis on development of a technology platform for utilization of lignocellulosic biomass by means of biochemical conversion. This technology platform serves the conversion of lignocellulosic biomass to a wide range of products; such as fuels, chemicals and materials. At the same time, (cellulose) ethanol can serve as a bulk chemical. Furthermore, an increasing number and variety of organizations focus on the production of cellulose ethanol, in the Netherlands as well as on a global level. There is a very active and competitive international field of development that targets cellulose ethanol. Activities in the international field of FT biodiesel are limited. Lastly, of major influence on future development are the economics. At present, the outlook on the future economics of FT biodiesel is unfavorable, while the economics of cellulose ethanol are expected to improve in the near future. Mobility versus the biobased economy Actors that are involved in FT biodiesel and cellulose ethanol question the future of mobility. This concerns the authorities and research institutes as well as NGOs and business actors, including Shell. It is therefore interesting to take a closer look how the development of both FT biodiesel and cellulose ethanol relate to applications that do not involve transportation fuels. These alternative applications of products and technology can be applied in what is called; a biobased economy. In a biobased economy, lignocellulosic biomass is utilized for a wide range of products, such as fuels, chemicals and materials – apart of food production. The biobased economy requires processes for conversion of lignocellulosic biomass. These can be both biochemical as well as thermochemical processes. Cellulose ethanol is – in this study – based on biochemical conversion. The intermediate products are sugars (carbohydrates), which can be further processed to final products or bulk chemicals by means of fermentation. (Or in the case of Avantium, an unknown chemical process) FT biodiesel is based on thermochemical conversion. The intermediate product is (bio-) syngas, which can be used to produce a range of other products. From this study it appears that in the field of cellulose ethanol, there is considerable interest for the production of a wide range of products by means of biochemical processes. Besides, (cellulose) ethanol can be applied as bulk chemical itself. At present, government regulation in various countries makes ethanol, as a biofuel, the most attractive application. However, alternative applications are considered. In this perspective, and following on sources in this study, the production of cellulose ethanol can serve as a stepping stone towards a broader range of applications, by means of biochemical conversion processes; a biobased economy. The field of FT biodiesel is dominated by the idea of producing a CO2 neutral transport fuel. The study revealed little interest in alternative applications. However, this is true for FT
Gijs van der Meer - Thesis
104
biodiesel, but not for thermochemical processes in general. There is indeed attention for the production of biosyngas for a wider range of applications. This development avoids the process of FT synthesis though, and can make use of an alternative form of gasification; low temperature gasification – implying different gasification technology. In addition, other thermochemical processes are considered to process lignocellulosic biomass, such as pyrolysis. Concluding can be argued that the movement of cellulose ethanol is less focused on the production of biofuels. Consequently it is less dependent on the demand for biofuels and better equipped for alternative applications of products and processes.
Gijs van der Meer - Thesis
105
Discussion & recommendations The final section of the report reflects on the study. It reconsiders how the research is carried out, what challenges were encountered, how these were solved and subsequently what the possible effects on the outcome are. Furthermore, this section presents suggestions for follow-up studies. This final section is divided in four sub-sections. It starts with a reflection on the practical aspects of the study and the results, followed by a reflection on the analytical framework. The next sub-section points to the strengths of the study; what can be learned and the lastly, recommendations for improvement are presented.
Reflection on the study and results This sub-section reflects on the practical side of the study. If fact, it answers the question whether or not the research could be carried out according to the research design. The first part focuses on the sources; were sufficient and appropriate sources available, and could the desired data be derived from them? The second part focuses on the analysis; were any difficulties or irregularities encountered while performing the analysis? Sources This qualitative case study depends to a great extent on the selection of available sources. The sources are public and consist of written sources, such as reports and press releases, and interviews. These sources provide the data that serve the analysis of so-called niche processes. As section 2 specifies, for both cases, sources are requires that represent the actors / participators that are involved, in the past and present. While reflecting on the niche, the sources should present a view as complete and varied as the niche allows, possibly including actors from business, science and research institutes, end users, non-users, regulators and policy makers. Written sources should be traceable and from first hand, in stead of indirect. They should reflect the point of view at the time of writing / speaking, contrary to retrospective sources. Lastly, the sources should reflect individual viewpoints, as opposed to collective viewpoint. In general, much information about the subjects of this study; FT biodiesel and cellulose ethanol, is publicly available. There is rather an overload of information, than a shortage. Furthermore, a significant number of actors in the field were willing to cooperate in interviews. For both cases, the interviews have been very informative and valuable in providing information that receives less attention in written sources, or information that turned out to be expressed in other ways. The latter applies in particular to statements about environmental issues. One could argue that the more public the source, the ‘greener’ the message. For instance, comparing websites and press releases, with less public articles in professional literature, it turns out that the message in the first two is ‘greener’. Another issue that applies to both cases is the fact that public sources are used. Some 154 information is confidential and therefore not made public . This information concerns technical details, detailed and near future objectives and expectations, contract research and undisclosed collaborations. This issue is confirmed in the interviews. The most obvious example is the present collaboration of Shell, Nuon and ECN. FT biodiesel case: The sources that are used for the FT biodiesel case provide an extensive view on the niche, both in the past and present situation, and for both conventional as well as advanced – FT – biodiesel production.
154
This is even the case for public funded KIEM projects; publication of final results is not obligatory.
Gijs van der Meer - Thesis
106
However, not all actors of the present situation are represented by the sources. There was no public information about the collaboration of Shell, Nuon and ECN, and unfortunately Nuon did not want to cooperate for this study. Cellulose ethanol case: Also for the case of cellulose ethanol, the available sources provide an extensive view on the niche. All relevant actors are represented; of both the past and present situation and involved in conventional ethanol as well as cellulose ethanol. Despite the voids and possible undisclosed information, it is argued that altogether, sufficient and appropriate sources have been used, making it possible to carry out the desired analyses. It is assumed that the voids do not have consequences for the outcome of the study, nor that important questions remain unanswered. Analysis Conventional versus advanced biofuels This study focuses on two advanced biofuels; FT biodiesel and cellulose ethanol. As foreseen in the research design, the presence and influence of conventional biofuels can not be neglected. The development of both kinds of biofuels interferes and can hardly be assessed separately. It was acknowledged that a strictly separate assessment was not desirable either. Without expanding the scope of the study to include conventional biofuels as well, a workable and useful compromise was found. With this compromise, the presence and influence of conventional biofuels is included, but only when they significantly influence the course of development of FT biodiesel or cellulose ethanol. Product versus technology platform A similar issue of interfering subjects arose between the development of a product and the development of a process or technology platform. The study does not always distinguish clearly between the product and the technology platform. This is due to the state of affairs in both niches. As both technology platforms are not yet mature, neither are the final products. Consequently, an actor that specifically advances a technology platform also supports the development of the final products. In that case, the intention for development becomes more important in the analysis. This issue differs for both cases. Cellulose ethanol is much more regarded as ‘one of the products’ that can be produced by means of the biochemical technology platform. FT biodiesel combines two prominent technology platforms: gasification and FT synthesis. The combination is not yet mature. However, the development is dedicated to a single product: FT biodiesel. Arguably, a workable compromise is found to combine the development of both technology platforms and final products. Macro / Meso / Micro The concept of Macro / Meso / Micro applies to the niche process ‘voicing and shaping of expectations’ and supports the indication whether or not expectations become more specific. Both cases lack detailed technical information and detailed expectations. Furthermore, micro expectations are hardly expressed, nor in time or objective. Therefore, a less sophisticated approach was applied to analyze the specificity of expectations while circumventing the above mentioned deficits. Although less solid, this alternative approach is unlikely to have significantly changed the outcome of the study. Failing to apply the division in expectations could have had consequences for the internal niche process of learning processes. Learning processes are not included though.
Gijs van der Meer - Thesis
107
Internal niche process: Learning Learning processes of the niche are not included in the analysis, due to time constraints. Including learning processes in the analysis can reveal details that concern the future perspective on development of the niche. Furthermore, it can make the niche assessment as a whole more solid, in particular when coupled to the expectations. As far as the opportunities and barriers are concerned, it is presumed that by excluding the learning processes, no opportunities and barriers are overlooked. However, it could have made a distinction in importance of opportunities and barriers. International perspective In accordance with one of the assumptions in this study, international aspects appeared to be important in the development of both FT biodiesel and cellulose ethanol. However, the approach that is used in this study to include the influence of these international aspects has its limitations. The information is primarily from second hand. No foreign sources are consulted. Altering the approach would likely result in a better assessment of the influence of international aspects on the development of FT biodiesel and cellulose ethanol, as well as more reliable and solid opportunities and barriers.
Reflection on analytical framework While the previous sub-section focused on the practical side of the study, this sub-section reflects on the theoretical side. Has the analytical framework been appropriate? Were assumptions useful and did the study provide evidence in support of the assumptions? Assumption 1 Both technologies that are assessed in this study have not yet been demonstrated in society. Development is rather premature, while in general, SNM is used to assess technologies that are demonstrated in societal experiments. This led to the following assumption: Taking the pre-mature state of development of the technologies into account, application of the methodology of SNM is still appropriate and useful. SNM has been applied earlier to assess technology in an R&D environment, so not yet demonstrated in society. However, more important is the argument that in spite of the premature state of development, niche activities do take place in the Netherlands and that niche processes can be observed and analyzed. Indeed, the study demonstrates the presence of niche processes for both technologies. It appeared possible to perform the analyses as foreseen and subsequently, these analyses resulted in a usable and plausible outcome. This justifies the assumption. Consequences of studying a ‘pre-mature’ niche are the limited number of, and variety in experiments. In addition, there is little interaction outside the niche. The latter issue is important; the more advanced the technology, and the more it is exposed to society, the better can be judged how it fits within the regime; what opportunities and barriers exist. SNM acknowledges that in particular sustainable energy technologies lack a direct competitive advantage over existing regime technologies and therefore require the protection of a niche to develop. During this development, technological and economical performance is usually poor. Not surprisingly, this is demonstrated in the study. However, the results provide a wider and very useful future outlook that reveals other present and potential opportunities and barriers. Furthermore, the study allows comparing two cases in a ‘pre-mature’ niche.
Gijs van der Meer - Thesis
108
Assumption 2 The analytical framework of SNM employs a local perspective on technological development. It emphasizes the importance of local conditions such as local rules and regulation, local actors, the interaction between them and the shared history within a certain region. However, it is presumed that non-local influences affect development of the two Dutch niches. This lead to the second assumption: Although SNM emphasizes the importance of local conditions, the niche extends beyond national borders. To support this assumption, the concept of ‘Cosmopolitanism’ is used. This concept makes a distinction between various phases of niche development, resulting in a niche at an aggregated level. In this study, it is asserted that this aggregated level is not necessarily restricted by national borders; implying the influence of external circumstances on local niche development. The study provides evidence for the importance of local circumstances on niche development, as well as for the assumption that external circumstances are important for niche development and subsequently; that the niche extends beyond national borders. Local circumstances that proved to be important are: local (state-) funding, local (national) policy objectives, cooperation between local actors and a history in cooperation between local actors. Evidence that the niche extends beyond national borders is presented by: a perceived global field of development; perceived global opportunities for deployment; foreign policy objectives that provide a border crossing incentive; international collaboration in development; border crossing (state) funding; international (technology) market; internationally aligned practices, strategies and visions. It is therefore argued that this study supports the assumption that a niche can extend beyond national borders. Consequently, this allows answering of the second sub question in this study. To advance the framework of SNM, another study could be dedicated to the scope of a niche in a geographical sense. What are local conditions? Where do local conditions end? What niches or technologies are susceptible to non-local influences? To what extent are niche processes affected by non-local conditions?
What can be learned? The first section of this study specifies the objective: The objective of this study is to investigate the possibilities to increase the production of liquid biofuels for the transport sector without increasing pressure on food supply. The study is set up to assess technological development; to explain why deployment of two particular conversion routes for the production of biofuels does not take place yet, and to reveal opportunities and barriers for introduction. The study delivers these insights. As argued in this section, it provides usable and valid answers to the research question. The results are based on a wide and sound selection of sources, obtained by applying an appropriate analytical framework and research design. In addition, the study allows for the comparison of two cases. Furthermore, the study is relevant in scientific perspective. It demonstrates the successful application of the analytical framework of SNM as a research tool. Two interesting assumptions are made and supportive evidence is found for both assumptions. These topics provide interesting leads for follow up studies.
Gijs van der Meer - Thesis
109
Recommendations There is room for improvement too. As mentioned in this section, the study contains a small number of voids. Analysis of learning processes is left out, due to time constraints. Including the learning processes can have a – limited – effect on the outcome of the study. Including niche – regime interaction in the analysis is likely to benefit the study. It can expand the outcome, in particular concerning the outlook on future development of both conversion routes. Lastly, significant improvements can be made regarding the international perspective. The study does include international aspects, but to a limited, one-sided extent. Interaction between development in the Netherlands and abroad is demonstrated and it is concluded that the Dutch niche possesses the ability to reflect on the international state of affairs in relation to the Dutch market. However, the international perspective of the study can be improved by altering the research design. A suggestion would be to systematically assess both the local and non-local (foreign) side of the niche. This requires reconsideration of the analytical framework.
Gijs van der Meer - Thesis
110
References th
Abengoa Bioenergy (2008), The vision of a Biofuel Producer, presentation November 18 2008.
Annevelink, E. et al (2006), First workshop on the possibilities of biorefinery concepts for the th industry – Official minutes, June 16 2006. Avantium (2007), press release, October 22th 2007 th
Avantium and Cosun (2009), joint press release, January 21 2009 Bakker, R.R.C. (2002), Co-productie van hernieuwbare transportbrandstoffen, groene chemicaliën, elektriciteit en warmte uit biomassa reststromen, research proposal, EET K01116 Belt, H. van den & Rip, A. (1987), The Nelson-Winter-Dosi model and the synthetic dye chemistry, in: Bijker, W.E., Hughes, T.P. & Pinch, T. (eds.), The social construction of technological systems: new directions in the sociology and history of technology, p. 159190, MIT Press, Cambridge and London Berg, C. and F.O. Light (2004), World Fuel Ethanol - Analysis and Outlook, presentation prepared for METI. e
Bio Rights (2008), Van afval naar brandstof, Presentatie Marktdag 2 Biobrandstoffen, November 18th 2008, (Former N2 Energie BV.)
generatie
Bovag Rai (2004), (Brand) Stof tot nadenken- 25 vragen en antwoorden over brandstof en voertuigtechniek, leaflet. Broek, R. van den, P. Niermeijer, M. Tijmensen, M. van Walwijk (2003), report for the GAVE program, Biofuels in the Dutch market: a fact-finding study, www.gave.novem.nl th
BTG (2007), Factsheet pyrolyseolie, February 16 , 2007 Caniëls, M.C.J. & H.A. Romijn (2006), Strategic Niche Management as an Operational Tool for Sustainable Innovation: Guidelines for Practice, paper for the Schumpeter Conference 2006, June 21 – 24, Nice, France CBS (2008), Duurzame Energie in Nederland 2007 CE (2007), Biomassa: van controverse naar ontwikkelagenda, study on behalf of Algemene Energieraad (AER) Choren (2007), First Commercial BTL production facility – The Choren β-plant Freiberg, th th presentation for 15 European Biomass Conference, May 10 , 2007, Berlin th
Choren (2008a), press release April 14 2008 th
Choren (2008b), Tom Blades in a news item on www.topagrar.com, October 24 2008 th
Choren (2008c), press release December 18 2008 Cramer, J. (2008), Biobrandstofdoelstellingen, letter to the chairman of the House of th Representatives (tweede Kamer) on October 13 2008 Deuten, J.J. (2003), Cosmopolitanising technologies, Thesis, Twente University, Enschede
Gijs van der Meer - Thesis
111
Dober, M. & G. Pezza (2007), Cellulosic Biofuel Cluster meeting, presentation at Michigan th Cellulosic BioEnergy Cluster Meeting, hosted by NextEnergy, April 20 2007 DSM (2004), Industrial (White) Biotechnology – Position document on industrial biotechnology in Europe and the Netherlands DSM (2008), DSM ontvangt stimuleringsfonds van Amerikaans ministerie voor Energie voor th biotechnologisch onderzoek, press release of February 27 , 2008 th
Dyadic (2007), press release January 16 2007 ECN et al (2000), GFV/WKK-procédé, research description, KIEM 20117 ECN & Shell (2002), Green diesel from biomass via Fischer Tropsch synthesis: New insights in gas cleaning and process design, paper presented at: Pyrolysis and Gasification of th st Biomass and Waste, Expert Meeting, September 30 – October 1 , 2002, Strasbourg, France ECN (2003), ‘Green’ Diesel Production with Fischer Tropsch Synthesis, presented at the th Business Meeting Bio-Energy, Platform Bio-Energie, September 13 2002 ECN (2004), edited by Menkveld, M., Energietechnologieën in relatie tot transitiebeleid – factsheets. ECN (2006a), Synthesis gas from biomass - for fuels and chemicals, result from a workshop in May 2005, Stockholm, Sweden ECN (2006b), Technology options for large scale BtL, presentation for VCW, Frankfurt, th December 6 , 2006 ECN (2007), Large scale Fischer Tropsch diesel production – opportunities and challenges to shift from black (coal) to green (biomass), presentation for the Third Conference on Renewable Resources and Biorefineries (Ghent, Belgium) EEA (2006), How much bio energy can Europe produce without harming the environment, European Environmental Agency, Copenhagen 2006 EU Directive 2003/30/EC On the promotion of the use of biofuels or other renewable fuels for transport. Evans, G. (2008), Syngas Derived Biofuels from Biomass Gasification, presentation February th 5 2008. Faaij, A.P.C., (2006), Bio-energy In Europe: changing technology choices, in: Energy Policy, vol. 34, pp. 322 – 342 GAVE (1999), Analyse en evaluatie van GAVE-ketens – Management Summary, GAVE report 9908, carried out by Arthur D. Little, in order of Novem. GAVE (2003a), Conventional Bio-transportation fuels, study carried out by ECN, in order of Novem GAVE (2003b), Ligno Cellulosic Ethanol – a second opinion, study carried out by ECN, in order of Novem GAVE (2006), Bioethanol in Europe – Overview and comparison of production processes, study carried out by ECN, in order of SenterNovem. Gave (2008), Biofuels policy overview www.senternovem.nl/gave (September 2008)
Gijs van der Meer - Thesis
–
Nederlands
Beleid
Biobrandstoffen,
112
Geels, F.W. (2002), Technological transitions as evolutionary reconfiguration process: a multilevel perspective and case-study, in: Research policy, vol. 31, pp. 1257 - 1274 Geels, F.W. (2004), From sectoral systems of innovation to socio-technical systems: insights about dynamics and change from sociology and institutional theory, in: Research Policy, vol. 33, pp. 897-920 Geels, F., J. Schot (2007), Comment on ‘Techno therapy or nurtured niche?’ by Hommels et al. [Res. Policy 36 (7) (2007)], in: Research Policy vol. 36, pp. 1100 - 1101 Hamelinck, C.N. & A.P.C. Faaij (2006), Outlook for advanced biofuels, in: Energy Policy, vol. 34, pp. 3268 - 3283 Hekkert, M. P. and & R.A.A. Suurs (2005), Naar een methode voor het evalueren van transitietrajecten – Functies van Innovatiesystemen toegepast op ‘Biobrandstoffen in Nederland’, carried out for Milieu- en Natuurplanbureau. Hommels, A., P. Peters, W. Bijker (2007), Techno therapy or nurtured niches? Technology studies and the evaluation of radical innovations, in: Research Policy, vol. 36, pp. 1088 - 1099 International Energy Agency (2006), World Energy Outlook 2006 IRIS 2007, report Schaarste in overvloed, beleggen in nieuwe schaarstes, Rotterdam, December 2007 Kemp, R., Schot, J.W. & Hoogma, R. (1998), Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management, in: Technology Analysis and Strategic Management, vol. 10, pp. 175 - 196 Laak, W.W.M. van der, R.P.J.M. Raven, G.P.J. Verbong (2007), Strategic Niche Management for biofuels: Analysing past experiments for developing new biofuel policies, in: Energy Policy vol. 35, pp. 3213 - 3225 Leleur, S. (2004), Systemic Decision Support in a complex Business Environment, paper presented at FUBUTEC Conference, Fontainebleau, France, 12-13 march 2004 Levinthal, D.A. (1998), The slow pace of rapid technological change: gradualism and punctuation in technological change, in: Industrial and Corporate Change vol. 7, pp. 217–247 Milieudefensie (2004), Visiestuk biomassa th
Milieudefensie (2005), Klimaat Discussiestuk Biobrandstoffen, October 19 2005 Milieudefensie (2006), Informatieblad - Biobrandstoffen in voertuigen Ministerie van Economische Zaken (2002), Energie Rapport 2002 Ministerie van Economische Zaken (2008), Energie Rapport 2008 – Management Samenvatting Ministerie van Landbouw, Natuur en Voedselkwaliteit et al. (2007), De keten sluiten – Overheidsvisie op de bio-based economy in de energietransitie Murphy, J.D., & K. McCarthy (2005), Ethanol production from energy crops and wastes for use as a transport fuel in Ireland, in Applied Energy, vol. 82, pp. 148 - 166 MVO (2008), news item (www.mvo.nl/biobrandstoffen)
Gijs van der Meer - Thesis
of
September
th
18
2008;
“Speerpunten
2009”,
113
N2 Energie (2008), Converting cellulose from waste to fuel ethanol, presentation Biomassa en H2, march 2008 Nedalco et al (2001), Thermozym, celluloseconversie voor de productie van ethanol, research description, KIEM 01006 Nedalco (2007), Royal Nedalco signs agreement to license technology to Mascoma for st lignocellulosic ethanol, press release of March 1 2007 Nedalco (2007), Nedalco builds second-generation bioethanol plant, press release of March st 1 2007 Nedalco (2007), The right to food or fuel?, presentation for: Expert bijeenkomst th biobrandstoffen, September 11 2007, Zeist Nedalco et al (2007), Towards bioethanol from sugar beet pulp: the pectin challenge, research description, EOS LT05019 Neeft, J. (2008), Algemeen overzicht van tweede generatie biobrandstoffen, presentation th November 18 2008 Nelson, R.R. & S.G. Winter (1982), An evolutionary theory of economic change, Harvard University Press, Cambridge st
Nuon (2006), Nuon Magnum Nieuwsbrief, 1 issue, October 2006 th
POET (2008), news item of August 19 , 2008 Port of Rotterdam et al (2005), Demonstratiepark Duurzame energie Rijnmond Port of Rotterdam (2007), Nederland als mainport voor biomassa, announcement on January th 27 2007 Port of Rotterdam (2008), Verdubbeling th announcement on February 29 , 2008
Rotterdamse
overslag
biobrandstoffen,
Pronk, J., (2004), Dutch designer yeast boosts bio-ethanol production, leaflet of The Kluyver Centre of Genomics for Industrial Fermentation. Rabobank (2003), Ethanol from biomass - a Dutch case study, Industry note, Food & Agribusiness Research, issue 078 – February 2003, by Rabobank International Raven, R.P.J.M. (2005), Strategic Niche Management for biomass: a comparative study on the experimental introduction of bioenergy technologies in the Netherlands and Denmark, Dissertation, Eindhoven University of Technology, Eindhoven Reith, J.H. et al. (2007), Co-production of bioethanol, lactic acid, electricity and heat from lignocellulosic biomass, public report EET project K01116 Roerink, F (2007), in www.peopleplanetprofit.nl
an
article
by
P+
People
Planet
Profit,
October
th
24
Rip, A., R. Kemp, (1998), Technological change, in: Rayner, S. & Malone, E.L. (eds.), Human choice and climate change, vol. 2, p. 327-399, Batelle Press, Columbus Ros, J.P.M. & J.A. Montfoort, (2006) report for Milieu- en Natuurplanbureau (MNP), Evaluatie van transities: systeemopties vloeibare biobrandstoffen, Bilthoven, www.mnp.nl
Gijs van der Meer - Thesis
114
Schot, J.W. (1992), The policy relevance of the quasi-evolutionary model, In: Coombs, R., Saviotti, P., Walsh, V. (Eds.), Technological Change and Company Strategies: Economic and Sociological Perspectives. Academic Press, London. SenterNovem (2008), Biomassa hot Issue, a publication within the program ‘Energietransitie’. Shell & BTG (2001), Duurzame benzine en diesel uit biomassa via pyrolyse en het FischerTropsch process, research description 2001. KIEM 01004 Shell Global Solutions International, ECN, Biomass Technology Group, Ecofys, Utrecht University (2002), Preliminary techno-economic analysis of large scale synthesis gas manufacturing from imported biomass, paper presented at: Pyrolysis and Gasification of th st Biomass and Waste, Expert Meeting, September 30 – October 1 2002, Strasbourg, France Shell (2007a), Shell Biofuels, a presentation by Graeme Sweeney, November 6th, 2007 Shell (2007b), Position towards biofuels th
Shell (2008), media release July 15 2008 Stichting Natuur en Milieu (2001), Personenverkeer & Milieu – Een vergelijking van verschillende vervoersvormen wat betreft luchtvervuiling en energiegebruik per reizigerskilometer, August 2001 Stichting Natuur en Milieu (2006), Standpunt Natuur en Milieu: Rijden op goede biobrandstoffen, February 2006 Stichting Natuur en Milieu & De Provinciale Milieufederaties (2008), Heldergroene Biomassa Stichting Natuur en Milieu & European Federation for Transport and Environment (2004), Sense and Sustainability – Smart thinking to restart European transport policy th
Stora Enso and Neste Oil (2007), Press release March 16 , 2007 th
SunOpta (2006), press release July 6 , 2006 th
Technisch Weekblad (2007), Shell zet in op Fischer Tropsch, news item on March 7 , 2007 Tester, J.W., ea. (2005), Energy Systems and Sustainability Metrics, Chapter 6 in: Sustainable Energy – Choosing Among Options, The MIT Press, Cambridge, Unites States of America TNO (2002), Large-scale production of biofuels through biomass (co-) gasification and Fischer Tropsch synthesis, TNO report 2002/406, intended for Novem. TNO MEP et al (2002), Ontsluiting van ligno- cellulose met biologische zuurrecycling, research description, KIEM 02003 Ulmanen, J. (2008) Conversations Van Aken, T. (2007), Interview in Buitenlandse Markten 2007, issue 12, december 2007. Van Groenestijn, J.W. (2007a), Bioethanol kan veel goedkoper, news item in TNO magazine June 2007 Van Groenestijn, J.W. et al (2007b), Pre-treatment of ligno-cellulose with biological acid th recycling (The Biosulfurol process), a publication by TNO on October 16 2007 VROM 2001, National Milieubeleidsplan 4 (NMP4)
Gijs van der Meer - Thesis
115
th
TWA Conference Biobased Economy at Wageningen UR april 10 2008, Memo by Gijs van der Meer
www.aboutbioenergy.info (April 2008) www.btgworld.com (September 2008) www.deepmix.ru - Deepmix Moscow Radio (2008 – 2009) www.ecn.nl - Energy Research Centre of the Netherlands (March 2008) www.eubia.org - European Biomass Industry Association (April 2008) www.nuon.com (September 2008) www.vrom.nl (March 2008)
Gijs van der Meer - Thesis
116
Appendices Appendix A - Definitions Appendix B - FT Biodiesel actors Appendix C - Cellulose ethanol actors Appendix D - Sustainability criteria
Gijs van der Meer - Thesis
117
Appendix A - Definitions Key definitions in this study are listed below. Not all definitions are undisputed. The way that the definitions are described below, follows the interpretation of the Dutch research community, Dutch government and the European research community. Biomass In general, biomass includes all organic matter, for example grass, wood, grains, sunflower oil and so on. From an energy perspective, some crops are particularly suited for energy purposes and are therefore labeled energy crops, for instance: miscanthus, sweet sorghum, jatropha and willow. Another dedicated energy crop that receives a lot of attention lately is algae. In this study, the definition as states in the EU Biofuels directive 2003/30/EC will be used: “biomass means the biodegradable fraction of products, waste and residues from agriculture (including vegetal and animal substances), forestry and related industries, as well as the biodegradable fraction of industrial and municipal waste.” (EU Directive 2003/30/EC) Lignocellulosic biomass A part of the biomass as it is defined above consists of lignocellulosic biomass. Roughly said, this is woody or herbaceous biomass, for example wood, straw, nut shells etc. Lignocellulosic biomass can not – easily – be digested and is therefore not used for food and only to a limited extend for animal feed. Lignocellulosic biomass consists of cellulose, a primary component of most plant-cell walls and hemicellulose. A third component gives the plant its structural strength and is called lignin. (Murphy & McCarthy 2005) Waste and agricultural residues A lot can be said about the definition of waste and residues. Distinctions can be hard to make, especially when it comes to legal issues. A good example of how these terms are applied in legislation is in the Dutch national waste disposal plan (Landelijk Afvalbeheerplan - LAP) Faaij (2006) does not explicitly distinguish between waste and residue, but presents a useful outline. He characterizes waste and residues according to Hoogwijk ea. (2003): -
Primary residues are produced during production of food crops and forest products, e.g. thinnings from commercial forestry and straw. Such biomass streams are typically available ‘in the field’ and need to be collected to be available for further use. Secondary residues are produced during processing of biomass for production of food products or biomass materials, and are typically available in the food and beverage industry, saw and paper mills, etc. Tertiary residues become available after a biomass derived commodity has been used, meaning a diversity of waste streams is part of this category, varying from the organic fraction of municipal solid waste (MSW), waste and demolition wood, sludges etc.
Of importance for this study are lignocellulosic organic waste and agricultural residues.
Gijs van der Meer - Thesis
118
Biofuel / Bioethanol / Biodiesel According to the EU Biofuels directive 2003/30/EC, biofuel means “liquid or gaseous fuel for transport produced from biomass”. This study focuses on two specific liquid biofuels; bioethanol and biodiesel. This study makes the distinction between conventional bioethanol, produced from conventional feedstock: sugar and starch, and ethanol that is produced from lignocellulosic biomass: cellulose ethanol. Biodiesel is a liquid biofuel that is suited to replace fossil diesel. This study makes the distinction between conventional biodiesel (FAME), produced from conventional feedstock such as (vegetable / animal ) oil and lipids, and biodiesel that is produced from lignocellulosic biomass. The latter is a synthetic biofuel, produced by means of gasification and Fischer Tropsch synthesis. In this study it is labeled FT biodiesel. Conversion route With a conversion route, I mean the steps that are carried out from a feedstock, via a conversion process to a product (biofuel). In general, but not necessarily, conversion processes are related to both the feedstock and the product. First and second generation These terms can be applied to either the feedstock, the conversion process (technology) or to the product. Sometimes a similar distinction is made between, respectively, conventional and non-conventional or advanced. As mentioned above, in general a certain conversion process is related to a certain feedstock. For this study, I will make the distinction in first and second generation, based on the feedstock. Biofuels produced from sugar or starch crops or vegetable / animal oils I will label ‘first generation’. The technology applied in these conversion routes are conventional and relatively low-tech. Biofuels produced from lignocellulosic biomass I will label ‘second generation’. The technology used in these conversion routes is more complex. (See also 1.2 Overview of Technology) Elaborating a little on the above, leads to two issues. The first one is the food versus fuel debate that I will briefly mention. Feedstock for the first generation can be, and is applied for food production (either directly or indirectly, for instance via animal feed). Lignocellulosic biomass is only to a small extent used as animal feed, but in general does not interfere with food production. Of course there are exceptions. For example, energy crops such as jatropha can not be used for food production and no not require land on which food crops can be cultivated. The technology to produce fuel from jatropha oil is conventional. On the other hand, if lignocellulosic biomass is cultivated on land that can be used for cultivating food crops as well, there is interference with food production. A second issue related to first and second generation biofuels is that of CO2-reduction. The second generation is capable of reducing CO2-reduction significantly more then the first generation. The numbers differ, but estimates indicate a maximum CO2-reduction of first generation by 50% compared to 90% for second generation. (VROM.nl) References: Faaij 2006, EU Directive 2003/30/EC, Murphy & McCarthy 2005, www.VROM.nl, www.ECN.nl, www.eubia.org
Gijs van der Meer - Thesis
119
Appendix B – FT biodiesel actors Ministerie van Volkshuisvesting, Ruimtelijke ordening en Milieu (VROM) Key policy issues that are covered by the Dutch Ministry of Housing, Spatial planning and the Environment are: spatial planning and development, housing and urban development, environment, integration and communities. Ministerie van Economische Zaken (EZ) Key policy issues that are covered by the Dutch Ministry of Economic affairs are: knowledge economy and innovation, competition and market regulation, and business environment. Ministerie van Verkeer en Waterstaat (V&W) The key policy issues that occupy the Dutch Ministry of Transport, Public works and Water management are very well covered by its name. Ministerie van Onderwijs Cultuur en Wetenschap (OC&W) The key policy issues that occupy the Dutch Ministry of Education, Culture and Science are very well covered by its name. Ministerie van Landbouw Natuur en Voedselkwaliteit (LNV) The key policy issues that occupy the Dutch Ministry of Agriculture, Nature and Food quality and that are mentioned in the name. Other relevant policy issues are: biotechnology, environment, international affairs and trade and industry. Minister van Ontwikkelingssamenwerking (OS) Development cooperation is one of the principal tasks of the Dutch Ministry of Foreign Affairs and has a dedicated minister appointed. This minister carries out the Dutch aid policy. The reason that this minister participates in the government vision on the biobased is because of international trade of biomass and sustainability criteria on biomass and biofuels. Shell / Shell Global Solutions International / Choren Royal Dutch Shell is a conglomerate, mainly active in exploration, exploitation, processing and trading of mineral energy sources. Shell is also active in sustainable energy. Shell has a long tradition in gasification and FT synthesis, initially based on coal and natural gas as feedstock. In the early 2000s, Shell and ECN demonstrate the feasibility of Biomass to Liquid at lab scale (BtL, or as it was named at that time: Biomass Gasification Fischer Tropsch synthesis; BG-FT). Since 2005, Shell is a partner of Choren (Germany). The corporate history of Choren dates from 1990. Since 1992, Choren focuses on using biomass for energy purposes, through gasification and refining. Choren operates a pilot facility (Alfa plant) since 2000 and recently started the commissioning of their Beta plant, at demonstration scale. Shell contributes their FT synthesis technology to this facility, together with knowledge of biomass gasification and gas cleaning. In 2007, Shell and NUON started a joint investigation on the production of FT diesel (Combined BtL / CtL) at the Buggenum plant, owned by NUON and equipped with Shell gasification technology. Shell foresees a significant share of their future production to be based on XtL.
ECN Energy Research Center of the Netherlands (ECN) is a Dutch research institute with a long tradition in energy research. Attention for biomass has built up for over 15 years now alongside investigation on coal processing. Today, ECN holds valuable knowledge on the processing of biomass and the differences in biomass processing compared to coal processing. ECN has demonstrated the possibility of BtL in a joint effort with Shell in the early 2000s.
Gijs van der Meer - Thesis
120
Today ECN holds a dominant position in knowledge on biomass processing, advances this knowledge, takes part in joint applied research projects and provides knowledge to private actors. NUON NUON is a Dutch public utilities company. This company owns and operates the former experimental IGCC plant Buggenum. Today, biomass is co-fired in the electricity plant. In the early 2000s, NUON performed a feasibility study on the production of FT biodiesel at the Buggenum plant. TNO MEP and Sasol participated in this study. After finishing the study, it was decided not to further develop the production of BtL. Today, NUON is involved in a similar research project, together with Shell. NUON has advanced plans for the construction of a large coal-fired IGCC electricity plant. Co-firing biomass is considered an option for this plant. TNO Former TNO MEP (Environment Energy and Process innovation), a Dutch research institute, has conducted a feasibility study together with NUON on the production of FT biodiesel at the IGCC Buggenum plant. Sasol also participated in this study. Today TNO has discontinued its activities in biomass gasification and focuses on pyrolysis of biomass. Biomass Technology Group (BTG) Biomass Technology Group BV. (BTG), a Dutch technology company, is active in the field of bioenergy for over 25 years. They have specialized in the conversion of biomass to biofuels and bioenergy. The knowledge of BTG ranges from biomass handling and pretreatment to various biomass conversion processes, most relevant being gasification and pyrolysis. In the end of 2007, BTG Bioliquids BV was established to commercialize the fast pyrolysis activities of BTG. Rosendaal Energy BV. Rosendaal Energy is a young enterprise, committed to the production of sustainable energy in general, and biodiesel in particular. Since 2008, Rosendaal owns and operates a large scale production plant for conventional biodiesel (FAME), that could satisfy 3% of the yearly Dutch diesel consumption. Rosendaal Energy produces biodiesel for the European market. Sasol Technology Netherlands Sasol Technology Netherlands is a local branch of South African based Sasol Technology, which at its turn is a group business partner of Sasol, a South African petrochemical conglomerate. Sasol has a long tradition in FT synthesis R&D and the production of synfuels. Since 1982 Sasol operates a Coal to Liquid plant to produce synthetic fuels and more recently Sasol became active in GtL. Stichting Natuur en Milieu Stichting Natuur en Milieu (SNM), The Netherlands Society for Nature and Environment, is an independent environmental organization (NGO) committed to securing a healthy natural environment. SNM was formed by four environmental organizations in 1972 and since then, focuses on a wide range of national and international environment related issues. Milieudefensie Friends of the Earth Netherlands (Milieudefensie) is a non-governmental (NGO) environmental organization, conducting campaigns on climate change, globalization, traffic, agriculture and conservation of the countryside. Milieudefensie was founded in 1971. Techno Invent Techno Invent is a technology developer, active in the field of environmental technology and sustainable energy. The company itself is primarily active in R&D, pilot and demonstration projects, while Green Energy Technologies (GET) focuses on commercialization and exploitation. GET is established by Techno Invent and RL Participaties BV.
Gijs van der Meer - Thesis
121
Port of Rotterdam Port of Rotterdam authorities anticipate an increasing role for biobased products in Europe. As a major European logistical hub and industrial region, Port of Rotterdam expects great possibilities for the Port of Rotterdam region and facilitates initiatives in this business. Today, the region already accommodates traditional biofuel production and distribution. The authorities study opportunities for advanced biofuel production and biorefining, either based on the biochemical or thermochemical platform. MICRO Chemie MICRO Chemie is a service provider in the chemicals sector. Their activities are twofold. The company develops, manages, exploits, markets, produces and distributes chemicals in the field of energy. On the other hand, the company is a service provider in the field of energy, supplying energy, cooling and heating, water and gasses.
Gijs van der Meer - Thesis
122
Appendix C – Cellulose ethanol actors Ministerie van Volkshuisvesting, Ruimtelijke ordening en Milieu (VROM) Key policy issues that are covered by the Dutch Ministry of Housing, Spatial planning and the Environment are: spatial planning and development, housing and urban development, environment, integration and communities. Ministerie van Economische Zaken (EZ) Key policy issues that are covered by the Dutch Ministry of Economic affairs are: knowledge economy and innovation, competition and market regulation, and business environment. Ministerie van Verkeer en Waterstaat (V&W) The key policy issues that occupy the Dutch Ministry of Transport, Public works and Water management are very well covered by its name. Ministerie van Onderwijs Cultuur en Wetenschap (OC&W) The key policy issues that occupy the Dutch Ministry of Education, Culture and Science are very well covered by its name. Ministerie van Landbouw Natuur en Voedselkwaliteit (LNV) The key policy issues that occupy the Dutch Ministry of Agriculture, Nature and Food quality and that are mentioned in the name. Other relevant policy issues are: biotechnology, environment, international affairs and trade and industry. Minister van Ontwikkelingssamenwerking (OS) Development cooperation is one of the principal tasks of the Dutch Ministry of Foreign Affairs and has a dedicated minister appointed. This minister carries out the Dutch aid policy. The reason that this minister participates in the government vision on the biobased is because of international trade of biomass and sustainability criteria on biomass and biofuels. Nedalco Nedalco is a Dutch alcohol / ethanol producer, producing alcohol / ethanol for the food and non-food sector, utilizing feedstock of agricultural origin. Nedalco traditionally produces alcohols from industrial organic residues. For the exploitation of new kinds of feedstock and broadening its activities to the market of biofuels, Nedalco explores the possibilities to process lignocellulosic biomass. Nedalco participated in the EET project ‘Co-production’ (2002 – 2007) and actively participates in research with various national and international business and research partners. WUR / Agrotechnology and Food Sciences Group Agrotechnology and Food Sciences Group (AFSG, formerly ATO) is a research institute, affiliated to Wageningen University and Research Centre (WUR). AFSG pursues sustainable applications of agro-resources for food and non-food products. AFSG has a long research tradition in the mobilization of sugars from lignocellulosic biomass. This process is a crucial step in the utilization of lignocellulosic biomass for the production of biofuels. AFSG participated in the EET project ‘Co-production’ (2002 – 2007) and actively participates in research with a wide range of business and research partners. TNO TNO is the Dutch organization for applied scientific research. The division TNO Quality of Life is active in the field of biotechnology and has a research tradition in the mobilization of fermentable sugars from lignocellulosic biomass. This process is a crucial step in the utilization of lignocellulosic biomass for the production of biofuels. TNO has participated in the EET project ‘Co-production’ (2002 – 2007) and actively participates in research with a wide range of business and research partners. ECN Energy Research Center of the Netherlands (ECN) is a Dutch research institute with a long tradition in energy research. Although ECN is primarily concerned with thermo chemical conversion of biomass to biofuel, they are also active in the biochemical conversion process.
Gijs van der Meer - Thesis
123
Regarding biochemical conversion of biomass to biofuel, ECN focuses on thermal pretreatment of biomass and integrated systems design and evaluation. ECN has participated in the EET project ‘Co-production’ (2002 – 2007) and actively participates in research with a wide range of business and research partners. Delft University of Technology Delft University of Technology (TU Delft) has a research tradition in biotechnology and a department dedicated to it. A collaborative research effort with Nedalco resulted in the discovery of a yeast, that holds great potential in the production of ethanol from lignocellulosic biomass. (2003) TU Delft participated in a study, preceding the EET project ‘Co-production’ (2002 – 2007) and actively participates in research with a wide range of business and research partners. DSM DSM is a large Dutch conglomerate, active in the field of Life Science and Material Sciences. DSM has a tradition in applied advanced biotechnology for food and non food products. In recent years, DSM has shifted their focus towards biobased products, including biochemical production of cellulose ethanol. The company is involved in a research consortium that received funds from the US Department of Energy to further develop the concept of biorefining. DSM also participates in a Dutch public-private partnership that pursues similar goals. Furthermore, since the early 1990s, DSM has an agreement with Iogen (See Shell) related to enzyme production for animal feed. N2 Energie BV. N2 Energie is a young Dutch enterprise, recently established to exploit a young patent that covers the use of a specific reactor in the production process of cellulose ethanol. The application of this specific reactor for the production of cellulose ethanol is unique. Development is currently in pilot stage. Port of Rotterdam Port of Rotterdam authorities anticipate an increasing role for biobased products in Europe. As a major European logistical hub and industrial region, Port of Rotterdam expects great possibilities for the Port of Rotterdam region and facilitates initiatives in this business. Today, the region already accommodates traditional biofuel production and distribution. The authorities study opportunities for advanced biofuel production and biorefining, either based on the biochemical or thermochemical platform. Purac Purac is a large, worldwide operating producer of natural lactic acid and lactic acid derivatives. Purac is a subsidiary of CSM, a Dutch producer and supplier of bakery products. Purac participated in the EET project ‘Co-production’ (2002 – 2007) with the interest to produce lactic acid from lignocellulosic biomass. The company notices a growing demand for biobased products (chemicals) and already offers them to customers. (www.purac.com) Shell Royal Dutch Shell is a conglomerate, mainly active in exploration, exploitation, processing and trading of mineral energy sources. Shell is also active in sustainable energy. In contrary to the history of Shell in gasification and FT synthesis, Shell does not have knowledge and experience about the production of cellulose ethanol. However, as a main actor in the field of transport fuels, Shell does keep track of important developments and has acquired a share in Iogen (Canada) in 2002. Iogen is the first and up to today only one to run th a demonstration scale cellulose ethanol facility, worldwide. In a press statement of July 7 2008, Shell & Iogen announced that Shell has increased its share in the Iogen to 50%. Techno Invent Techno Invent is a technology developer, active in the field of environmental technology and sustainable energy. The company itself is primarily active in R&D, pilot and demonstration projects, while Green Energy Technologies (GET) focuses on commercialization and exploitation. GET is established by Techno Invent and RL Participaties BV.
Gijs van der Meer - Thesis
124
Avantium Avantium is a Dutch technology company, a spin off from Shell since 2000. The company is specialized in the area of advanced, high throughput R&D and provides services and equipment for the energy, chemical and pharmaceutical industry. The company develops and intends to commercialize a product called Furanics, which is produced from sugars and other carbohydrates. Furanics is presented as the next generation biofuels and plastics. As a biofuel, Furanics is not similar to ethanol. It is a diesel like fuel, produced in a chemical way, instead of a biochemical process like fermentation. Cosun Royal Cosun was established over 100 years ago as a cooperative of Dutch sugar beet growers. Today, Royal Cosun is an international group that produces and supplies natural ingredients and food stuffs for the international food industry. Cosun also processes organic residues into products for non-food applications. Nedalco is a subsidiary of Cosun. Stichting Natuur en Milieu Stichting Natuur en Milieu (SNM), The Netherlands Society for Nature and Environment, is an independent environmental organization (NGO) committed to securing a healthy natural environment. SNM was formed by four environmental organizations in 1972 and since then, focuses on a wide range of national and international environment related issues. Milieudefensie Friends of the Earth Netherlands (Milieudefensie) is a non-governmental (NGO) environmental organization, conducting campaigns on climate change, globalization, traffic, agriculture and conservation of the countryside. Milieudefensie was founded in 1971.
Gijs van der Meer - Thesis
125
Appendix D - Sustainability Criteria for biofuels At present (2008), the EU biofuels directive does not prescribe sustainability requirements that biofuels have to comply with. This is about to change as the EU got closer to update the EU renewables directive. The renewed EU renewables directive will include sustainability criteria and will apply to biofuels. “In 2006, the Netherlands initiated the development of sustainability criteria for biomass used for energy purposes (as part of what is known as the Cramer Commission). A similar process was underway in the UK. Both countries decided to combine efforts and were soon joined by Germany. This development in part motivated the European Commission to address the issue at EU level. This resulted at the start of 2008 in a proposal for a directive on renewables, which included sustainability criteria. This week, the EU reached an informal agreement on this issue. The European Parliament and the European Council will confirm this agreement in the near term”. (Ministry of Housing, Spatial Planning and Environment, press statement th December 12 2008) The sustainability criteria included in the proposed directive on renewables will also apply for biofuels. The criteria mostly deal with the emission of Greenhouse gasses (in particular CO2) and origin of feedstock. This way, they are less strict then the sustainability criteria as proposed by the Cramer Commission. The commission divided their criteria over the following six themes: 1. Greenhouse gas emissions: How much emission reduction does the use of biomass yield for a specific producer, calculated from its source up to its use, and compared with the average use of fossil fuel? 2. Competition with food and other local applications: Does large-scale production of biomass for energy supply supplant other use of the land, for example for the cultivation of food or wood as building material, and what are its consequences? 3. Biodiversity: Does the local natural ecological system of land and water lose any variation in forms of life because of the large-scale cultivation of energy crops? 4. Environment: Are there any effects of the use of pesticides and fertilizers, or are there other local effects on soil, water and air because of the large-scale production of biomass? 5. Prosperity: Does the production of biomass contribute towards the local economy? 6. Social Well-being: Does the production improve the social living conditions of the local population and employees? References: th - VROM.nl press statement December 12 2008. - GAVE news: 23-01-2008 - Cramer Commission, Testing Framework for Sustainable biomass, 2007 (Final report Commission Cramer on sustainability criteria)
Gijs van der Meer - Thesis
126
Appendix – Interviews This appendix includes the interviews in support of the study by Gijs van der Meer.
1. Bakker (Rob) – WUR AFSG ........................................................................128 2. Breman (Berthold) – Sasol Technology Netherlands ...................................134 3. Breunesse (Ewald) - Shell Nederland..........................................................138 4. Den Uil (Herman) – ECN .............................................................................143 5. Nijman (Henk) - N2 Energie ........................................................................146 6. Rosendaal (Bart) - Rosendaal Energy .........................................................150 7. Smit (Ruben) – ECN....................................................................................157 8. Van Groenestijn (Johan) - TNO Quality of Life ............................................160 9. Woldberg (Mark) - Royal Nedalco ...............................................................165
Gijs van der Meer - Thesis
127
1 Bakker (Rob) – WUR AFSG Gesprekverslag van het gesprek met afstudeeronderzoek van Gijs van der Meer
Dhr.
Rob
Bakker
ten
behoeve
van
het
Datum: 09 juli 2008 Locatie: WUR te Wageningen Dhr. Rob Bakker is werkzaam bij WUR, afdeling Agrotechnology and Food Sciences Group (AFSG). Hij heeft meegewerkt aan het EET onderzoeksproject “Co-production of bioethanol, lactic acid, electricity and heat from Lignocellulosic biomass” en heeft veel ervaring op het gebied van het vrijmaken van suikers uit lignocellulose biomassa. De ontwikkeling van cellulose ethanol loopt al langer dan de laatste jaren. Wanneer is de focus op brandstof komen te liggen? WUR is actief op het gebied van benutting van biomassa voor zowel food als non food doeleinden. Er wordt onderzoek gedaan naar de benutting van verschillende biologische grondstoffen. In het kader van verwerking van cellulosehoudende biomassa heeft WUR ook veel onderzoek uitgevoerd voor de Nederlandse papier en pulp industrie. Biomassa is dus geen nieuwe grondstof. De productie van ethanol is ‘slechts’ een andere toepassing. Deze projecten lopen al langer en daar is de aandacht voor brandstof uit cellulosehoudende biomassa bijgekomen. Dit is geen plotselinge verandering geweest, maar de activiteiten zijn er naartoe gegroeid. Het is een wisselwerking geweest tussen de WUR, bedrijven en deels overheden. Hier is de kennisvraag uit voortgekomen die heeft geleid tot het EET project “Co-productie…” Wat komt er zoal kijken bij de benutting van lignocellulose voor ethanol en melkzuurproductie. Dit onderzoeksproject is voorafgegaan door een haalbaarheidsstudie. Alhoewel de groeiende aandacht voor brandstof een geleidelijke ontwikkeling is, is het project Co-productie voor WUR het eerste grote project geweest met een duidelijke focus op brandstof. Dit is in 2002 gestart, maar is voorafgegaan door een haalbaarheidsstudie. De insteek is 2G geweest en niet 1G. Bij het project zijn verschillende partijen betrokken geweest. Wie heeft het geïnitieerd, hoe is het zo ontstaan? In eerste instantie zijn de bestaande contacten tussen Nedalco & WUR belangrijk geweest. Langzamerhand zijn daar andere partijen bij gekomen, ECN, TNO (zijdelings bezig met een andere ontsluitingstechnologie) en daarnaast zijn andere bedrijven geïnteresseerd geraakt. Het betrekken van meerdere partijen in het onderzoeksproject is gunstig met het oog op het verkrijgen van subsidie. Maar er zijn ook partijen afgehaakt. Bijvoorbeeld de TU Delft. Zij waren in eerste instantie aangetrokken vanwege hun ervaring op het gebied van gist. Het is een fors project geweest, waar grote partijen bij betrokken zijn geweest. Nedalco is hierin een relatief kleine partij. Purac is al een stuk groter en Shell Global Solutions was ook betrokken. Gijs: maar is hun aandeel in het onderzoek niet beperkt geweest? Shell GSI heeft geen grote rol gespeeld. Terugkijkend, is het EET project Co-productie een geslaagd onderzoeksproject geweest? Zijn de doelstellingen behaald of zijn er onverwachte problemen naar boven gekomen? Vanuit technisch oogpunt is het project geslaagd. Er is aangetoond dat je de beoogde grondstoffen kunt gebruiken. Ook is kennis opgedaan over het aandeel van de grondstofkosten in het totale productiekosten. Bij bestaande 1G productieprocessen bestaat de concurrentie met voedsel en zijn de grondstofkosten hoog, momenteel zo’n 60 to 70% Vandaar dat in dit onderzoeksproject is gekeken naar een alternatieve grondstof. In het onderzoeksproject is veel kennis opgedaan en uitgewisseld. Ook zijn er internationale contacten opgedaan. Het project heeft aan de verwachtingen voldaan.
Gijs van der Meer - Thesis
128
Zijn er nieuwe onderzoeken uit voortgekomen? Heeft het onderzoeksproject geleid tot vervolgactiviteiten? Eén van de resultaten was het ontwerp voor een potentiële 2G fabriek voor Nedalco. Daarnaast zijn er verschillende vervolgprojecten uit voort gekomen. Sommige van deze projecten zijn publiek, dan wel publiek – privaat een ander deel is privaat en daar kan niet over verteld worden. Eén van de huidige onderzoeken in het kader van het EOS programma komt voort uit het EET project Co-Production. Maar ook buiten de partners in het onderzoek heeft het project tot vervolgen geleid, onder meer door mobiliteit van personen tussen organisaties. Het netwerk van betrokken personen en organisaties is versterkt. Voor WUR is ontsluiting van lignocellulose in het algemeen belangrijk. Dit thema is deels voortgezet in het EOS programma. Samen met ECN is een voorstel ingediend voor de fermentatie naar buthanol, wat ook interessant is als brandstof. In dit voorstel is een soortgelijke aanpak aangehouden. Al met al is het EET project geslaagd. Het was een mooi project, dat tussen fundamenteel en toepassingsgericht onderzoek in zat. Kunt u wat meer vertellen over de rol van onderzoeksinstituten als TNO en WUR – AFSG? AFSG is het voormalige ATO, is een onderzoeksinstituut en onderdeel van WUR, maar het werkt met een eigen budget / financiering. Net als TNO doet het veel contractresearch tussen fundamenteel en toepassingsgericht in. Een deel van de projecten vindt plaats in publiek private samenwerking. Een deel is geheel gefinancierd door de industrie en daar hoor je niet over. In hoeverre werkt AFSG aan het commercialiseren van kennis / technologie? Tot waar zit AFSG in de ontwikkeling van technologie? Grofweg zit AFSG in de ontwikkeling van kennis en technologie tot aan de demonstratiefase. Daarna worden investeerders aangetrokken voor de verdere ontwikkeling. De eigen financiering van AFSG gaat vooral zitten in kennisbescherming / octrooiering. Van welke partijen verwacht u een rol in de commercialisering? Dat ligt eraan van welke kant je de markt bekijkt. 1. WUR & AFSG heeft van oudsher veel contact met de agri-business en verwerkende partijen. (COSUN / Suikerunie / …) Deze partijen bekijken nieuwe / alternatieve mogelijkheden voor reststromen / grondstoffen. Nieuw initiatief: Carbon competence center, waarbij WUR, TNO en de RUG betrokken zijn. Dit is een initiatief van de agribusiness. WUR heeft kennis over koolhydraten op zowel food als non food gebied. Vanuit de industrie komen nu vragen. De overheid draagt 50% bij in de financiering. De agri-business is altijd een belangrijke partner geweest. 2. Een tweede belangrijke partner is het Havenbedrijf Rotterdam / Port of Rotterdam. AFSG doet direct studies voor PoR, maar ook voor bedrijven die daar gevestigd zijn. (onder andere actief in bulkgoederen) PoR is een partij die al een belangrijke rol speelt en een langere termijnstrategie heeft, met daarin een plek voor biobrandstoffen. 3. Ook heb je de echt grote bedrijven als DSM / Shell / … Hier is contact mee en er worden opdrachten voor uitgevoerd. Maar de activiteiten van deze partijen zijn erg afgeschermd en hierover kan niet veel verteld worden. Op dit moment voert AFSG geen groot programma uit, gefinancierd door bijvoorbeeld Shell. Daarnaast worden ook kleinere opdrachten uitgevoerd voor het MKB. Dit zijn veelal specifieke vragen zoals; wat te doen met deze specifieke grondstof / reststroom. Deze onderzoeken variëren van advisering tot experimenteel onderzoek. Maar er zijn dus vele, verschillende partijen actief in het veld van cellulose ethanol. Het zijn niet alleen de grote jongens afkomstig uit de brandstofhoek, maar ook bedrijven uit andere sectoren en zowel grote bedrijven als het MKB. WUR is ook betrokken bij EU projecten, zoals BioSynergy. In dit project zitten grote partijen als Abengoa. Hier is regelmatig contact mee, zij zijn erg actief in onderzoeksland. Een ander project is: HYvolution, gecoördineerd vanuit WUR. Dit project richt zich op productie van H2 uit Biomassa. Hier zijn allerlei EU bedrijven bij betrokken.
Gijs van der Meer - Thesis
129
Soms werkt WUR ook als intermediair, vanwege de uitgebreide contacten. Dan kunnen vragen / organisaties worden samengebracht en kunnen leuke projecten ontstaan. Dit geldt niet zozeer voor de ontwikkeling van ethanol, maar meer in het algemeen. Wat zijn op dit moment de drijvende krachten achter cellulose ethanol / benutting van cellulose? Wordt de ontwikkeling vooral gedreven door de beschikbaarheid van grondstoffen, door het ontstaan van een markt voor biobrandstoffen (EU richtlijnen) of vooral door een algehele beweging richting een duurzamere samenleving? Aan de ene kant is het een economisch plaatje: de concurrentie aangaan met de dure olie (bijv. als in Brazilië). Dit is voor het bedrijfsleven een werkelijke stimulans. Er wordt gedacht in een andere richting. Aan de overheidskant, de richtlijnen zullen zich steeds meer toespitsen op duurzaamheid. Dit heeft invloed op technologie ontwikkeling. Zowel binnen 1G als 2G. 1G is technisch mogelijk, maar willen we het wel? De producenten van huidige biobrandstof uit graan ed. staan stil. De grondstof is te duur. Dus hier heerst een drijvende kracht naar goedkopere grondstoffen. Kun je zeggen dat dit verder gaat dan de ‘groene gedachte’? Nou, de consument waardeert duurzaamheid, maar tegen welke kosten? Hier is dus een rol weggelegd voor overheden. Naast de brandstofindustrie is er ook interesse vanuit de chemische industrie (industrial Biotechnology / white biotechnology). Ook daar heerst interesse voor de inzet van biomassa als grondstof. Bijv. ethanol als grondstof / tussenproduct. In het Ruhrgebied zie je dit gebeuren. Daar wordt gezegd: wij zijn chemische industrie en niet zozeer uit op brandstof. Hier zie je blik op de biobased economy in het algemeen. Een ‘groene strategie’ levert ook stukje onafhankelijkheid van olie. In de chemische sector worden nieuwe technologieën ontwikkeld om waarde te creëren uit biomassa. Biobrandstoffen alleen leveren te weinig op, vandaar de aandacht voor cascading. Het project Biosynergy kijkt naar bioraffinage. Hierbij worden C5 suikers niet – allen omgezet naar ethanol, maar naar andere chemische producten met een hogere waarde. De focus ligt dus niet alleen op brandstoffen, maar kijkt verder. Zo wordt ook gekeken naar de opties voor lignine. Met andere woorden, er wordt gekeken naar een proces dat de productie van brandstof, chemicals en materialen combineert. Is daar dan nog wel een rol weggelegd voor brandstoffen? Er bestaat een grote vraag / er is een grote markt voor brandstof, maar als het te weinig oplevert…? Voorlopig is er zeker een rol weggelegd voor biobrandstoffen. De markt bestaat en hierdoor kan je je product makkelijk afzetten. Maar in de toekomst is dat nog de vraag. Hoe kijken we aan tegen mobiliteit, zijn er wellicht andere vormen van transport en welke rol spelen biobrandstoffen daarin? Biobrandstoffen kunnen een voortrekkersrol spelen in de ontwikkeling naar een biobased economy. Aan de andere kant is het ook nog maar de vraag of alternatieve vormen van transport er snel aankomen. Bijvoorbeeld de elektrische auto, gaat die er wel komen? Het is nog maar de vraag. Nieuwe vormen van mobiliteit zijn nog pril, laat staan de infrastructuur eromheen. Maar mobiliteit staat ter discussie. In het HYvolution project wordt gekeken naar de productie van H2 uit biomassa en dan vooral naar lokale verwerking en benutting, ook als transportbrandstof. Deze techniek heeft twee voordelen; - Vanwege de kleine schaal zullen er minder logistieke problemen ontstaan (in tegenstelling tot bijvoorbeeld Fischer Tropsch, wat daarentegen weer interessant is voor PoR) - Lokaal gebruik vermijdt de noodzaak van een distributiesysteem. Als je kijkt naar de ontwikkeling van cellulose ethanol, waar staat die nu ongeveer? De deelprocessen voor de productie van cellulose ethanol zijn grotendeels bekend. Maar succesvol integreren is lastiger, dit is een obstakel. Een aantal pilots draait, maar tot zekere hoogte. Er bestaat nog geen continu werkend proces, nergens. (INEOS?!) Er wordt wel veel ervaring opgedaan met het integreren van de technieken, maar we zitten nog steeds in de fase van pilots. Als deze succesvol zijn bewezen, dan zullen ze nog succesvol opgeschaald
Gijs van der Meer - Thesis
130
moeten worden. Er is dus geen specifieke doorbraak vereist, maar eerder integratie van verschillende processen en dat vervolgens succesvol demonstreren. Daar is het wachten op en daar wachten investeerders op. En wat betreft Iogen? Daar hoor je op dit moment niet veel van. De research directeuren zijn bekend, maar al een tijd niet gesproken. Het bedrijf maakt reclame voor z’n technologie, maar in wetenschappelijke kringen hoor je weinig. Dat kan zowel een goed als een slecht teken zijn. Investeerders wachten op eerste plant, maar zover is het nog niet. WUR heeft wel eens interesse getoond in de enzymen van Iogen, maar deze worden niet los verkocht. Alleen het totaalconcept is beschikbaar. Maar er zijn meerdere spelers in enzymen (Novozym / Genencor). Iogen zal niet de enige zijn. Het zou mooi zijn als Iogen succesvol is, maar een waaier van mogelijkheden / alternatieven is waarschijnlijker. Vanwege de oorsprong in de enzymen en de ontwikkeling van een totaalconcept heeft Iogen een interessant business model. Wat voor Iogen een probleem zou kunnen zijn is dat ze gefocust zijn op 2G. Abengoa heeft bijvoorbeeld een veel bredere kennisbasis, oa. in 1G, bijvoorbeeld mbt. fermentatie. Het succes van grotere installaties is vaak ook financieel mogelijk gemaakt door overheden. Dermate grote investeringen zijn nauwelijks door kleine bedrijven op te brengen. Dat heeft bij Iogen meegespeeld. Maar waar zal de eerste plant komen? Misschien in Oost Duitsland, vanwege de aantrekkelijke financiële randvoorwaarden. De deelprocessen zijn bekend, maar deze zijn nog niet succesvol geïntegreerd, er is nog geen continu draaiende geïntegreerde installatie. De ontwikkeling bevindt zich in het stadium net voor commerciële toepassing. Er is geen specifieke doorbraak vereist, maar integratie van de onderdelen, een totaalconcept. Kunt u wat meer vertellen over ontsluiting van cellulose / voorbewerking? Je kunt onderscheid maken tussen directe methodes (acid hydrolysis, de meest bekende, geen enzymen) en enzymatisch. Bij enzymatische hydrolyse worden weer verschillende voorbewerkingsmethodes toegepast. (wo. Stoomexplosie, mild zuur, alkalisch). Er is nog geen industriestandaard. Veel bedrijven zitten op de route van stoomexplosie, onder meer met pilots. Maar stoomexplosie op zich is nog niet toereikend voor enzymatische hydrolyse, dus ook hierin vind je verschillende aanvullingen / toevoegingen, (bijvoorbeeld zwafelzuur) maar dat geeft ook aanvullende problemen. Ook worden alkalische voorbehandelingprocessen toegepast, zoals DuPont-Danisco (Ammonium) Er is nog geen voorkeursroute of een route die duidelijk voor ligt, verder ontwikkeld is. Alle routes hebben hun voor en nadelen. Het is nog niet duidelijk welke kant het op gaat. En wat betreft de enzymatische route? Er wordt al lang gewacht op verlaging van de kosten, maar dat blijft vooralsnog uit. De enzymatische route heeft als risico dat je afhankelijk bent van een enzymfabrikant. Zo kan je bijvoorbeeld een bepaald enzym hebben voor een bepaalde grondstof, maar werkt deze ook bij andere grondstof of is er dan een ander enzym benodigd? Een route waarbij geen enzymen benodigd zijn is wellicht robuuster, flexibeler. In de VS worden 6 pilots gefinancierd waar beide routes inzitten, waarschijnlijk 2 directe en 4 enzymatische. Om het risico bij de enzymatische route te verkleinen zie je dat ethanolproducenten relaties aangaan met enzymproducenten, zoals ook dupont-danisco. Maar de enzymatische route heeft zeker ook potentie. Er is veel kennisontwikkeling. Het is een beetje vergelijkbaar met zetmeelhydrolyse. Dat vond 20 – 30 jr. geleden ook plaats volgens zure methodes, maar inmiddels zijn er enzymen beschikbaar tegen acceptabele kosten. Enzymfabrikanten zeggen dat de kosten al verlaagt zijn. Maar het wachten is op een 2G fabriek voor ethanol productie, dan bouwen zij een enzym fabriek. Dus de productie van een enzym komt samen met de productie van ethanol.
Gijs van der Meer - Thesis
131
Dit is wel degelijk een voordeel van Iogen; een stuk zekerheid en een stuk kennis over enzymproductie en integratie. Is dat één van de belangrijke aspecten? Ligt daar de focus wat betreft de ontwikkeling van cellulose ethanol? Nee, de meeste aandacht gaat uit naar de voorbehandeling, de ontsluiting van lignocellulose, dat geldt voor de ontwikkeling op internationaal gebied. De ontwikkeling en productie van enzymen vaart hierin mee. De ontsluiting bestaat uit voorbehandeling en hydrolyse en soms lopen deze processen door elkaar heen. Sekab ontwikkelt beide en heeft hierdoor een integraal beeld van de ontsluiting. Zou een ontwikkelaar van een voorbewerkingsproces dat proces dermate kunnen verfijnen en het vervolgens vermarkten of heb je geïntegreerde speler nodig? Beide businessmodellen zijn valide. Bijvoorbeeld Sekab, de technologie die zij ontwikkelen zouden ze kunnen exploiteren / commercialiseren of ze zouden het in hun eigen, bestaande proces kunnen opnemen. Een bedrijf als Abengoa ontwikkelt ook technologie voor de ontsluiting van lignocellulose biomassa. Kun je in het veld van cellulose ethanol spreken over een internationale ontwikkeling? Houden partijen elkaar in de gaten, vindt er uitwisseling van informatie plaats? Of is het eerder een lokale, afgeschermde ontwikkeling? De ontwikkeling van 2G ethanol is internationaal, maar uitwisseling van informatie vindt niet zozeer plaats. De cellulose ethanol wereld is redelijk gesloten tot een patent gepubliceerd is. Kennis wordt vastgelegd. Er verschijnen maandelijks heel veel patenten op het gebied van cellulose verwerking. Er bestaan Europese ontwikkelingsprogramma’s, maar het merendeel van het budget is nationaal. Nationale overheden stellen als voorwaarde dat nationale partijen betrokken zijn. In landen die van oudsher actief zijn geweest, zie je nu ook belangrijke onderzoeksgroepen, bijvoorbeeld in Zweden en Denemarken. Maar ook in Nederland. (bijv. Gist Brocades / DSM) In het veld van biobrandstoffen lijken de spelers in verbranding / vergassing veel opener. Informatie is wellicht minder makkelijk te gebruiken / benutten. Veel onderzoek wordt gestuurd via nationaal onderzoeksgeld. Vanuit Brussel wordt er wel geprobeerd structuur aan te brengen in R&D, maar veel wordt toch nog nationaal bepaald. Dit zie je ook terug in het EOS programma. Daar worden eigen plannen gemaakt en uitgevoerd, maar uiteraard niet tegen de ideeën van Brussel in. Is dat wellicht een voordeel voor VS? In de VS bestaat veel meer centrale coördinatie en er zijn grote federale labs (zoals NREL) en nationale kenniscentra. Er wordt veel gepubliceerd en er vindt veel kennisuitwisseling plaats. De EU projecten zijn beperkt, in duur en behoud van kennis. De ambitie is er wel, maar het is lastig om te realiseren. Er bestaan sinds kort Networks of Excellence, maar deze lijken te blijven steken in het vormen van een netwerk, het leggen van contacten. Daarnaast bestaan er ook Europese Technology Platforms. Zij proberen een gezamenlijke onderzoeksstrategie te bespreken. Maar deze platforms missen de impact van een groot gezamenlijk budget zodat de plannen niet uiteenvallen in tal van kleine – nationale projectjes. Ook de Framework Programs blijven projecten, waar verschillende partijen kennis opdoen en patenten verkrijgen. Het blijft gefragmenteerd. Als rol van overheid zo belangrijk is, is het dan commercieel nog niet interessant genoeg? Dat zou je aan de industrie voor moeten leggen. AFSG krijgt nog steeds het merendeel van z’n budget van de overheid, in publiek private samenwerking, dus publieke gelden. Op dit moment is AFSG samen met TNO in gesprek met een commerciële partner voor verdere ontwikkeling van een technologie, maar dat is de eerste keer. Bij de chemische sector zie je interesse in kennis en patenten, waar geld tegenover staat voor verdere ontwikkeling. Voor biobrandstoffen zie je dat nog niet, minder. Dat is op zich merkwaardig, want beide sectoren bevatten grote kapitaalkrachtige industrieën die het zouden kunnen trekken.
Gijs van der Meer - Thesis
132
Is biogas een interessante optie als transportbrandstof? Wellicht decentraal, via vergisting. Ja, biogas heeft duidelijk een technisch potentieel, maar in Nederland zie je weinig initiatieven. Geen idee waar dat precies aan ligt. Er zijn kansen voor decentrale productie en benutting, zoals in dedicated fleets. Wellicht heeft het te maken met subsidieregelingen (MEP was voornamelijk gericht op elektriciteit) En we zijn verwend door de aanwezigheid van aardgas. Misschien dat daardoor de optie om biogas te injecteren in het aardgasnet interessant is. En er is een aantal bussen op aardgas. Biogasactiviteiten bij WUR zijn voornamelijk gericht op verwerking in WKK. Het blijft een interessante optie, het proces is eenvoudiger en nog te optimaliseren. Maar je ziet er niet zoveel van . Bent u bekend met het initiatief van N2 Energie? Niet echt bekend. De reactor (Gravity Pressure Vessel) is wel eens bekeken, maar staat momenteel niet onder de aandacht. Er is weinig info over. Er zijn wel persberichten en presentaties, maar geen wetenschappelijke info. Twijfels over haalbaarheid van technologie. Biomassa heeft in principe geen goede stromingseigenschappen. Gaat het dan wel werken in een pijp van 700 m.? De ontwikkeling is nog niet ver en er is geen Nederlandse onderzoeksinstelling bij betrokken. Het is een leuk idee, maar twijfels of het gaat werken.
Gijs van der Meer - Thesis
133
2. Breman (Berthold) – Sasol Technology Netherlands Verslag van het gesprek met Berthold Breman in het kader van het afstudeeronderzoek van Gijs van der Meer. Datum: 5 september 2008 Locatie: telefonisch 15 september goedgekeurd. Dhr. Berthold Breman is Research Manager bij Sasol Technology Netherlands. Informatie uit het persoonlijke gesprek mag gebruikt worden voor het onderzoek. Het is echter niet noodzakelijkerwijs de expliciete mening van Sasol als bedrijf en het kan een persoonlijke opinie betreffen. Achtergrond van Sasol en Fischer Tropsch Sasol heeft inderdaad ruime ervaring met FT en dan met name voor het produceren van vloeibare brandstoffen en chemicaliën uit kolen; Coal to Liquid; CtL. Sasol bedrijft sinds 1982 een CtL plant in Secunda, Zuid Afrika, met een huidige capaciteit van 160.000 vaten er dag. Een voordeel van CtL is de kwaliteit van het product. Sasol produceert via dit proces zelfs kerosine voor de luchtvaart uit kolen. Hier is meer over te vinden op het internet. Shell en Sasol zijn licentiehouder van het FT proces. Ze zijn niet de enige partijen die actief zijn met FT. Zij zijn echter wel de enige partijen die FT hebben gecommercialiseerd, momenteel op commerciële schaal toepassen. (Samen met PetroSA, ism. Sasol) Ontwikkeling van Biomass to Liquid (BtL) Wat ziet u als drijvende kracht achter de ontwikkeling van biobrandstoffen? Als drijvende kracht achter de ontwikkeling van biobrandstoffen zie ik op de eerste plaats vooral het algemene maatschappelijke belang en de mogelijkheid voor CO2 reductie. Op de tweede plaats is de verwachte schaarste op de olie en gas markt een drijvende kracht achter biobrandstoffen. Maar waarschijnlijk is de motivatie voor de korte termijn toch wel de mogelijke CO2 reductie. Helemaal wat betreft BtL. Er is namelijk genoeg kool beschikbaar die via CtL tot transportbrandstof verwerkt kan worden. CtL technologie is bekend en wordt toegepast door Sasol. Is er toenemende interesse merkbaar in BtL? e Nee, toenemende interesse in BtL (2 generatie biobrandstoffen via Fischer-Tropsch) is niet echt merkbaar. De ontwikkeling van biomassa vergassing als noodzakelijke eerste stap in het FT gebaseerde proces is al jaren in gang en er heeft daar geen grote technologische doorbraak plaatsgevonden. Er is wel toenemende interesse merkbaar in 1G biobrandstoffen. Hoe kijkt u aan tegen de activiteiten van Choren / Shell? Choren / Shell lopen voorop wat betreft BtL, maar ook daar is nog veel technologische ontwikkeling nodig. Sasol volgt Choren met veel interesse. Zijn er nog meer spelers actief op het gebied van BtL – via FT synthese? Zijn er meerdere spelers capabel? Op het gebied van FT synthese zijn meerdere spelers actief; ExxonMobil (VS), ConocoPhilips (VS), Statoil (Noors), ENI (Italiaans), IFP (Frans). Deze, en nog andere partijen, zijn actief wat betreft de ontwikkeling van het FT proces, maar ze passen de technologie niet op commerciële schaal toe. Shell, Sasol en PetroSA zijn de enige partijen die FT op commerciële schaal toepassen. Of andere partijen capabel zijn valt te bezien. Ze zullen moeten overtuigen, op technisch, maar ook op commercieel vlak.
Gijs van der Meer - Thesis
134
Welke spelers / wat voor type speler zou BtL kunnen toepassen? De biomassawereld is versplinterd. Op kleine schaal zijn er veel initiatieven, maar op grote schaal, waarbij het om wezenlijke initiatieven gaat, gebeurt er weinig. Er is een groot bedrijf e nodig om 2 generatie FT-gebaseerde BtL serieus (= op voldoende grote schaal) te ontwikkelen. Het moet ook een bedrijf zijn met de capaciteit om fabrieken neer te zetten en te bedrijven. Daarnaast is de beschikking over een distributienet belangrijk. Grote chemie of oliebedrijven zouden dat kunnen doen. Zal BtL de demonstratiefase ontgroeien en richting commerciële schaal gaan? Een logische volgende stap in de ontwikkeling van BtL is het bijmengen van BtL met CtL of GtL. (Maar waar zal bijmengen plaatsvinden? Vóór vergassing, dus biomassa met kolen mengen. Of mengen van biosyngas met syngas uit kolen / aardgas? kan beiden) Dat zal gefaseerd plaatsvinden, dus eerst een klein deel biomassa. In Buggenum wordt bijvoorbeeld maximaal 40% biomassa bijgemengd. Er zijn aandachtspunten bij de vergassing van biomassa. Shell en Nuon zijn daar ver in, onder andere vanwege hun ervaring met de Buggenum centrale. Het type vergasser dat daar wordt toegepast, entrained flow, is het meest waarschijnlijk voor BtL. Maar het blijft koffiedik kijken. Zijn er alternatieven voor FT in het proces van BtL? Ja, er zijn legio mogelijkheden op basis van syngas / het CO/H2 platform, waaronder methanol synthese. (Zie ook presentaties van ECN) Sasol ten aanzien van BtL Ziet u kansen / obstakels voor de benutting van lignocellulose biomassa (2G) voor biobrandstoffen? Het gebruik van voedingsmiddelen voor 1G brandstoffen is niet altijd ethisch te verantwoorden, o.a. vanwege de concurrentie met voedsel. Zodoende komt de nadruk te liggen op het benutten van reststromen, tweede generatie. Sasol heeft in Zuid Afrika initiatieven lopen met 1G biobrandstof, maar als Sasol zich werkelijk met biobrandstoffen op grote schaal bezig zou gaan houden, dan zou de aandacht uitgaan naar vergassing en FT synthese; BtL. Hydrolyse en fermentatie hebben niet de directe aandacht. Hoe kijkt Sasol aan tegen BtL? CtL is bekend en wordt door Sasol toegepast. BtL is nog in ontwikkeling. Shell / Choren lopen voorop wat betreft BtL, maar ook daar is nog veel technologische ontwikkeling nodig. Zelfs al zou de technologie-ontwikkeling succesvol zijn, dan nog is de businesscase voor BtL mager. Het hangt af van de olieprijs en de CO2 credits. CtL is aantrekkelijker, maar is ook afhankelijk van CO2 credits. Een interessante ontwikkeling is Carbon Capture and Storage (CCS). Als deze technologie slaagt, dan wordt de optie van CtL in combinatie met CCS veel gunstiger t.o.v. BtL. In zekere zin concurreren beide ontwikkelingen met elkaar. De kansen voor BtL zijn moeilijk te voorspellen. Onderzoekt Sasol de mogelijkheid van BtL? Sasol heeft bij wijze van experiment wel eens biomassa bijgemengd in de fabriek in Secunda. Dit is nooit veel geweest, het is altijd onder de 10% biomassa gebleven. Maar het is dus wel in de praktijk toegepast. De vergassers die in het proces zijn toegepast zijn van Sasol-Lurgi. Als Sasol zich zou richten op biobrandstoffen, dan zou dit via syngas en FT synthese zijn, dus synthetische brandstoffen. Maar Sasol houdt zich momenteel niet pro-actief bezig met BtL. Hiervoor zouden ook partners benodigd zijn. Als een andere partij syngas uit biomassa
Gijs van der Meer - Thesis
135
beschikbaar heeft tegen redelijk prijsstelling, dan zou Sasol wellicht geïnteresseerd zijn. Dus in combinatie met andere partijen wellicht. Er moet wel gezegd worden dat Sasol een stuk kleiner is dan Shell, waardoor onderzoek naar dit soort ontwikkelingen lastiger is en er gefocuseerd dient te worden. Sasol zou graag meedoen in de ontwikkeling van BTL, maar mist een stukje kapitaal en onderzoekscapaciteit om de kar te trekken m.b.t. de technologische ontwikkeling van de biomassa vergassing (= de sleutel in het BTL proces). Hier is een partner nodig. Maar dan nog, het moet economisch te rechtvaardigen zijn, ook in verhouding tot CTL met CCS bijvoorbeeld en bij realistische CO2 credit prijzen. Alleen dan kan BtL werkelijk een impact hebben. De technologie kan vermoedelijk wel succesvol ontwikkeld worden, maar zelfs met deze optimistische kijk op de technologie-ontwikkeling lijkt BTL nog steeds een dure optie. Kansen en obstakels voor BtL? Hoe schat u de kansen in voor BtL via FT? Commerciële kansen voor BtL via FT lijken erg moeilijk. Obstakels zijn vooral van economische aard of van bijkomende aspecten die het economische plaatje ongunstiger maken. Een dergelijke investering zou niet afhankelijk moeten zijn van subsidies, de investering zou op zichzelf rendabel moeten zijn. Dan krijg je competitie met CtL en GtL. CtL is mijns inziens dichterbij dan BtL. Daar komt bij dat CtL al duur is, maar BtL is nog aanzienlijk duurder. Dat heeft te maken met de lage energiedichtheid van biomassa, de verspreide beschikbaarheid van de grondstof en daarmee gepaard gaande logistieke problemen en energiegebruik, die de kosten verhogen, alsmede de hogere kapitaalinvestering a.g.v. de ongunsige vergassingskarakteristieken van biomassa en de daardoor benodigde voorbewerking. Zelfs al wordt de biomassa gratis aangeboden, dan nog is het een dure grondstof op de plaats van bestemming (dus inclusief kosten voor logistiek). Gezien het gebied waaruit je biomassa kunt betrekken, het zgn catchment area, ligt kleinschalige en decentrale verwerking voor de hand. Dan mis je echter het voordeel van economies of scale. Tenzij er een technologische doorbraak komt is kleinschalig niet rendabel. Grootschalig heb je de voordelen van economy of scale, maar zit je met logistieke nadelen. En wat betreft decentrale voorbewerking, bijvoorbeeld pyrolyse, en centrale verwerking? Daar geloof ik niet zo in, het lijkt niet zo gunstig. Pyrolyse is nog niet volledig uitontwikkeld (Er zijn wel proefinstallaties) en de olie die ermee geproduceerd wordt is corrosief en zou daardoor wel eens hoge transportkosten met zich mee kunnen brengen. Bovendien lijkt het veel meer voor de hand te liggen om deze pyrolyse-olie rechtstreeks te raffineren (zie het als een ruwe olie) ipv de veel duurdere vergassings-FT route te bewandelen. Los van het punt van de- / centrale voorbewerking krijg je ook te maken met additionele problemen bij de verwerking van biomassa ten opzichte van kolen, wat betreft voorbewerking, vergassing en gasreiniging. Dit resulteert in hogere kosten. De technologieontwikkeling gaat voort en zal uiteindelijk geen hoofdobstakel zijn. Maar dan nog zal BtL een dure optie zijn en op dit moment is er geen zicht op een technologische doorbraak die de kosten significant kan verlagen. Aan de andere kant heb je de ontwikkeling van alternatieven, zoals methanol uit syngas en Carbon Capture & Storage (CCS). Als deze laatste technologie slaagt, dan zal BtL nog heviger moeten concurreren met CtL en GtL. Beide zullen goedkoper zijn dan BtL. Het is dan waarschijnlijk dat deze opties eerder benut zullen worden en dat daarna pas BtL in beeld komt. Als BtL via FT een serieus alternatief zou zijn, dan zou de ontwikkeling nu verder moeten zijn, dan zou je meer investeringen moeten zien. Maar dat zie je niet zo. Er is een technologische doorbraak nodig. Op het gebied van vergassing / FT synthese wordt nu al optimistisch gekeken. Maar er is geen onderzoek gaande met potentie om de kosten sterk te verlagen.
Gijs van der Meer - Thesis
136
Ik verwacht niet dat BtL op dit moment en met de huidige prijs voor CO2 emissierechten rendabel is. Er zijn ook andere mogelijkheden en fossiel zal blijven bestaan. BtL zal fossiel niet vervangen. Het is moeilijk voor BtL. Wie zal hierop inzetten? Het totaalplaatje is belangrijk. Het is makkelijker om in elektriciteitscentrales kolen te vervangen door biomassa. Wat BTG doet is wellicht interessant, de productie van pyrolyseolie. Die zou bijvoorbeeld direct gebruikt kunnen worden (als brandstof? zeker, in electricteitscentrale) of in een raffinaderij verwerkt kunnen worden. Misschien is dat minder duur.
Gijs van der Meer - Thesis
137
3. Breunesse (Ewald) - Shell Nederland Interview met dhr. Ewald van Gijs van der Meer
Breunesse
ten
behoeve
van
het
afstudeeronderzoek
Datum: 15 juli 2008 Locatie: Shell Nederland, Den Haag Dhr. Ewald Breunesse is Manager Energie Transities bij Shell Nederland Er zijn momenteel veel initiatieven en enkele demonstratieprojecten. Shell zit in beide voorlopers op het gebied van cellulose ethanol en FT biodiesel, respectievelijk Iogen en Choren. Daarnaast vertegenwoordigt Shell de gevestigde orde. Zo zou je een spanningsveld verwachten tussen enerzijds de enorme belangen in de huidige gang van zaken. Anderzijds speelt de ontwikkeling zich af in de markt van Shell en heeft zij de middelen om de ontwikkeling vooruit te helpen. Kunt u wat vertellen over de rol van Shell in de ontwikkeling van 2G biobrandstoffen? e
e
Wat betreft 1 en 2 generatie biobrandstoffen, dit onderscheid is niet heel gemakkelijk, niet heel duidelijk. Je kunt de ontwikkeling van biobrandstoffen zien als een continue schaal, waarbij puur plantaardige olie bijvoorbeeld staat voor 1.0 en FT biodiesel voor 2.5 Daar zit nog het een en ander tussenin en heeft te maken met onder andere de CO2 reductie en de gebruikte grondstof. Er zijn veel initiatieven en daarin is een grote diversiteit. Er zijn veel projecten van Shell die zij onder 2G verstaat. Je weet nog niet welke zich verder ontwikkelen. Shell zit bijvoorbeeld in een algenproject dat op Hawaï wordt uitgevoerd en een project om suikers om te zetten naar benzine-componenten. Veel van deze projecten bevinden zich nog in de R&D fase. Iogen en Choren zijn deze fase voorbij en zitten in de demonstratiefase. De volgende stap is opschaling. Nu valt pas te zien wat de producten gaan kosten en wat het op gaat brengen in de markt. Vooralsnog is geavanceerde technologie duurder dan bestaande technologieën. Bij de opschaling moet je een inschatting maken over de kostprijs en of je kunt concurreren met 1G. Overheid heeft daar een rol in. Bijvoorbeeld door 2G producten zwaarder mee te laten wegen in het bijmengen van biobrandstoffen worden deze brandstoffen gestimuleerd ten opzichte van 1G. Wat betreft Shell, Shell heeft een lange geschiedenis met Fischer Tropsch (FT). Het FT principe is op zich al lang bekend. Het heeft z’n wortels in Duistland. Shell heeft FT opgepakt e na de 1 oliecrisis in 1973. Toen is er gekeken wat mogelijke alternatieven zijn voor aardolie? Een eerste alternatief is kolenvergassing geweest. Dat is toegepast in de Buggenum centrale in Nederland. Het syngas dat daar geproduceerd wordt, kan via FT synthese omgezet worden naar een vloeistof. In dat geval zijn kolen de grondstof en wordt het proces Coal to Liquid genoemd (CtL). CtL heeft grote potentie voor landen met grote kolenvoorraden, zoals China en India. Het product, in dit geval diesel is bijzonder schoon ten opzichte de tegenhanger uit aardolie. De volgende stap is het gebruik van aardgas als grondstof en dan krijg je GtL. Sinds 1993 heeft Shell een GtL fabriek operationeel in Maleisie. Het product zit door Shell V-Power diesel. Nu is Shell bezig met de bouw van een GtL fabriek in Qatar die 10 keer zo groot moet worden en in 2010 moet draaien. Hier moet een heel palet aan vloeibare producten geproduceerd gaan worden op basis van aardgas. Shell doet een groot aantal proeven met GtL. Het product, diesel via GtL ziet er precies hetzelfde uit als via CtL of Biomass to Liquid (BtL). Shell verzamelt de drie varianten onder de noemer XtL. FT is een oud proces. Choren wil houtsnippers vergassen. Shell levert het FT proces voor de installatie en daarnaast heeft Shell ervaring op het gebied van gasreiniging in het proces. Hout heeft een hoge teercomponent, waardoor gasreiniging extra aandacht vereist. Het is een leuk samenwerkingsverband. VW Audi zit ook in het project, aan de kant van de motortechnologie. Het aardige is zo dat je de motor af kunt stemmen op de brandstof. Dat dit succesvol is heeft deelname van Audi aan de 24-uurs van Le Mans bewezen. Het is een mooi project.
Gijs van der Meer - Thesis
138
Wat wil Shell uit de projecten halen? Het energieverbruik neemt enorm toe. De transportsector is wereldwijd voor ongeveer 96% afhankelijk van vloeibare brandstoffen, gebaseerd op olie. De rest is een deel elektriciteit, gas, bioethanol in Brazilië. Maar transport is olie. Op dit moment zijn er pak hem beet 1 miljard voertuigen op olie en dat aantal gaat wellicht naar 2 miljard. Het wagenpark zal zuiniger worden, maar de vraag zal enorm toenemen en dat is teveel gevraagd voor het huidige olieaanbod. Wat zullen de alternatieven zijn? En zijn verschillende scenario’s over de rol van biobrandstoffen, maar ook de rol van elektrische voertuigen. Er is nog veel ontwikkeling nodig, maar het zit er aan te komen. Vraag een aanbod zullen breder worden. Ook andere partijen kijken naar alternatieven voor olie. Biobrandstoffen hebben als groot voordeel, wat Shell noemt: “ease of implementation”. Met relatief kleine aanpassingen kan je biobrandstoffen benutten. Samenvattend, er is een sterk groeiende vraag naar energie, en olie alleen is niet genoeg. Dus wordt er gekeken naar alternatieven en het antwoord van Shell is XtL. Het belang van Shell kan je als volgt zien; biobrandstoffen komen er, al dan niet via verplichtingen van de overheid, dan wel uit economische overwegingen (met het oog op de stijgende olieprijs) Het komt eraan. Shell is een technologiebedrijf en heeft er dus belang bij om technologie naar de markt te brengen. Je kunt dan op twee manieren kijken tegen het verzorgen van het aanbod. Ofwel door te kijken naar de huidige gang van zaken, Shell zit traditioneel in de olie, ook in niet conventionele bronnen zoals de oliezanden in Canada. Je kunt ook vanuit de klant kijken. Die wil met een volle tank wegrijden. En dat wil Shell graag verzorgen. Dan kijk je vanaf de pomp terug de keten in. Maar hoe komen we aan die vloeibare brandstof? Fossiel olie hadden we, dat was makkelijk en relatief goedkoop. Maar wat zijn de alternatieven? Kolen, gas, biomassa? Shell heeft in het verleden bossen gehad om te experimenteren met snelgroeiende gewassen. In de tijd is besloten dat Shell geen agrariër is, dat is een andere tak van sport. Shell neemt grondstoffen in en produceert brandstoffen. Voor biobrandstoffen is dat anders dan bij fossiele olie, waar Shell ook in de winning van de grondstof zit. Shell zou biobrandstoffen het liefst in de raffinaderij produceren; bioraffinage. Momenteel gebeurt dat nog in aparte fabrieken, maar in de toekomst zal de productie van fossiele producten en biologische producten naar elkaar toe groeien. Op de raffinaderij zullen dan biologische grondstoffen ingenomen worden. Dit zullen wellicht geen bomen zijn, maar halffabrikaten, die in de raffinaderij verder worden verwerkt. Want, ethanol en biodiesel blijven verschillende producten ten opzichte van fossiele benzine en diesel. Je kunt ze bij elkaar gooien, maar dat is niet de mooiste oplossing. Liever wil je aan de bron van je proces verschillende grondstoffen invoeren met als resultaat een homogeen product. Op dit moment zie je ook kwaliteitsverschillen tussen 1G biobrandstoffen en dat wil je eigenlijk niet hebben. Shell probeert te redeneren vanaf de klant. De klant heeft een auto, van een bepaalde generatie, van splinternieuw tot 15 jaar oud. De brandstof aan de pomp moet voor iedere auto geschikt zijn. Je wilt geen 10 pompen voor 10 generaties auto’s, maar liever het aantal producten beperken en compatibel houden. Dus Shell kijkt als volgt: Hoe ziet het wagenpark eruit, welke kant gaat de ontwikkeling op en welke producten kunnen wij leveren. Deze producten moeten compatibel zijn met motoren en passen bij de ontwikkelingen van de automotive industrie. Is dan het uitgangspunt: biobrandstoffen zijn verplicht, of zijn er economische redenen? Op dit moment leveren we biobrandstoffen omdat het verplicht is. Biobrandstoffen zijn momenteel duurder dan fossiele brandstoffen. Zo in de pomp zou de klant het niet kopen, want het is duurder en dus is er een stimulans nodig, een wettelijke verplichting of subsidie. Dat zou kunnen veranderen. Nu is er een wettelijke minimumverplichting. Maar het zou ook kunnen dat er over een tijd een wettelijk maximum komt, als door hoge olieprijzen biobrandstoffen veel aantrekkelijker worden dan fossiele brandstoffen. Dan zouden
Gijs van der Meer - Thesis
139
biobrandstoffen bijvoorbeeld een te grote invloed op de voedingsketen kunnen hebben. De voedselprijzen zijn in beweging. Hoe is nog niet helemaal duidelijk, maar er is een interactie. De rol van de overheid is dus aanzienlijk en wellicht zelfs bepalend? Jazeker. En de overheid heeft een aantal motieven, die verschillen per land. In Nederland worden biobrandstoffen vooral gedreven door een milieu / CO2 motief. In Frankrijk en Duitsland gelden agrarische motieven. In de VS is de onafhankelijkheid van import van olie het belangrijkste motief. Al die drie elementen spelen een rol. Je ziet dat leveringszekerheid in Nederland belangrijker aan het worden is. En rechtvaardigen die motieven dan ook de zoektocht naar Biobrandstoffen? Ja. Biobrandstoffen hebben als voordeel dat ze overal groeien – zij het op de ene plek beter dan de andere. reststromen heb je ook overal, zeker in dichtbevolkte gebieden. Dat laatste is aantrekkelijk want dan heb je de grondstoffen ook gelijk bij je markt. Je moet je afvragen of je stro uit canada naar Rotterdam moet vervoeren om in Rotterdam biobrandstoffen te produceren. Je moet ook rekening houden met de nutriënten balans als je gaat slepen met organische producten. Dit zie je in de praktijk ook al met het mestoverschot. Import van grondstoffen naar Nederland voor veevoer en hier zitten we met een mestoverschot. In de loop van de ontwikkeling zal dat duidelijker gaan worden; wordt de vraag naar biobrandstoffen groter, waar ga je dan produceren? Rotterdam wil productie in Rotterdam. Maar het is ook waarschijnlijk dat halffabrikaten dichter bij de bron geproduceerd gaan worden. Decentrale productie, al dan niet deels, is dus niet uitgesloten. Is er een rol weggelegd voor het MKB in de ontwikkeling van 2G biobrandstoffen? Dat hangt ervan af wat je onder MKB ziet. Nedalco is eigenlijk groter dan MKB. Iogen / Choren zou je als MKB kunnen zien. Technologieontwikkeling kan goed door dergelijke bedrijven uitgevoerd worden. Maar deze kleine organisaties missen het kapitaal en de mogelijkheid om op te schalen. Er is in mijn optiek dus een rol weggelegd voor het MKB wat betreft technologieontwikkeling. Maar wil je gaan opschalen, dan kom je toch bij grote bedrijven uit. Via overnames of samenwerkingsverbanden zal de rol van het MKB overgenomen worden door grote spelers. Als je kijkt naar andere initiatieven, dan zie je grootse plannen, bijvoorbeeld in de chemische industrie. Stel we gaan richting een biobased economy, hoe zou de verdeling van de biomassa dan uit kunnen pakken voor transportbrandstoffen? Kijk je naar een veelgebruikte figuur ter illustratie van cascading, dan staan de biobrandstoffen als toepassing onderaan. Het klopt dat verbranden de meest laagwaardige toepassing is. Maar Shell verwacht geen grote concurrentie van de chemische of farmaceutische industrie. In verhouding tot transportbrandstoffen zijn de volumes in die sectoren veel kleiner. Shell is uit op de koolwaterstoffen, ander elementen kunnen voor andere toepassingen gebruikt worden. De farmaceutische industrie gebruikt slechts een deel / component van de biomassa en het wordt afwachten welke reststromen de chemische industrie zal produceren. Dan kom je inderdaad uit bij cascading, de chemische industrie neemt wat ze nodig heeft en de petrochemie krijgt de reststromen om wellicht te benutten voor transportbrandstoffen. Dat zie je nu ook gebeuren. Het zal dus wel meevallen met de competitie. Welke partijen zijn belangrijk voor een overgang naar een biobased economy? Enerzijds heb je partijen die gerelateerd zijn aan biobrandstoffen, maar je ziet ook dat andere partijen actief zijn, zoals de chemische industrie. Dat zijn grote bedrijven, met middelen en technologie. Kijk je naar bijvoorbeeld Iogen, zij hebben een verleden in de diervoeding. Essentieel in dit geval is welke bedrijven toegang hebben tot de eindklant. Dus wie heeft de infrastructuur, wie levert er aan de klant? De chemische industrie heeft z’n distributiewegen, samenwerkingsverbanden en contacten. Degene die contact heeft met de klant heeft een groot voordeel (Zie ook co-ontwikkeling). Er kunnen partijen zijn die daar overheen springen om klanten te bereiken. Maar zij zullen een niche bedienen. Grotere ondernemingen zullen kijken naar hun kerncompetenties. Nedalco is geen retailer, hun kerncompetentie is alcoholproductie. Zij zullen partners nodig hebben. Bijvoorbeeld een partij als Argos.
Gijs van der Meer - Thesis
140
Ik denk niet dat er een bepaalde groep is die een zogenaamde biobased economy zal gaan trekken. Het blijft ook een abstract begrip, met als kenmerk dat biologische grondstoffen toegepast worden. Op veel plaatsen zal het zich ontplooien. Het zullen partijen moeten zijn met de middelen om biobased producten groot te maken. En met de kennis en middelen om de hele productieketen goed te laten functioneren. Verschillende deelprocessen zijn bewezen, maar het schijnt lastig te zijn om de gehele keten goed te laten draaien. Iogen en Choren hebben de hele procesketen functionerend. Komt productie dichterbij? De eerlijkheid gebied te zeggen dat het niet zo eenvoudig ligt. Kijk naar GtL. Dat is begonnen op labschaal en aangetoond op labschaal, onder lab condities, bijvoorbeeld in Amsterdam. Vervolgens is er een proeffabriek gebouwd in Duitsland. Bij deze opschaling was er sprake van heel veel kinderziektes. In Maleisië is vervolgens de eerste commercial scale fabriek gebouwd. Die heeft gekampt met kinderziektes. Deze fabriek is nog steeds niets in vergelijking met de raffinaderij in Pernis. De fabriek die nu in Qatar gebouwd wordt begint erop te lijken. Maar ook hierbij worden aanloopproblemen / uitdagingen verwacht. Datzelfde zal je ook zien bij Choren / Iogen. Op dit moment werken ze slechts met één grondstof. Één product is relatief simpel. Bij gebruik van nieuwe grondstoffen zullen nieuwe problemen ontstaan, die nieuwe aanpassingen vereisen. Bijvoorbeeld de raffinaderij in Pernis, dit is een zeer complexe installatie, die zo’n beetje alle ruwe olie in kan nemen om er uiteindelijk een homogeen product uit te laten rollen. Het wordt vaak over het hoofd gezien, maar er bestaan grote verschillen tussen ruwe olie. De raffinaderij moet alles kunnen verwerken. Deze kant zal het ook opgaan voor de biobeweging. Verschillende grondstoffen met verschillende karakteristieken zullen benut gaan worden. Je wilt flexibel zijn. Mede met het oog op de markt voor bio-grondstoffen die op komst is. Waar zullen de benodigde grondstoffen vandaan gaan komen? Dat zal sterk afhangen van de doelstellingen. Bij hoge biobrandstofdoelstellingen zullen de grondstoffen van buiten de EU komen, met name uit de tropische zone vanwege de hogere opbrengst. Het hangt ook af van de benutting van reststromen in de EU. Er zijn grote reststromen in de EU beschikbaar. Helemaal als je ook biogas meeneemt. De overheid verplicht tot bijmengen. Er is momenteel een groot aanbod van goedkope ethanol uit Brazilië. Verzwakt dat de stimulans om zelf te produceren of zet het aan tot verstevigen van de positie van lokale producenten? Wellicht dat de doelstellingen voor bijmenging worden afgezwakt. Tegelijkertijd levert Brazilië veel en kan ze ook nog veel leveren, tot bijvoorbeeld 2020. Dan levert Brazilië de biobrandstoffen voor Europa en staat Shell aan de zijlijn. Nee, dat zou je anders moeten zien. Deze markten zijn mondiale markten. Braziliaanse ethanol komt ergens terecht, al dan niet in EU, dan wel in de VS of in China. Je moet kijken naar het totale plaatje. Neem bijvoorbeeld Duitse biodiesel, productie ervan is kleinschalig en komt de landsgrens überhaupt niet over. Dat zie je ook met voedsel, 80 – 90 % komt niet over de landsgrens heen. Rijst gaat bijvoorbeeld nauwelijks over de landsgrens heen. Zodoende kan een kleine stijging in vraag een grote prijsstijging tot gevolg hebben. Voor biobrandstoffen geldt dat er grote partijen zijn die een plek in de wereldmarkt hebben. Biobrandstoffen zijn makkelijk te verschepen. Als Nederland kun je twee dingen doen. Je kunt zeggen, er is voldoende ethanol op de markt beschikbaar, uit Brazilië, dus we importeren wel. Of je kunt je richten op het ontwikkelen van eigen technologie en productiecapaciteit. We hebben in Nederland geen suikerriet, dus hebben we geavanceerde technologie nodig. Bijvoorbeeld technologie gebaseerd op reststromen, zoals Nedalco doet. En uiteindelijk zal bijeen stijgende vraag ook ethanol uit Brazilië in prijs stijgen. Maar ze bepalen nu wel de bovengrens voor ethanol en maken het de producenten in de EU erg lastig. Er zijn verschillen tussen de landen in de EU, onder andere door verschillen in import tarieven. Een ander punt is het verschillend mee laten tellen in het bijmengen van verschillende biobrandstoffen. Er gaat veel overheidsgeld in zitten. Daarbij speelt leveringszekerheid ook mee.
Gijs van der Meer - Thesis
141
Speelt dat mee voor de keuze van Shell voor XtL; het is een robuust proces en erg flexibel qua grondstoffen. Er is nog voldoende voorraad van kolen en gas, dus welke rol speelt biomassa? Kolen en gas blijven fossiele bronnen. Daarmee houd je het klimaatvraagstuk. (Afgezien van het afvangen van CO2) Bij een elektriciteitscentrale is CO2 afvang mogelijk. Maar voor auto’s geldt dat niet. Fossiele brandstoffen houden CO2 uitstoot en dat geeft BtL zijn bijzondere positie, ten opzichte van CtL & GtL. De EU heeft doelstellingen voor het jaar 2020, Nederland zelf ook wat betreft inzet van duurzame energie en CO2 reductie. CO2 reductie behaal je niet met CtL. GtL zou voor 5%, tot heel misschien 10% CO2 reductie kunnen zorgen. Met BtL daarentegen haal je 80 – 90% CO2 reductie. Dat zet zoden aan de dijk en is een belangrijker drijvende kracht achter BtL. Uiteindelijk gaat het Shell om milieuverantwoord en economisch verantwoord ondernemen. Als je producten duurder zijn dan die van de concurrent, dan gaat de klant naar de concurrent. Je onderneming moet ook op een sociale manier verantwoord zijn, sociaal geaccepteerd; de People, Planet, Profit benadering. En dat gaat ook op voor biobrandstoffen. Als ze sociaal niet geaccepteerd worden of te duur zijn, dan valt het in elkaar. Ligt dan de bal bij de overheid? Aan de ene kant verplichten zij tot bijmenging, aan de andere kant krijgen zij ook de consequenties, maatschappelijke onrust en kritiek op gestegen prijzen. De overheid heeft geluk gehad: vanwege de gestegen olieprijs is de benzineprijs ook gestegen. Relatief is het aandeel van biobrandstoffen in de prijs zodoende omlaag gegaan. 10 jaar geleden toen de olieprijs op 10 dollar per vat zat, kon je niet aankomen met het bijmengen van biobrandstoffen. Nu is het effect van bijmenging op de prijs aan de pomp nauwelijks te merken, het is een paar cent. Daarnaast heb je ook de stijging van de BTW en accijnsverhoging. Dan valt de stijging ten gevolge van biobrandstoffen weg. Maar 100% biodiesel is nog altijd niet concurrerend te verkopen. Als biobrandstoffen wel goedkoper zouden zijn, zou Shell dan geïnteresseerd zijn? In dat geval moet je alsnog rekening houden met het wagenpark. Neem bijvoorbeeld de slechtste biodiesel: oude auto’s rijden erop, maar nieuwe gaan ervan kapot. Voor ethanol geldt het omgekeerde. Met nieuwe auto’s (helemaal flexifuel) gaat dat prima, terwijl oude auto’s ploffen. Kansen voor Nederland? Ja, ik denk dat die er zijn. Maar misschien moeten we niet de ambitie hebben om grote hoeveelheden ruw materiaal te importeren. Nederland moet het hebben van haar eigen reststromen. We moeten kijken of we daar wat mee kunnen doen. Verwerking via FT of biochemische weg is interessant als je grote hoeveelheden suikers of cellulose hebt. We moeten geen stro uit Canada gaan importeren. Specifieke installaties als Iogen / Choren kan je dicht bij de grondstof neerzetten. Misschien dat we er in Nederland een stel kolencentrales bij krijgen, inclusief een grote kolenstroom. Dan zou je ook kunnen kijken naar CtL met BtL bijstook. (Zoals ook in Buggenum gebeurt) Hoe wordt er tegen Shell aangekeken, met het oog op ontwikkeling van biobrandstoffen? Er wordt niet negatief tegen Shell aangekeken. Shell is relatief groen en innovatief. BP bijvoorbeeld ook, in tegenstelling tot bijvoorbeeld ESSO, Texaco en Total. Shell krijgt niet zozeer de vraag waarom er zo weinig gebeurt, maar eerder waarom het zo lang duurt. Dat komt voort uit het lange ontwikkeltraject dat een technologie nodig heeft om volwassen te worden. Zoals dat er ook is geweest voor GtL. Op dit moment wordt een grote commerciële fabriek gebouwd, maar de ontwikkeling is in gang gezet na de oliecrisis in 1973. Zo kan het ook nog wel 10 jaar duren voordat Choren grootschalig commercieel kan gaan draaien.
Gijs van der Meer - Thesis
142
4. Den Uil (Herman) – ECN Gesprek met dhr. Herman den Uil – ECN ten behoeve van het afstudeeronderzoek van Gijs van der Meer Datum: 17 juli 2008 Locatie: telefonisch Goedkeuring op 1 september voor gebruik van elementen uit het gesprek op anonieme basis. Geen toestemming om het verslag integraal in mijn rapport op te nemen. Dhr. Herman den Uil is groepsleider van de groep transportbrandstoffen en Chemicaliën bij de afdeling Biomassa, Kolen en Milieuonderzoek van ECN. Zijn groep participeert en heeft geparticipeerd in een groot aantal projecten op het gebied van de conversie van biomassa in e 2 generatie biotransportbrandstoffen. ECN heeft o.a. EET project “Coproductie van hernieuwbare transportbrandstoffen, groene chemicaliën, elektriciteit en warmte uit biomassa reststromen: gecoördineerd.. ECN is al een jaar of 15 bezig met onderzoek naar de verwerking van biomassa. In eerste instantie ging de aandacht voornamelijk uit naar gecombineerd opwekken van warmte en elektriciteit (WKK). Sinds een jaar of 10 wordt ook de productie van vloeibare brandstoffen uit biomassa onderzocht. e
In 1 instantie heeft ECN zich gericht op de beoordeling van het gehele systeem – geïntegreerde systemen - zoals het modeleren en oplossen van problemen op systeemniveau. Met o.a. deze expertise heeft ECN ook deelgenomen aan het EET project Co-productie. Daarnaast heeft ECN zich in EET project gericht op de verwerking van het residu van biochemische conversie van biomassa in een WKK. De expertise van ECN zit in thermo-chemische verwerking van biomassa, niet in biochemische verwerking. Op het gebied van de thermische conversie heeft ECN onderzoek gedaan naar de thermische verwerking van het residu van ethanol productie. Inmiddels heeft ECN dit uitgebreid met onderzoek naar de thermische voorbehandeling van lignocellulose die nodig is om biochemische conversie mogelijk te maken. Dit is een kritische stap in het proces e van biomassa naar ethanol. Andere kritische processtappen voor de productie van 2 generatie ethanol zijn: de hydrolyse met behulp van enzymen en de fermentatie van C5 en C6 suikers. Het fermenteren van C6 suikers gebeurt momenteel op commerciële schaal. Fermentatie van C5 suikers wordt op dit moment nog niet op commerciële schaal toegepast. Nedalco en TU Delft werken eraan, maar het is nog niet commercieel. Zijn er vervolgproject gekomen uit het EET project? Ja, een project omtrent het omzetten suikerbietenpulp in ethanol. Daarnaast is ECN naar aanleiding van het EET project gestart met het ontwikkelen van een proces voor de thermische voorbehandeling van biomassa. Binnen het internationale onderzoeksveld is de algemene strategie die wordt gevolgd; het stap voor stap gebruiken van ‘lastigere’ grondstoffen. Is er ook een rol voor de chemische industrie, wat betreft ontwikkeling van de ontsluiting van lignocellulose biomassa? Bijvoorbeeld ten behoeve van groene grondstoffen? Ja, technieken die binnen de ethanol route ontwikkeld worden voor suikerproductie kunnen ook worden ingezet in de productie van chemicaliën uit biomassa. Wat dat aangaat hebben de spelers in het brandstoffenveld het makkelijker gezien de EU richtlijn biobrandstoffen. Dit is ook een grote drijvende kracht achter de ontwikkeling van cellulose ethanol. Vooral voor de korte termijn. Voor de langere termijn houdt de industrie ook rekening met het opraken van aardolie, of een stijging van de olieprijs. Een andere drijvende kracht is de uitstoot van broeikasgassen bij het gebruik van fossiele grondstoffen. Gebruik van biomassa kan die uitstoot beperken. Een derde drijvende kracht vormen – interne – doelstellingen van bedrijven om duurzamer te opereren. Dit motiveert om te onderzoeken en te oriënteren.
Gijs van der Meer - Thesis
143
Bijvoorbeeld Shell en Iogen. Shell heeft kennis van het FT proces, maar niet van cellulose ethanol. Deze kennis kan ze bemachtigen door deel te nemen in een onderneming als Iogen. Is het niet al even stil rond Iogen? Geen idee. Maar er gebeurt meer dan Iogen. Bijvoorbeeld DuPont, BP, Nesté oil. Er is een duidelijke toename in interesse merkbaar. Is er een rol weggelegd voor het MKB in de ontwikkeling van cellulose ethanol? Bijvoorbeeld vanuit bedrijven die een reststroom beschikbaar hebben? Zijn er nog andere noemenswaardige ontwikkelingen op kleinere schaal? Of zijn het vooral de grotere spelers? Het MKB probeert het wel. Maar de ontwikkeling is kapitaalintensief, dus lastig. En je hebt afzetkanalen nodig. Hierdoor zal het niet eenvoudig zijn voor het MKB. Zowel voor FT biodiesel als voor cellulose ethanol is schaalgrootte van belang. Een ander punt is, wat is MKB? Neem bijvoorbeeld Nedalco; relatief grote productie, met weinig personeel. Waarschijnlijk moet de grootte niet veel kleiner worden dan Nedalco. Je hebt toch een grote partij nodig. Alhoewel anderen daar anders over denken. De petrochemische industrie heeft de middelen en de infrastructuur en zou die aan kunnen wenden om de ontwikkeling van tweede generatie biobrandstoffen te versnellen? Of denkt u dat die niet zo’n haast hebben gezien de gevestigde belangen in de fossiele brandstoffen? Dat proefde ik een beetje bij Shell. Daar kan ik uit eigen ervaring eigenlijk niet zoveel over zeggen. De petrochemische industrie participeert wel in de ontwikkeling van biobrandstoffen. Dat is een duidelijk signaal. Wat zijn positieve of negatieve omgevingsfactoren betreffende biobrandstoffen? Een duidelijk positieve factor is de EU richtlijn biobrandstoffen. Een negatieve factor is de weerstand tav biobrandstoffen wat betreft het food vs. Fuel vraagstuk. De geluiden hieromtrent wisselen sterk, maar de discussie kan het draagvlak voor biobrandstoffen in het algemeen doen afnemen. Een andere negatieve factor is de onduidelijkheid over de reductie van broeikasgassen door gebruik te maken van – eerste generatie - biobrandstoffen. Dit zie je ook in Duitsland, waar e de overheidssteun voor 1 generatie biobrandstoffen wordt afgebouwd als gevolg van e onduidelijkheid over de milieueffecten. Dit heeft grote gevolgen voor de Duitse - 1 generatie biodiesel industrie. Hierdoor neemt vervolgens het vertrouwen van de industrie in de overheid af. Zouden beide negatieve factoren niet ook juist een stimulans kunnen zijn voor tweede generatie biobrandstoffen? Dat zou kunnen. Maar tegelijkertijd kan het ook een daling van het vertrouwen in de overheid tot gevolg hebben en resulteren in een onzekere markt. In dat geval zal de industrie minder snel geneigd zijn om te investeren. De industrie kijkt wel vooruit, maar niet heel ver. e
Welke obstakels moeten nog overwonnen worden voordat 2 generatie ethanol op de markt kan worden gebracht? Op dit moment is het belangrijkste obstakel de technologie. En dan in het bijzonder toepassing op grote schaal. Iogen heeft een pilot plant in bedrijf, dit is nog geen commerciële schaal. In het algemeen, cellulose ethanol vergt een forse investering, waardoor het lastig is om te concurreren (met bijvoorbeeld ethanol uit Brazilië, die op dit moment de maximum prijs bepalen en nog exportcapaciteit over hebben). Hierdoor is het een lastige markt. De eerste fabriek op basis van een nieuwe technologie is altijd duur. Dit is ook een obstakel en een knelpunt in de commercialisering van cellulose ethanol. Als er vervolgens ervaring wordt opgedaan gaan de kosten omlaag. Zijn er kansen voor Nederland in productie of ontwikkeling als gekeken wordt naar cellulose ethanol? Jazeker, er zijn duidelijk kansen voor Nederland. Zowel op het gebied van ontwikkeling, als e op het gebied van productie van 2 generatie ethanol. Bijvoorbeeld de (onderzoeks-) activiteiten van Nedalco en TU Delft op dat gebied. Ook is er kennis in voorbehandelingsmethoden. Als de technologie er is heeft Nederland dezelfde kansen voor 2G biobrandstoffen als voor de eerste generatie (Waarvan ook productiecapaciteit is, en
Gijs van der Meer - Thesis
144
wordt gebouwd – in Rotterdam). Kijk bijvoorbeeld naar de voedselverwerking in Nederland. Deze is vele malen groter dan het binnenlands gebruik. Dit geld voor meer zaken zoals een zeer grote zetmeelfabriek van Cargill. Nederland kent een hoge doorzet van agrarische producten. Dit is ondermeer te danken aan de gunstige ligging en de havens. Alhoewel er nu ook grote hoeveelheden agrarisch materiaal worden verscheept naar Nederland, gaan er binnen de biobrandstofwereld ook geluiden op om dat voor biobrandstoffen niet te doen. Dat wellicht decentraal verwerken of voorbewerken en het eindof tussenproduct verschepen gunstiger is. Dat klopt. Voor FT biodiesel is voorbewerking goed mogelijk, voor cellulose ethanol wordt dat lastiger. Er is in mijn opinie niet één te prefereren route, beide routes staan op dit moment open en kunnen ook open / naast elkaar blijven bestaan. Ik merk dat het nog niet uitgekristalliseerd is, zowel in technisch opzicht als in de uitvoering / organisatie en ook de EU doelstellingen staan nog steeds ter discussie. Er is geen eenduidige weg, het kan verschillende kanten op gaan. Neem bijvoorbeeld aardolie. Dat wordt gezien als homogene grondstof, maar dat is het niet. Zo verschillen ook de processen waarmee aardolie verwerkt wordt. Biomassa verschilt ook als grondstof en ook in de producten die ermee geproduceerd kunnen worden. En er zijn verschillende bedrijfsstrategieën die invloed hebben op centrale, dan wel decentrale productie en de overweging om ergens een miljoeneninvestering te doen. Politieke/economische overwegingen ((On-)gunstige vestigingsvoorwaarden / politieke (on-) stabiliteit) spelen hierbij ook een rol, evenals reeds aanwezige infrastructuur. Voor het doen van een grote investering is er ook de overweging om wel of niet dicht bij de biomassa te gaan zitten dat je dan wellicht aan die bron vast zit. Dus in hoeverre ben je nog flexibel als je dicht bij een bron gaat zitten. Wat als de markt veranderd en je je grondstof zou willen wijzigen. Het is een kwestie van risico spreiding. Hebben de enzymatische routes om ethanol te produceren perspectief, gezien de langdurig hoge prijs voor enzymen? Kan je zeggen dat je aan de veilige kant zit als je de enzymen weet te vermijden en kiest voor een zure route? Beide routes hebben perspectief en beide hebben hun voor en nadelen. De enzymatische route heeft als voordeel dat het een schoon product oplevert, zonder remmende bijproducten. Bij de zure route speelt naast de remmende bijproducten, de milieubelasting een grote rol. Het gebruik van zuur levert afval op, wat kosten met zich meebrengt, maar ook de noodzaak om er op een nette manier vanaf te komen. Dat hebben ze bij TNO schijnbaar al wel aardig onder de knie. Hier zijn publicaties over naar buiten gebracht. TNO en haar partners zoeken naar samenwerking met commerciële partij. O ja? Kunt u ten slotte nog iets zeggen over de perspectieven van een biobased economy? Als we richting een biobased economy gaan, is er dan nog wel ruimte voor bioethanol als transportbrandstof? Zal de toegenomen vraag naar biomassa de toepassing niet verdrukken ten gunste van producten met een hogere toegevoegde waarde? Ik verwacht dat de verhouding tussen chemische producten en toepassing als brandstof zal blijven bestaan, zoals deze in feite nu ook is. Slechts een klein deel van de fossiele olie wordt gebruikt voor chemische toepassingen en het merendeel voor transport. Het ziet er niet naar uit dat het gebruik door de transportsector af zal nemen. Het zal ook een kwestie van vraag en aanbod zijn.
Gijs van der Meer - Thesis
145
5. Nijman (Henk) - N2 Energie Gesprek met dhr. Henk Nijman – N2 Energie BV. ten behoeve van het afstudeeronderzoek van Gijs van der Meer Datum: 3 juli 2008 Locatie: Amersfoort Dhr Henk Nijman is CEO Bieleveld Bio Energie B.V. N2 Energie B.V. is een dochter van Bieleveld Bio Energie Holding B.V. en Nieko Beheer B.V. De Gravity Pressure Vessel (GPV) vormt de basis van de installatie die N2 Energie ontwikkelt. De GPV is een reactor die gebruikt wordt voor het omzetten van cellulosehoudende biomassa naar suikers. Deze suikers worden vervolgens vergist tot ethanol. De installatie wordt gevoed met cellulosehoudend (biologisch) afval en verbruikt CO2. Daarom zou je het een installatie van de derde generatie kunnen noemen. Een patent dat ongeveer 5 jaar oud is, vormt de basis van de ontwikkeling waarbij de GPV wordt ingezet als reactor voor hydrolyse van cellulosehoudende biomassa. Als de installatie werkt, dan is het een primeur op wereldschaal. De ontwikkeling van de technologie van N2 Energie verloopt volgens 3 fasen: 1. “Jar test” (Experiment op lab schaal ter bewijs dat het concept werkt) 2. Demonstratieproject. 3. Commerciële fabriek in Hardenberg voor de productie van zo’n 35 – 40 miljoen liter ethanol. Op dit moment is de lab test bijna afgerond. Dit is een simulatie van het hydrolyseproces op lab schaal. De omstandigheden van de GPV worden nagebootst. De productie van suikerwater uit cellulosehoudend materiaal is hiermee al succesvol bewezen. De lab test wordt uitgevoerd door de uitvinder van het proces / de reactor. De kosten van deze test liggen rond de 1,5 miljoen euro en zijn met eigen middelen betaald. In augustus moet deze test zijn afgerond. Nu is N2 Energie bezig met de financiering van een demonstratieproject, waar 10 miljoen euro voor benodigd is. De locatie is beschikbaar en de vergunningen zijn aangevraagd. De put kan geslagen worden voor het aanleggen van de GPV. Dat kan nog dit jaar gebeuren. Deze stap is een essentiële stap in het ontwikkelingstraject. De aansluitende stappen in het productieproces naar ethanol zijn bekend, deze worden gevormd door bestaande technologie. Het demonstratieproject moet in februari 2009 draaien. De volgende stap is een fabriek op commerciële schaal, te bouwen in Hardenberg, voor de productie van 33 - 40 miljoen liter ethanol per jaar bij 200.000 ton/jr grondstof. Eind 2010 zou die moeten staan. De crux is de GPV. Als die aantoonbaar werkt dan is het project geslaagd en zullen meerdere partijen geïnteresseerd zijn. Maar op dit moment is het nog geen bewezen techniek en zit de ontwikkeling tussen labschaal en demonstratieschaal in. Het is een lastige fase binnen het project. Het is niet de vraag óf de GPV werkt, maar in welke mate. Als niet gelijk het gewenste resultaat behaald wordt, kan de GPV aangepast worden tot het gewenste resultaat wel behaald wordt. De technologie is eerder toegepast in een installatie van Vartech in Apeldoorn. In dat geval werd de GPV gebruikt voor een ander proces; oxidatie. Hierbij werd alleen zuurstof toegevoerd. In fysieke zin is de installatie ongeveer hetzelfde als de installatie van Vartech in Apeldoorn. De installatie zoals N2 Energie hem ontwikkelt heeft als groot voordeel dat hij als voorbewerkingstap voor bestaande ethanol installaties gebruikt zou kunnen worden. Deze
Gijs van der Meer - Thesis
146
installaties, die als grondstof bijvoorbeeld maïs of graan gebruiken, kunnen slechts een deel van de grondstof benutten, namelijk de suikers of het zetmeel en daarnaast is de grondstof duur. De vezels worden niet benut, waardoor het rendement laag ligt. Met de installatie van N2 Energie is dat wel mogelijk. Dit vormt een duidelijke meerwaarde en een uitdaging om gerealiseerd te krijgen. 1G Ethanol productie gebeurt wereldwijd op grote schaal en vormt dus een kans voor uitbreiding naar 2G. Drijvende kracht en achtergrond N2 Energie BV. Hoe is N2 Energie ontstaan? Is het een vervolg op de activiteiten van Vartech? Nee, het is geen vervolg op de activiteiten van Vartech. Het nieuwe patent van ongeveer 5 jaar oud is toegespitst op het vrijmaken van suikers uit cellulose; hydrolyse. Deze doorontwikkeling is uitgevoerd door de uitvinder zelf. Genesyst is een Amerikaans bedrijf dat de technologie van de GPV vermarkt. Dhr. Niezen zit in de directie van Genesyst en besloot samen met Henk Nijman samen het concept van hydrolyse mbv. Een GPV verder te ontwikkelen. Daar is een financiële man bij betrokken en samen wordt gezocht naar financiële middelen. De eerste focus ligt op de 10 miljoen euro voor het demonstratieproject. Bij een succesvol verloop van de demonstratie zal de fabriek ook te financieren zijn. Wat zijn de reacties? De reacties zijn goed, maar komt veelal uit bij de vraag om te laten zien of het werkt. Dit gebeurt ook met het oog op de benodigde 10 miljoen voor het demonstratieproject. Dat is een forse investering en deze is lastig te verkrijgen. Als het niet werk is 10 miljoen weg, dat is een risico. Het zal wel lukken, maar is niet makkelijk. Het is een spannend avontuur in een markt die enorm in ontwikkeling is. N2 is een van de drie bedrijven die subsidie heeft gekregen uit het CO2 reductie fonds. Er was een toezegging voor 1,2 miljoen, maar uiteindelijk krijgt N2 Energie slechts 2 ton. Het merendeel gaat naar Nedalco. En dat terwijl Nedalco niet bouwt of gaat bouwen. In dat opzicht houdt Nedalco de subsidie voor N2 Energie tegen. N2 Energie is verder, maar Nedalco krijgt de subsidie. Kleine initiatieven krijgen te weinig aandacht. Eerder zijn 3 subsidieaanvragen afgewezen vanwege de grootte van het bedrijf. Het argument is dat een klein bedrijf zo’n project niet kan trekken. Maar dat is onzin. En wat betreft samenwerking? Kijken jullie vooral naar financiers of ook naar grondstofleveranciers of afnemers van ethanol? N2 Energie is in gesprek met verschillende partijen, maar bestaande 1G producenten zijn nog niet benaderd, ook niet met het oog op samen doorontwikkelen van de technologie. In hoeverre komt het proces overeen met wat er in Zweden toe wordt gepast; dilute acid? Dilute acid is een zuur proces voor hydrolyse, waarbij geen gebruik wordt gemaakt van enzymen. Dit in tegenstelling tot Nedalco. De technologie van N2 Energie is lastiger, maar vermijdt het gebruik van enzymen. Enzymtechnologie is technisch gezien eenvoudiger. Enzymen zijn duur, maar GPV technologie is ook niet goedkoop en is gecompliceerd. In Zweden kampen ze momenteel met remmende bijproducten. Zou N2 Energie hier ook tegenaan kunnen lopen? Er is nog geen ervaring met het verloop van het proces. Het suikerwater dat uit de labtest wordt verkregen zal eerst worden geanalyseerd waarbij gekeken wordt naar de suikeropbrengst. Dan volgt de stap van omzetting naar ethanol. Die stap moet nog genomen worden en is onderdeel van de labtest. De installatie in Apeldoorn is stil komen te liggen vanwege technische mankementen. Hoe kijken jullie daar tegenaan? De GPV is inderdaad de crux, het zou mis kunnen gaan, maar dat is ook de uitdaging en die is te overzien. Belangrijker is nu om de financiering rond te krijgen. De vraag naar ethanol is er en zet door. De kansen liggen er, maar de techniek moet nog bewezen worden.
Gijs van der Meer - Thesis
147
In een presentatie van jullie staat dat een breed scala aan grondstoffen te gebruiken is. Hebben jullie bepaalde grondstoffen op het oog? Nee, er is inderdaad een breed scala aan grondstoffen geschikt. Er zijn geen specifieke leveranciers op het oog. N2 Energie is wel met partijen hierover in gesprek en tekent intenties over levering van grondstoffen. Het netwerk is aan het groeien. Wat is de drijvende kracht achter N2 Energie? De steun voor 1G biobrandstoffen neemt af en er is zelfs een tegenbeweging gaande. Vandaar dat wij kijken naar energiewinning uit afval. Dit is lastiger, maar wel mooier. De insteek is geweest; de productie van brandstof uit afval. Vervolgens is gekeken naar op welke manieren dat zou kunnen, de techniek moet kloppen. Beide zijn van belang, afval verwerken en energie opwekken. De olieprijs gaat omhoog en dat vergroot de kansen voor alternatieven. 10 jaar geleden zag het plaatje er anders uit en was N2 Energie wellicht niet van de grond gekomen. Maar nu is de energietransitie in gang gezet, dit is de eeuw van de energietransitie. En wat betreft cascading, waarbij niet alleen naar brandstof wordt gekeken, maar naar benutting van biomassa in bredere zin? Dat is niet de insteek geweest. Er is gekeken naar de verwerking van afval en de productie van energie. Er zullen verschillende - energie – eindproducten mogelijk zijn. Is er een markt voor kleine ondernemers? Voor een installatie op basis van een GPV is een groot bedrijf nodig, dat is iets voor grote ondernemers. Toch blijft de filosofie om de exploitatie decentraal te houden, in een bepaald gebied. Daar waar de grondstof is, waar een reststroom is, daar kan gebouwd worden. Toch hoor je ook geluiden die zeggen dat we in Nederland veel kennis hebben van logistiek en in Rotterdam hebben we schitterende faciliteiten. Zou dan centrale productie niet ook een optie zijn, waarbij grondstoffen naar Rotterdam worden verscheept? Nee, beter van niet. Onze filosofie is om grondstoffen en de producten lokaal te benutten. Dus niet verschepen, maar lokaal produceren. Je ziet het nu ook met ethanol uit Brazilië, maar dat is ongewenst. Je moet het niet te groot maken om zo logistieke problemen te voorkomen. Hoe is het als kleine speler tussen grote spelers? Zijn er bepaalde voor / nadelen? Het budget is het probleem. Het is lastiger om geld te verkrijgen. Worden jullie weggedrukt door de Nedalco’s? Nee, op dit moment is N2 Energie nog te klein en vormen we nog geen bedreiging. Het kan naast elkaar bestaan. Is er belangstelling voor jullie activiteiten uit de brandstofhoek? Er zijn nog geen echte reacties gekomen vanuit die sector. Die vinden het pas interessant als de demo fabriek staat en draait. Maar nu dus nog niet. Ze vormen om die reden nu ook nog geen interessante partners voor samenwerking. Zou het kunnen dat N2 Energie straks redelijk onverwacht de ethanolmarkt op komt? De ethanol markt is ontzettend groot, er is veel brandstof nodig. Er is dus ook een rol weggelegd voor meerdere spelers. N2 Energie zou daar in deel willen nemen. Er zullen verschillende systemen komen, N2 Energie is daar een van. De start zal sowieso klein zijn en vanaf daar kijken we verder. Als de technologie verder is dan kunnen we verder kijken. Het uitgangspunt is natuurlijk wel concurrerende productie van ethanol. Wat zijn uw ideeën over enzymatische routes voor ethanol productie? Dat is een van de mogelijkheden. Verschillende routes kunnen naast elkaar bestaan, zowel wat betreft energiedragers als grondstoffen. Dit is de eeuw van de transitie, straks zal er geen olie meer zijn. Dat is enorm interessant. Het gaat niet snel, maar het gebeurt wel. Neem
Gijs van der Meer - Thesis
148
bijvoorbeeld Shell, zij zullen helemaal om moeten, van 100% olie, naar 0% olie. Dat is een geweldige verandering. Maar we moeten bescheiden blijven met het oog op de resultaten. Het is nog geen gespeeld spel, maar de ontwikkeling van N2 Energie heeft wel potentie en het idee is fantastisch. Wellicht zal er een kleine of grotere rol zijn voor N2 Energie, waarmee N2 Energie bijdraagt aan de energietransitie!
Gijs van der Meer - Thesis
149
6. Rosendaal (Bart) - Rosendaal Energy Gesprek met Bart Rosendaal – Rosendaal Energy BV. Datum: 21 augustus 2008 Locatie: Rosendaal Energy BV. te Sluiskil Bart Rosendaal is de oprichter van Rosendaal Energy BV. In het bedrijf is hij werkzaam als commercial director en leidt hij het onderzoeksprogramma. In mei 2007 is gestart met de bouw van de biodieselfabriek in Sluiskil. Deze fabriek zal begin september in bedrijf genomen worden en in november volledig in bedrijf moeten zijn. Wat drijft Rosendaal Energy? Bart Rosendaal heeft een geschiedenis in de petrochemie. De primaire drijfveer van Rosendaal Energy is de toekomstige schaarste aan olie en gas. Alhoewel het milieu een goede drijfveer geweest zou zijn, is dat het niet geweest. De focus ligt op de beschikbaarheid van olie en gas en dan vooral op een alternatief dat snel beschikbaar is; biobrandstoffen. Het idee voor de biodieselfabriek is in 2004 ontstaan. Sindsdien is de olieprijs alleen maar opgelopen en is er steeds meer aandacht gekomen voor alternatieven voor olie. De verwachtingen over wanneer tekorten in de winning zouden ontstaan schoven steeds verder naar het heden. Wat je bij een stijgende energieprijzen ziet is dat energiebronnen als politiek middel ingezet worden. Het mercantilisme komt weer terug. Energie als strategisch middel. Voor de EU geldt dat de eigen olie en gasbronnen op raken. Hiermee wordt de afhankelijkheid van import groter. Waarschijnlijk is leveringszekerheid dan ook de reden dat Brussel blijft investeren in biobrandstoffen. Maar een alternatief voor olie heeft makkelijk 10, 20, 30 jaar ontwikkeling nodig. Een ander probleem is dat er enorme hoeveelheden benodigd zijn van een alternatief voor olie en gas. Dus om een verschil te maken is een enorme inzet nodig. Er moet grof geïnvesteerd worden, er is veel geld nodig. En daar komt bij dat realisatie niet van de ene op de andere dag mogelijk is, je hebt ook te maken met beschikbaarheid van personeel, grondstoffen ed. Zodoende is het hoe dan ook een proces van tientallen jaren. Het voordeel van biobrandstoffen is, ze bestaan al. De technologie is bekend en beproefd, het is milieuvriendelijk, het past in bestaande motoren (erg belangrijk) en de huidige infrastructuur (ook erg belangrijk). Het feit dat het bestaande technologie is, maakt het makkelijker te financieren. Dat is sinds de creditcrisis nog belangrijker geworden. Geavanceerde technologie is lastiger te financieren. Je kunt minder lenen en tegen minder gunstige voorwaarden. Hierdoor zijn de drempels om te investeren hoger geworden. Dit is een nadeel voor hernieuwbare energie en heeft een remmende werking op de markt. De fossiele markt heeft hier minder last van, gezien hun riante cash positie. Maar deze positie heeft biobrandstof nog niet, dus moet ze een beroep doen op investeerders, banken en durfkapitalisten. Dus 1G technologie omdat deze beschikbaar is. Rosendaal Energy is een nieuw bedrijf, gestart op het juiste moment. Er was destijds een grote golf – zoektocht naar alternatieve energiebronnen – er zijn financiers bij elkaar gezocht en het is gelukt. Deze golf is erg belangrijk. Het milieu is niet de primaire drijfveer geweest, dat is de voorziene schaarste op de olie en gasmarkt, maar je hebt het argument van het milieu wel nodig. Dat is waar de overheid beleidsmaatregelen op richt. Want biobrandstoffen – het alternatief voor fossiele olie – is nog altijd duurder. Dus stimuleert de overheid ze en dat is wel nodig. Want alhoewel de maatschappij wel zegt te willen betalen voor duurzame producten als biologisch vlees of biobrandstoffen, in de praktijk kiezen ze voor het de goedkoopste optie. Dat ziet de overheid ook en erkent dat daarmee geen ontwikkeling plaatsvindt. Dan komt er in de toekomst een probleem, wat ze wil voorkomen. Rosendaal Energy wil duurzame biodiesel produceren, maar ook geld verdienen, want anders heb je als onderneming geen bestaansrecht. Je zult beide moeten combineren. Ga je voor de meest duurzame optie, dan levert dat niets op. De markt wil goedkope biodiesel, de overheid
Gijs van der Meer - Thesis
150
wil de meest duurzame biodiesel. Daar moet je tussen gaan zitten. Zo kijkt Rosendaal Energy ook naar 1G en 2G. 1G om geld te verdienen en dat vervolgens te investeren in 2G. Dat is een geleidelijk proces, een langzame route. Het is een erg moeilijke markt. Veel moeilijker dan van tevoren ingeschat. Ziet Rosendaal Energy de productie van 1G ook als leerproces, bijvoorbeeld over kwaliteitseisen? Nee, de markt voor biodiesel is groot genoeg. Kijk je naar FAME (biodiesel), dat is duidelijk een ander product dan fossiele diesel, maar je kunt er goed op rijden. Dat de automotive industrie geen biodiesel wil is te verklaren. Vanuit EU richtlijnen moeten zij voldoen aan eisen betreffende CO2 uitstoot. Dat doen ze door middel van uitgekiende motoren, uitgekiende motorafstelling en een uitgekiende brandstof. Vervolgens komt de overheid met biobrandstoffen. Een motor kan niet aan beide eisen voldoen. Dat maakt het lastig voor de automotive industrie, vandaar dat zij FT biodiesel omarmt, dat is wel heel compatibel met motoren. Het hangt dus af van de belangen. De automotive industrie moet voldoen aan de CO2 richtlijnen. Het heeft er niet mee te maken of biodiesel wel of niet goed is, maar qua karakteristieken ligt het te ver van fossiele diesel af. En het wordt een probleem als je gaat mengen. Hoe kijkt u aan tegen 2G biobrandstoffen - uit lignocellulose biomassa, bijvoorbeeld FT biodiesel Ik ben niet zo’n voorstander van FT biodiesel. Ten eerste zijn er enorme fabrieken benodigd en dus enorme investeringen. Daarnaast vergt het productieproces veel energie. Als je er dan vanuit gaat dat energiekosten zullen stijgen kom je op heel hoge productiekosten. Kwalitatief ligt het product wel dichter tegen fossiele diesel, maar wellicht is het over tien jaar niet meer te betalen gezien de hoge energiekosten. World Energy outlook onderkent dat ook. 1G Biodiesel blijft in de toekomst goedkoper dan 2G / FT biodiesel! En dat ondanks stijgende grondstofkosten voor 1G. Uiteindelijk kiest de markt en die moet wel voor het product willen betalen. Het is dus een duur product. Ten tweede, 2G biomassa afval komt evengoed van het land. Er is dus ook landbouwgrond benodigd. En het werkt op grote schaal wat logistieke problemen op kan leveren, zoals kosten voor transport en kosten voor opslag. Gelijk verwerken kan niet gezien de schaal, maar het materiaal breekt langzaam af. Je zult dus moeten conditioneren of verpakken. Dit zorgt voor extra kosten. Ten derde, niet alle restmateriaal uit de landbouw kan benut worden. Een deel moet achterblijven op het land. Er is wel een toekomst voor FT, maar het is niet het antwoord. 1G technologie daarentegen is eenvoudig te bouwen en vergt lage investeringskosten. De grondstof is vloeibaar, dus beter te handelen en de eerste stap van het proces kan in het land van herkomst plaatsvinden. Logistiek gezien is dat een stuk handiger. Wat betreft jatropha olie bestaat er een misverstand. Er wordt gezegd dat jatropha op arme grond en met weinig water verbouwd kan worden. Dat kan inderdaad en de plant overleeft wel, maar het brengt niets op. Als je er geld mee wilt verdienen, is bemesting en irrigatie nodig. Maar in dat geval kunnen ook andere gewassen verbouwd worden en treedt wel degelijk concurrentie met voedselproductie op. Dat wordt over het hoofd gezien, maar het wordt wel gebruikt in de discussie en beleidsmakers gaan erin mee. Rosendaal Energy kijkt naar algen. Algen hebben een hoge potentie om een goedkope bron van biomassa te worden. Een groot voordeel is dat ze in het water groeien en 70% van het aardoppervlak bestaat uit water. Productie op zee zou dus tot de mogelijkheden moeten kunnen horen. Zover is het nog lang niet, er moeten nog veel vragen beantwoord worden, maar de hoge potentie is er. Het is waarschijnlijker dat algen grootschalig ingezet gaan worden – voor voedsel en biodiesel – dan dat FT van de grond komt. En als biodiesel uit algen goedkoper geproduceerd kan worden dan FT biodiesel, dan kiest de markt voor de goedkopere 1G biodiesel uit algen. Daarnaast zegt de overheid: algen zijn plantaardig, dus het is in orde. En bij 80% CO2 reductie spreekt de overheid van 2G. En dat kan Rosendaal Energy. Bijvoorbeeld uit dierlijk vet. Dan is er niets veranderd in de fabriek, maar wordt wel 2G biodiesel geproduceerd. Voor
Gijs van der Meer - Thesis
151
algen geldt dat net zo. En algen halen CO2 uit de lucht, dus misschien dat je het wel 3G kunt noemen, afhankelijk van hoe je het bekijkt. Rosendaal Energy kan dus zowel 1G als 2G biodiesel produceren afhankelijk van de gebruikte grondstof. Zien jullie dan geen schaarste ontstaan op de grondstoffenmarkt? Nee, de veelgenoemde schaarste is aangepraat, door de Unilevers en Cargills, door bedrijven die daar belang bij hebben. Wat is er aan de hand, de voedselprijzen zijn gestegen, er is een misoogst geweest. Jarenlang is er weinig geïnvesteerd in de landbouw, de marges waren laag. De prijzen in de landbouw zijn dermate laag dat het niet rendeerde om voedsel te produceren, wat natuurlijk heel raar is. De voedselproductie wordt Europa overeind gehouden met enorme subsidies – dat kan allemaal. Dan krijg je een keer een misoogst, de voorraden raken op, de prijzen stijgen en boeren zien sinds lange tijd weer mogelijkheid om iets te verdienen. Maar dan komt er kritiek op de hoge voedselprijzen. Het probleem is dat er jarenlang niet is geïnvesteerd in de landbouw. Er is landbouwgrond genoeg. Nu met de hoge prijzen is landbouw wel weer aantrekkelijk om in te investeren. Maar inmiddels zijn de kosten voor boeren ook gestegen; brandstofkosten, maar ook andere energiegerelateerde kosten als die voor kunstmest en bestrijdingsmiddelen – beide geproduceerd uit aardgas. Geldt dat ook voor reststromen? Ja, dat geldt ook voor reststromen. Er is door een instituut berekend dat de aarde 20 miljard mensen zou kunnen huisvesten. Dus voedselproductiecapaciteit is niet het probleem. Waar het mis gaat is in de verdeling. Dit is goed zichtbaar bij de ruzie over rijst. We kunnen de wereld voeden als we dat zouden willen. Dus biobrandstoffen uit landbouwproducten is een optie? Ja, zo lang boeren niets verdienen, is dat een teken dat er genoeg voedsel is. Als boeren willen stoppen is dat een teken dat er totaal geen gebrek is aan voedselproductiecapaciteit. Daar komt voor Rosendaal Energy de potentie van algen bij. De problemen zijn; politieke onwil, corruptie, inefficiëntie ed. Zou marktwerking dat recht kunnen trekken? Ik denk dat open marktwerking dat wel recht zou kunnen trekken. Maar kijk naar rijst; rijstexporterende landen zeggen ‘eigen volk eerst’. Dus worden voorraden in stand gehouden terwijl elders hongersnood heerst. Het is geen logische wereld. Maar het staat wel met grote koppen in de krant. Ja, de media kunnen selectief / subjectief zijn, waardoor een verkeerd beeld ontstaat. Zou er dan ook een markt bestaan voor ethanol uit voedingsgewassen? Terwijl in de VS de gestegen grondstofkosten stimuleren om verder te kijken naar andere grondstoffen, het benutten van de vezels; cellulose ethanol. Ja, dat kan. Maar geavanceerde technologie is complex en niet noodzakelijkerwijs beter. Het is mooier je doel te bereiken met iets simpels. FT is een complex en duur proces, je kunt ook kijken naar wat er in de natuur voorhanden is; plantaardige olie. Hoe zal het gaan lopen? De tijd zal het leren. Ik denk dat meerdere opties naast elkaar kunnen bestaan. Er zal 1G en 2G komen, er zullen 1G producenten zijn die 2G produceren en er zullen 3G producenten komen – want mensen willen zich distantiëren. Er zal worden gezegd, “wij benutten de CO2 uit de lucht en zetten het om in brandstof, dus wat wij doen is 3G”. Dat is bij plantaardige olie ook al het geval, het is maar hoe je het verkoopt. In hoeverre kunnen 1G partijen 2G (lignocellulose biomassa) partijen worden? Rosendaal Energy kijkt hier actief naar, maar lignocellulose biomassa is een totaal andere business om mee te werken. Het is een totaal verschillende grondstof en technologie, die in principe niet te verenigen is (in het geval van biodiesel). Het is pas te verenigen in de tank van je auto. Daarvoor zijn het totaal verschillende trajecten. Dit is inderdaad een moeilijkheid. Shell zet enorm in op FT Natuurlijk, want alleen Shell en Sasol zijn FT licentiehouders. Dus Shell heeft een belang bij FT.
Gijs van der Meer - Thesis
152
Shell zegt ook, “het product is perfect af te stemmen op de automotive industrie”. Ja dat klopt, en de automotive industrie wil dat ook graag. Maar het is wel een stuk duurder. Zal de klant dan straks kunnen kiezen? Ja, wellicht. Maar Shell zal alleen 2G willen verkopen. Misschien dat er andere tankstations komen die alleen goedkopere 1G biodiesel verkopen. En mensen zijn toch geneigd de goedkopere optie te kiezen. En qua afzetmogelijkheden, zal dat zich vormen naar de markt? De energiemarkt is werkelijk enorm groot. Wat Rosendaal Energy doet is slechts een speldenprik. En zoveel plantaardige olie is er helemaal niet. Dat is een beperking, die tegenstanders van biodiesel ook zien. Zij stellen dat er straks helemaal geen plantaardige olie meer te krijgen zal zijn. Maar dat zal niet het geval zijn. Rosendaal Energy kijkt naar alternatieve olie, uit algen. Algen kunnen gaan voorzien in een enorme vraag naar biobrandstoffen. Er is een visionair nodig die dat op kan zetten. En dat zullen niet de oliemaatschappijen zijn. Zij zullen hun fossiele bronnen tot het uiterste exploiteren en komen dan pas met nieuwe technologie. Dat is gechargeerd, maar wel de essentie. Wat wil Rosendaal Energy doen? Wij kijken naar nieuwe grondstoffen, die voldoen aan de eisen van de overheid. Zijdelings kijken we ook naar FT, maar eigenlijk is dat veel te duur. Rosendaal Energy is daar een veel te kleine partij voor. We kijken wel naar afgeleiden. Een alternatief voor de luchtvaart is lastig, dan moet je aan heel kritische normen voldoen. Brandstof voor de scheepvaart daarentegen is eenvoudiger. Stookolie is erg vuil, bevat veel zwavel en is daarmee enorm vervuilend. Deze vervuiling vindt plaats in internationaal gebied en is dus heel moeilijk af te stemmen. Liberia bijvoorbeeld is een arm land en wil geen regels voor schonere scheepvaart. Het westen is immers ook al vervuilend rijk geworden. Dat is een lastige discussie. Maar het is een flinke markt, waarin misschien een deel vervangen kan worden. Het blijft echter lastig concurreren met stookolie, een laagwaardig en goedkoop product. En zoals gezegd is verplicht stellen ook niet gemakkelijk. Daarmee raak je een algemeen probleem bij klimaatvraagstukken. Het klimaat is een complex probleem. Het is naïef om te denken dat het tot een akkoord zal komen. Een crisis kan wel leiden tot samenwerking. Zou een crisis biobrandstoffen kunnen helpen? Zie je nu niet iets soortgelijks met de stijgende olieprijs? Wat betreft de stijgende olieprijs, die leidt nog lang niet tot een crisis. Het trekt wel de aandacht, leidt tot bewustwording. Maar dus: economische aspecten zullen leiden? Ja, economische aspecten zullen leiden. Er zal ook een herverdeling van welvaart plaats gaan vinden. Misschien dat we genoegen moeten gaan nemen met minder. Economische motieven kunnen iets dergelijks leiden / veranderen. Als we naar Nederland kijken, vindt u dat de overheid voldoende stimuleert? Nee, de overheid stimuleert niet. Maar ze creëert wel een markt. Ja, maar dat is dan ook het enige. Het probleem met de overheid is dat de overheid per definitie een onbetrouwbare partner is. Beleid houdt maximaal een zittingstermijn stand. Maar op 4 jaar kan je geen fabriek bouwen, je wilt beleid voor lange termijn, zeg 10 – 20 jaar. Zeker in onzekere tijden als nu. Wat de overheid nu doet is leuk, maar het is niet duidelijk wat er straks gaat gebeuren. Dus wacht de markt af en gebeurt er niets. Je bouwt een fabriek voor 5 – 10 jaar en in die tijd moet je je fabriek terugverdienen. Als je geen zicht hebt op wat er na het eerste jaar gaat gebeuren, dan vinden financiers het risico veel te hoog en krijg je de financiering niet rond. De Nederlandse overheid laat het na duidelijkheid te scheppen.
Gijs van der Meer - Thesis
153
De Europese overheid ook? Ja, de Europese overheid ook. De EU richtlijn is een warboel. Voor de bijmengverplichting geldt dat het ‘duurzaam’ moet zijn. Maar het is niet duidelijk wat onder ‘duurzaam’ verstaan wordt. Daarnaast veranderen de eisen. De doelstelling voor 2020 kan omlaag gaan, of de invulling van 10% biobrandstof kan wijzigen in 10% duurzaam over all. Je krijgt ook verschillen tussen landen en hebt te maken met verschillende inzichten per land. Nederland bijvoorbeeld is eigenlijk tegen koolzaad. Het verbouwen van koolzaad levert extra vervuiling op, dus zegt Cramer, “koolzaad geeft een lager CO2 reductiepotentieel, maar we willen een hoger reductiepotentieel van 50%”. Dan moet je naar palmolie, dat kan zorgen voor een reductie van 70%. “Dat willen we niet vanwege de oerbossen”. Sojaolie dan? “Nee, ook niet goed, want daar leidt het Amazonegebied onder, dat willen we ook niet”. Dat zijn de drie grote groepen oliën. Als aan elk van die een bezwaar krijgt, dan zeg je eigenlijk, eigenlijk willen we geen biodiesel. (42.00) Hoe staat u daar in als producent? Er is in Nederland en de EU een academische discussie gaande. Er wordt om een CO2 berekening gevraagd, maar hoe moet deze worden uitgevoerd? Voor het gebruiken van palmolie zijn de volgende eisen voorgesteld: een sociaal rapport wat aankoop voor de plaatselijke maatschappij teweeg brengt, een natuurrapport, een rapport over de impact op de biodiversiteit, je moet je aansluiten bij verschillende overlegorganen, je moet aantonen dat er geen kinderarbeid plaats vindt. En daarbovenop komt het verdringingseffect; als jij een duurzame plantage hebt, maar een voedselbedrijf gaat vervolgens naar een niet duurzame plantage, dan is dat jouw schuld! Hoe je dat allemaal kan / moet gaan controleren wordt er niet bij gezegd, dat wordt aan de industrie gelaten. Dat is dus niet te doen. Men weet het niet. De ene persoon stelt zich soepeler op dan de andere. Waar de ene stap voor stap wil ontwikkelen vanaf het punt waar we nu staan, wil de ander gelijk het hele pakket aan eisen opleggen. Het resulteert in een getouwtrek en men heeft niet in de gaten dat daardoor de markt totaal plat wordt gelegd. Maar of je dan je doel hebt bereikt? In dat geval blijft iedereen bij fossiele brandstoffen en wordt er ook niet geïnvesteerd in 2G. Shell ziet de concurrenten weg worden gestuurd en kan rustig aan verder ontwikkelen. Er is geen voordeel bij het eerder op de markt brengen. Tenzij ze er financieel voordeel bij hebben. Dat zal niet gebeuren. Aardolie is veel lucratiever. Shell geeft ook aan dat een voordeel van FT is dat er verschillende grondstoffen, waaronder biomassa, verwerkt kunnen worden. Dat is voor Shell beslist een voordeel. Maar eigenlijk wil men teveel. En dat terwijl Shell nu ook activiteiten uitvoert waarover je kunt zeggen dat het niet in orde is; de winning van olie uit teerzanden in Canada, of oliewinning in Nigeria. Mag dat dan wel? Daar wordt dan over gezegd dat het niet goed is en niet voldoende aandacht heeft gekregen, het is ook moeilijk te veranderen. Biobrandstoffen zijn iets nieuws, dat kunnen we in een keer goed doen, daar kunnen we hoge eisen stellen. Maar vervolgens komt het daardoor niet van de grond. Men komt er niet uit, niet in de EU, laat staan wereldwijd. Dus wat er gaat gebeuren is dat men op eigen houtje verder gaat. Er worden slechts vage afspraken gemaakt, zonder harde cijfers. Landen maken hun eigen beleid, afhankelijk van of ze olie importeur of exporteur zijn, of ze agrarisch potentieel hebben e.d. In principe betekent het dat zonder een wettelijk kader de huidige status quo zal blijven bestaan. Totdat overeen wordt gekomen wat duurzaam is, mag alles. Dat is niet wat de industrie wil, maar je moet naar de politiek toe om wat te veranderen. Ga je voor de meest duurzame weg, dan houdt je je hoofd niet boven water. Rosendaal Energy doet z’n best. Wij willen uiteindelijk van de klassieke oliën af, maar hebben ze wel nodig om mee te beginnen. Dus we zijn aangesloten bij de RTRS & RSPO (Round Table Responsible Soy / Palm oil) Meer kan je op dit moment niet doen en de overheid geeft min of meer aan dat je dat moet doen. Unilever, Cargill ea. zijn er ook bij aangesloten. Of het helpt is moeilijk te zeggen. We kopen in via de overeengekomen voorwaarden, maar krijgen vervolgens wel een boekje toegestuurd van Greenpeace waarin gepleit wordt voor een moratorium op biobrandstoffen uit palmolie gezien de consequenties voor flora en fauna. Dan ben je lid van de RSPO, doe je het allemaal netjes, krijg je dat over je heen. Hoe moet je daar nou weer mee omgaan?
Gijs van der Meer - Thesis
154
Dat is een lastige vraag en eigenlijk is het enige antwoord; weg van klassieke oliën en naar jatropha en algen. Daar investeert Rosendaal Energy ook in. Klassieke olie gaat gewoon niet. Als het over voedsel gaat, kraait niemand ernaar, maar daar wordt ook oerbos voor gekapt. Maar voedsel is heilig, daar mag niet aan getornd worden. Rosendaal Energy gaat naar dierlijke oliën en vetten, want dat is afval, en olie uit algen. Dat is de toekomst en daar wordt in geïnvesteerd. Maar het is er nog niet, dus zullen geduld moeten hebben en zijn we nog even gebonden aan klassieke olie. Dat is hoe Rosendaal Energy in de markt wil gaan zitten. Ik geloof niet dat ze ooit uit de discussie rond duurzaamheidseisen gaan komen, dat is veel te complex. Het betekent dat de overheid geen duidelijkheid geeft / kan geven en de markt zijn weg gaat zoeken. Is er in die markt plaats voor kleine ondernemers? Voor producenten van ‘gewone’ 1G bioethanol / biodiesel niet. Eind jaren 90, begin 2000 nog wel, maar nu niet meer. Alleen met een innovatief product of proces kom je er nog tussen, maar wat Rosendaal Energy doet krijg je tegenwoordig niet meer gefinancierd. En gezien infrastructuur / distributie? Slokken de grote partijen alles op? Er vindt nu al consolidatie plaats en het wordt grootschaliger. In die structuren ga je richting Vopak en die laten ook geen concurrent toe. Misschien dat je als consultant wel aan de slag kunt, door kennis te verkopen. Of je moet iets nieuws hebben, iets dat werkt en hoge potentie heeft, maar als kleine partij, als kleine producent niet. En 2G is zo duur, dat kunnen kleine partijen als Rosendaal Energy ook niet. (52.00) Wie zijn de afnemers van biodiesel en wie mengt bij? Klopt het dat levering aan de petrochemische industrie ongunstig is? De afnemers zijn de petrochemische industrie. Zij zijn het ook die bijmengen. (Gulf is aandeelhouder van Rosendaal Energy) Typisch gaat de biodiesel van grotere bedrijven naar de petrochemische industrie. De Shells en BPs mengen het bij de fossiele brandstof. Er is geen biodieselproducent die een eigen retail netwerk op gaat zetten. Transportbrandstof is een anoniem product. Er staat alleen naam boven, bijv. Shell. De petrochemie koopt in op prijs en minimum requirements (waar sinds kort een deel sustainability requirements in zitten). Biobrandstof is een commodity, dus heb je concurrentie op prijs, ook tussen leveranciers van biobrandstoffen onderling. Regel nummer één op de commoditymarkt: wordt kostprijsleider, dat is de beste garantie om te overleven. Het is een anoniem product, service is niets waard, kwaliteit is weinig waard, want je hebt minimum specificaties. Elke meerwaarde boven de minimum specificaties moet duidelijk blijken en zich vertalen in economische meerwaarde. Waar gaat de ontwikkeling van biobrandstoffen heen? Zoals gezegd; klassieke oliën (plantaardig / dierlijk) zullen minder worden ingezet ten gunste van jathopha en algen. Beiden hebben op zich een goed CO2 reductiepotentieel. Misschien dat er stappen worden gezet om biodiesel / het product chemisch beter te maken, zodat het dichter tegen mineraal aan zit. Een ander pad is FT, compleet vergassen en iets nieuws bouwen. Hiervan bestaan nog geen plants en ik denk dat het nog wel even duurt. Je hebt ook Nesté oil, zij produceren ook op basis van plantaardige olie. In principe is dat 1G, gezien de grondstof, maar ze maken een 2G product. 2G Niet vanwege CO2 reductie (vanwege hoog energiegebruik is deze zelfs slechter dan van Rosendaal Energy), maar vanwege de productspecificaties. Qua karakteristieken is het product van Nesté oil beter dan minerale diesel. Het is vergelijkbaar met FT diesel. Maar de grondstof is hetzelfde. Dus zeg het maar, 1G of 2G? Spelen CO2 reductie en de kwaliteit van biodiesel een rol? Totdat het CO2 reductiepotentieel mee gaat tellen in het bijmengen is het geen issue. Momenteel zijn de overheidsregels per kg / liter product en wordt er niet naar CO2 gekeken. Dat gaat misschien wel veranderen. Wat betreft de kwaliteit, daar zijn regels voor. Er bestaan NEN-normen voor diesel en specificaties voor biodiesel. Nu mag er maximaal 5% biodiesel worden bijgemengd. Dat wil men optrekken naar 10%, maar dat kan niet zomaar.
Gijs van der Meer - Thesis
155
Is Food vs. fuel te voorkomen? Ja, natuurlijk is dat te verkomen, het is eigenlijk niet eens een probleem. Dat wordt de mensen aangepraat. Hoe om te gaan met wisselende geluiden uit Brussel? Ja, dat is natuurlijk bijzonder vervelend. Er zou beleid gemaakt moeten worden, gericht op transitie, waarbij 20 – 30 jaar aan iets vastgehouden wordt. Niet elk jaar weer evalueren en wijzigen. Ik heb ook niet de illusie dat er wel een eenduidig geluid komt. Ze willen teveel, komen er gewoon niet uit en dus gaan we onze eigen gang. Zijn er mogelijkheden voor Nederland? Er zijn zeker heel veel mogelijkheden. De overheid heeft onze business mogelijk gemaakt en is op het moment ook de spelbreker, ze heeft een ambivalente rol. Hoe zal het verder gaan; er is zeker een goede toekomst voor biobrandstoffen. Shell verwacht al in 2015 een tekort van enkele miljoenen vaten olie per dag. Eén orkaan in de golf van Mexico en de prijs van olie gaat omhoog. De toekomst is zo ongewis, maar er zal een onderstroming blijven met het oog op leveringszekerheid. Men wil toch een alternatief ontwikkelen. En dat kan van alles zijn; biobrandstoffen, elektrische auto’s, zonne-energie, waterstof, wind. Men wil minder afhankelijk worden van olie en gas. Dat is een goed streven en daar zit de markt. Momenteel vindt er heel veel onderzoek plaats. Het wachten is op een technologie die wel kan concurreren met olie. Hypothetisch gezien zou die op termijn de vraag naar aardolie kunnen gaan drukken. Stel dat algen bijvoorbeeld heel lucratief worden, dat er heel veel algenolie op de markt komt, dan hebben we minder aardolie nodig. Dat is een proces van lange adem. Maar er zal altijd aardolie gewonnen en gebruikt blijven worden, het is een mooie grondstof. En aardolie wordt ook voor plastics ed. gebruikt. In de energiewereld zal een omschakeling plaats gaan vinden. Het zal sowieso duurzaam worden, maar dat is een langzaam proces. De energiewereld is heel uitdagend en dynamisch, maar erg onvoorspelbaar. Niemand kan een half jaar vooruit kijken. Nog niet vaak eerder was het zo onzeker. De olieprijs is erg onzeker geworden, deze kan zomaar naar 150 of 250 dollar gaan. Niemand durft meer te zeggen dat iets niet zal gebeuren. Ook de grondstoffenmarkt heeft enorme schommelingen laten zien. Dus wat je dan ziet is dat mensen geen posities in de toekomst innemen en dicht bij huis blijven. Het blijft lastig.
Gijs van der Meer - Thesis
156
7. Smit (Ruben) – ECN Interview met Dhr. Ruben Smit ten behoeve van het afstudeeronderzoek van Gijs van der Meer Datum: 11 juni 2008 Locatie: ECN in Petten Goedgekeurd: 22 sept. Ruben Smit is werkzaam bij ECN, afdeling Biomassa, Kolen en milieuonderzoek. Waarom ontwikkeling van 2G biobrandstoffen bij ECN tov. 1G: De eerste generatie biobrandstoffen is bekende technologie. Onderzoek hiervan ligt niet binnen de activiteiten van ECN. Daarnaast vermijdt de tweede generatie de concurrentie met voedingsmiddelen en ligt het rendement hoger (opbrengst per hectare). Ten slotte kan aanwezige kennis bij ECN worden benut en uitgebreid (Op basis van kolentechnologie) Ongeveer een jaar of 6 geleden heeft ECN in samenwerking met Shell de conversie van biomassa naar vloeibare transportbrandstof (Biomass to Liquid - BtL) gedemonstreerd op labschaal. Het doel voor zowel Shell als ECN was zich te profileren, te demonstreren dat BtL mogelijk is, niet zozeer om BtL samen verder te ontwikkelen. Kan je spreken van een nationale / internationale beweging in de ontwikkeling van FT biodiesel? Ja, op internationaal niveau is er toenemende interesse voor BtL. Grote spelers op dat gebied zijn Siemens, GE, Shell. Deze bedrijven kunnen hun bestaande kolentechnologie benutten. Maar van daaruit moet nog wel de vertaalslag naar biomassa gemaakt worden en er is voorbehandeling van de biomassa nodig. Een aantal bedrijven is in deze technologie / kennis geïnteresseerd. In Nederland zijn Shell en ECN belangrijke spelers op het gebied van BtL. TNO heeft zich in het verleden ook bezig gehouden met FT synthese / BtL, maar tegenwoordig zijn ze – bijna niet meer actief op dat gebied. ECN is een onafhankelijke speler in het veld en biedt voornamelijk kennis aan en niet zozeer technologie op het gebied van BTL. ECN inventariseert, doet onderzoek, modelleert en test op lab / pilot schaal. Zij kijkt wat er mogelijk is en wat er op de markt is. ECN biedt kennis over de stap van kolen naar biomassa. Vindt er kennisuitwisseling plaats tussen de diverse betrokken partijen? Shell is vrij gesloten, Siemens is een stuk opener. ECN heeft contact met beide partijen en werkt samen met beide partijen . Ook vanuit andere partijen, wereldwijd, bestaat er interesse in de kennis van ECN. Hoe kijkt u aan tegen Choren? Het zal nog wel even duren voordat Choren goed draait. Choren is nog ver van commerciële productie. Momenteel zijn er problemen met de vergasser. Ook zijn er problemen bij de opschaling van de alfa naar de beta installatie. Shell draagt financieel en met kennis bij aan het project. De vergassingstechniek komt van Choren zelf, de FT synthese van Shell (Bron: Shell.com – news 2006 of Choren.com 17 aug. 2005). Choren is de eerste en enige in z’n soort. Het succes van deze installatie is van belang voor BtL in het algemeen. Vandaar dat de meeste partijen die actief zijn in de ontwikkeling van BtL hopen dat het gaat lukken. In het gebied rond Freiberg bevindt zich van oudsher een soort ‘vergassingscentrum’, met daarin oa. de universiteit, Siemens en Choren Kunnen we in Nederland (Of een willekeurige andere speler in het veld) leren van de ervaringen van Choren? Jazeker, daar zouden we van kunnen leren. Zij het dat Choren niet open is over de problemen waar ze mee kampen. Daardoor weten we niet precies wat er speelt. Aanvankelijk waren ze opener naar buiten toe, maar de laatste tijd zijn ze steeds meer gesloten. Toch is
Gijs van der Meer - Thesis
157
het succes van deze installatie bepalend voor het succes van BtL in het algemeen. De technologie voor BtL is nog niet volwassen, ook niet bij Choren. Net zoals er verschillende technologieën worden toegepast bij de verwerking van kolen, zo zijn er ook verschillen tussen de technologieën die toegepast kunnen worden in de conversieroute voor BtL. Het proces komt overeen, maar de uitvoering niet per sé. De meest logische route voor BTL is het geschikt maken van kolen technologie voor biomassa. Er is interesse op internationaal niveau in BtL, vooral bij partijen die geld zien. Voor ECN is commercialiseren niet het doel, maar het naar de markt brengen van technologie en kennis wel. ECN levert kennis en advies op het gebied van BTL. Op het gebied van Substitute Natural Gas (SNG) wordt ook technologie ontwikkeld, maar voor syngas (als onderdeel van FT biodiesel) geldt dat niet. Groen gas (SNG) en een kort vergelijk met FT biodiesel Groen gas of SNG kan zeker een rol gaan spelen tussen de andere biobrandstoffen voor transport. (Duitsland is hier momenteel al verder mee dan Nederland) Het levert meer op om SNG als transportbrandstof in te zetten dan het terug te voeren in het aardgasnet. SNG uit e biomassa is namelijk ook een 2 generatie transportbrandstof. SNG kan verkregen worden door vergisting of vergassing. Vergisting gebeurt vooral op kleine schaal. Het potentieel voor vergisting is klein, gezien de beperkte beschikbaarheid van de grondstof en import (vervoer) van natte grondstoffen om te vergisten is niet gunstig (Hoog vochtgehalte; lage energiedichtheid). Vergassing zal op grotere schaal plaatsvinden en import van de grondstof is wel mogelijk. Dezelfde grondstof als voor SNG via vergassing kan worden gebruikt, kan worden gebruikt voor de productie van FT biodiesel via vergassing. Er zijn echter wel verschillende voorbewerkingsmethoden nodig. SNG tov. FT biodiesel (BtL) De manier van vergassing verschilt tussen beide conversieroutes. Voor FT synthese wordt syngas gebruikt dat bijvoorbeeld door een entrained flow geproduceerd kan worden (hoge temperatuur vergassing). Voor SNG wordt indirecte vergassing toegepast bij lagere temperatuur. BtL stelt minder hoge eisen aan gasreiniging en het product past erg goed in de huidige infrastructuur en het wagenpark. Er is echter wel geavanceerdere voorbewerking nodig. Bij SNG productie is de voorbewerking simpeler, maar worden hogere eisen gesteld aan de gasreiniging (na vergassing) en voertuigen moeten worden aangepast om SNG als transportbrandstof te gebruiken. De grote drijvende kracht achter de ontwikkeling van BtL zijn de EU doelstellingen, maar de uiteindelijke kosten zullen bepalen of er in de technologie geïnvesteerd wordt. Ook de stijgende olieprijs drijft de ontwikkeling van BtL. Een voordeel van BtL is dat de stap niet in één keer van 0 naar 100% biomassa hoeft te zijn, er kan eenvoudig in delen bijgemengd worden. Welke partijen kunnen BtL groter maken en /of toe gaan passen? Bij BtL is schaalgrootte erg belangrijk, BtL zal op grote schaal toegepast moeten worden. Zodoende zijn er grote investeringen nodig, grote spelers en grote hoeveelheden biomassa. Ook een demonstratiefaciliteit is duur. Er bestaat grote interesse in BtL en er zijn grote bedrijven bij betrokken, onder andere bedrijven die hun kennis en technologie uit de kolenverwerking inzetten, maar ook leveranciers of voorbewerkers van biomassa. Nuon heeft grote plannen voor de zgn. Magnumcentrale, een centrale waar naast kolen ook biomassa vergast moet kunnen worden. Maar Nuon heeft ervaring in huis met kolen- en biomassavergassing bij de Buggenum centrale (Waar de vergassingstechnologie van Shell wordt toegepast).
Gijs van der Meer - Thesis
158
Wat zijn op dit moment obstakels in de ontwikkeling van BtL? Er zijn drie technische obstakels die toepassing van BtL in de weg staan. Deze zijn het resultaat van de verschillen in eigenschappen tussen kolen en biomassa: - De voeding van biomassa in de entrained flow vergasser (hoge temperatuur) - Het slakgedrag in de vergasser. - Het ontstaan van vervuiling op de gaskoeler. Shell maakt gebruik van een dergelijke gaskoeler in z’n proces en wekt stoom op uit de warmte van het syngas. Siemens vermijdt het gebruik van een dergelijke koeler en injecteert water om het gas te koelen. Deze problemen spelen op internationaal niveau. ECN heeft kennis in huis over de verschillen tussen kolen en biomassa en doet hier onderzoek naar, op lab schaal en dmv. modellen, simulaties en experimenten. ECN doet ook onderzoek naar de voorbehandeling van biomassa, torrefactie. Deze technologie is veel belovend. Een deel van het onderzoek doet ECN met eigen geld, een deel in opdracht van bijvoorbeeld de industrie. Grofweg kan je het BtL proces opdelen in 4 stappen; voorbehandeling, vergassing, gasbehandeling en FT synthese. De wax die het proces oplevert kan vervolgens geraffineerd worden tot diesel. FT synthese is bestaande technologie. Neem bijvoorbeeld Shell; zij hebben kennis van, en technologie voor vergassing, maar niet met biomassa als grondstof. (Overigens: Buggenum centrale draait met een entrained flow vergasser van Shell) Ze hebben ook kennis over, en technologie voor FT synthese, maar niet van de voorbehandeling en (biosyn-) gasbehandeling. Op dit moment is er niet één partij die alle benodigde technologie kan leveren. Er is een consortium van partijen benodigd, met daarin ook leveranciers en voorbewerkers van biomassa. De partijen die nu in vergassing en/of FT synthese zitten, zijn niet per sé dé partijen die de ontwikkeling kunnen / zullen trekken. Denk je dat er bij BtL mogelijkheden zijn voor benutting van reststromen? Er is weinig aandacht voor het benutten van reststromen voor de conversieroute van BtL. Je hebt bij BtL grote hoeveelheden biomassa nodig, die voorbewerkt moeten worden. Voorbewerking zou decentraal kunnen plaatsvinden, bijvoorbeeld tot pyrolyse olie of torrefactie pellets. Centraal of decentraal voorbewerken zijn opties die beide nog open staan. (Zie ook het rapport van Robin Zwart)
Gijs van der Meer - Thesis
159
8. Van Groenestijn (Johan) - TNO Quality of Life Interview met Dhr. Johan van Groenestijn ten behoeve van het afstudeeronderzoek van Gijs van der Meer Datum: 11 juni 2008 Locatie: TNO Kwaliteit van Leven te Zeist 18 juli goedgekeurd. Dhr Van Groenestijn is werkzaam bij de afdeling Microbiologie van TNO. Hij is voornamelijk betrokken bij fermentatieve ethanolproductie en voorbehandelingsmethoden. Daarnaast heeft Dhr. Van Groenestijn deelgenomen in het EET project “Coproduction of bioethanol, lactic acid, electricity and heat from lignocellulosic biomass en is hij projectleider van het onderzoek en de ontwikkeling van het zgn. Biosulfurol proces, waarmee suikers uit biomassa ontsloten kunnen worden, een stap in de productie van cellulose ethanol. Bij TNO in Apeldoorn werken ze aan fysisch chemische conversie van biomassa naar brandstof, met name pyrolyse, hydrothermal upgrading (HTU) en superkritische watervergassing. FT wordt wel wat aan gedaan, maar is minder belangrijk. TNO is niet alleen actief op het gebied van ethanol uit biomassa, maar onderzoekt ook de productie van melkzuur, biogas en waterstof uit biomassa. Bioethanol is de belangrijkste vanwege de hoge belangen. Hoe zijn de onderzoeken tot stand gekomen? Het onderzoek naar de productie van bioethanol loopt al jaren. Als onderzoeksinstituut is al meer dan 10 jaar geleden de keuze voor energieproductie gemaakt en het belang van de toepassing van cellulosehoudende biomassa voor energiedoeleinden onderkend. Daar zette TNO op in, deels met eigen geld, deels met overheidssubsidie en vaak in samenwerking met andere partijen. Met name het EET programma is belangrijk geweest. Vanuit dit programma zijn grote ontwikkelingen gefinancierd en zijn vorderingen geboekt. Het EET-project wordt voor +- 60% door de overheid gefinancierd, het overige deel wordt door de deelnemers aan het project betaald. Het voordeel van werken in zo’n onderzoeksteam is de menging van kennis, wat mooie resultaten op kan leveren. Daarentegen is er ook menging van belangen, waardoor soms compromissen gezocht moeten worden. Dit kan lastig kan zijn. De overheid heeft ook een hand in het formuleren van de EET projectvoorstellen en heeft bepaalde wensen waar de richting van het onderzoek heen gaat. De overheid heeft zodoende ook belangen in het onderzoek, maar over het algemeen sluiten deze goed aan bij de taken van de onderzoeksinstituten. Deze onderzoeksinstituten willen ook iets nuttigs doen voor de maatschappij. Het onderzoek binnen TNO naar energiewinning uit lignocellulose houdende biomassa loopt al zeker 10 jaar. Ethanol heeft hierbij vanaf het begin af aan al hoog op de agenda gestaan. Er is gezocht naar mooie methodes om ethanol te maken. Deze methodes kunnen ook ingezet worden voor de winning van andere stoffen. (Zie oa. Het EET project Co-productie) maar ook geschikt voor andere stoffen. Wat waren de verwachtingen in de tijd? Werd het verwacht dat in pak hem beet 15 jaar een product op de markt gezet zou kunnen worden? Ja, maar terugkijkend bleek dat te optimistisch. Het Biosulfurol-proces (zuurrecycling) bevindt zich in een ver gevorderd stadium. Het is de verwachting dat daar als eerste wat gaat gebeuren. Inmiddels is het EET programma gestopt. Vervolgtrajecten die gefinancierd hadden kunnen worden, zijn stop gezet. De huidige subsidies zijn in de praktijk te gering. Ze passen niet bij de tarieven van onderzoeksinstituten. In de praktijk komt het erop neer dat de subsidies 25% van de kosten dekken, wat betekend dat 75% uit het bedrijfsleven moet komen. Hierdoor is het verschil tov. helemaal geen subsidie klein en is het aantrekkelijk om te kijken of
Gijs van der Meer - Thesis
160
onderzoeksprojecten geheel door het bedrijfsleven ism. TNO bekostigd kunnen worden. Toch is dit een moeilijke route. Een bedrijf moet het gehele traject kunnen financieren, van onderzoek, ontwikkeling, pilot, (proef-) fabrieken. Dit zijn hoge kosten én het geld moet beschikbaar zijn. In het geval van het Biosulfurol-proces is zo’n bedrijf gevonden en het ligt in de verwachting om op korte termijn contract te tekenen. (Overigens is het onderzoek naar het Biosulfurol-proces uitgevoerd ism. Techno Invent en WUR / A&FSG en deels gefinancierd vanuit het EET programma) Nedalco is verder gegaan met de resultaten van EET project Co-productie. Grote delen van het onderzoek hebben ze kunnen gebruiken. Nedalco werkt aan het proces om tarwestro thermisch mildzuur te behandelen en vervolgens met enzymen hydrolyseren. Jan de Bont, een ex-collega bij TNO en deelnemer aan het EET programma Co-productie dacht destijds dat dít dé methode zou worden en is vervolgens overgestapt naar Nedalco. Wat er op het vlak van die methode gebeurt is Nedalco mee bezig is. Maar ze loopt nu tegen twee problemen aan: - Financiering van de 2G fabriek bij het gebruik van tarwevezels gebruiken. - Enzymen zijn te duur. (Om ook hemicellulose om te zetten, is een cocktail van enzymen benodigd, die zijn er simpelweg nog niet of de prijs is veel te hoog. Ondanks vele berichten in de media dat nu de juiste combinatie gevonden is. Door de hoge prijs is de productie van bioethanol via deze route niet meer rendabel) Dit is één van de redenen van TNO geweest om zich aan het Biosulfurol proces te werken. Zuurbehandeling van lignocellulose houdende biomassa is een bekend proces, al tientallen jaren. Schijnbaar zou daar de rek uit zijn, wat betreft kostenverlaging. Is dat niet de reden geweest om te kijken naar enzymatische processen? Drie belangrijke voorbehandelingmethodes / zuurbehandelingen zijn: - Thermisch mildzuur; 0,3 % zuur en hoge temperatuur. (Als Co-productie 2007 & Nedalco) Voor het hydrolyseren van de ontsloten biomassa zijn enzymen benodigd. De bottleneck in dit proces is prijs van enzymen. (enzymatische hydrolyse) - Dilute Acid (vnl. in Zweden) 3% zuur, hoge temperatuur, geen enzymen, chemische hydrolyse. Het probleem hierbij is dat bijproducten worden gevormd die de fermentatie remmen. Het is een oude methode, het langst bestudeerd, maar op dit moment lopen ze vast op remmende bijproducten. Een oplossing wordt gezocht in het eruit halen van de remmende bijproducten of het ontwikkelen van een gist dat niet gehinderd / geremd wordt door deze producten. Ze zijn ermee bezig, maar het kost tijd. - Geconcentreerd zwavelzuur, 70% zwavelzuur, lage temperatuur (Zie andere voordelen in leaflet) Het terugwinnen van het zwavelzuur is de bottleneck. TNO heeft nu een plan in ontwikkeling om dit probleem op te lossen. Dit proces is nog niet gereed voor op grote schaal. Nu is er een bedrijf nagenoeg bereid gevonden om een stuk onderzoekswerk + opschalingsexperimenten te financieren. (De verwachte duur van is ongeveer 30 maanden) Hierna kunnen fabrieken gebouwd worden. Het bedrijf waar contact mee is heeft de middelen om dat hele traject te doorlopen. TNO / biosulfurol is niet de enige, in USA wordt ook aan een geconcentreerd zwavelzuurproces gewerkt. (Arkenol). Je hoort veel over enzymatische hydrolyse. Maar ook hierbinnen zijn er verschillende varianten. Naast de zure processen zijn er ondermeer; stoomexplosie / amoniakvezelexplosie en alkalische voorbehandeling. Deze processen vergen ook enzymen. Het meeste onderzoek vindt plaats in het veld waar ook enzymen benodigd zijn. Degenen die in dit veld actief zijn raken teleurgesteld vanwege de prijs van de enzymen. De enzymproducenten zeggen dat eraan wordt gewerkt om de kosten / prijs omlaag te brengen. Er is ook al een grote sprong gemaakt in het verleden om fermentatieve enzymproductie goedkoper te maken, maar deze stap is gemaakt met bekende trucjes. Deze zijn nu uitgeput. Toch zal het nog goedkoper moeten, een factor 3 – 10. Er zijn echter geen concrete aanwijzingen (zoals concrete activiteiten of een planning) bij fabrikanten van enzymen. Dit heeft zelfs tot boze reacties geleid op congressen! Mensen hebben zich helemaal gericht (met dito middelen) op hydrolyse mbv. enzymen, maar de voortgang is te traag, er gebeurt te weinig op dat vlak. Dit
Gijs van der Meer - Thesis
161
is één van de redenen dat ethanolproductie nog weinig op gang komt, die economische bedrijfsvoering in de weg staat. TNO is erg gemotiveerd om een niet-enzymatisch proces te ontwikkelen. Dit is een van de redenen voor TNO om zich op een niet-enzymatische route toe te spitsen; Biosulfurol. Er moet nog veel aan gebeuren, maar het is wel kansrijk! En TNO verwacht er uit te komen. (Biosulfurol niet alleen TNO, ook Techno Invent en WUR). Is er nog vooruitgang te boeken op het gebied van de enzymatische route? Hoe ziet de markt de prijsontwikkeling van enzymen? Iedereen is het er over eens dat enzymen nu te duur zijn. Er zijn twee stromingen: de ene verwacht dat het nog veel goedkoper gaat worden, de ander twijfelt daaraan. Verplaatst de aandacht dan ook naar niet-enzymatische processen? TNO werd 5 jaar geleden uitgejoeld vanwege hun aandacht voor de oude onsympathieke methode, want er was de belofte van het enzymatisch proces. Maar tegenwoordig krijgt TNO positieve reacties. US DOE steekt veel geld in biobrandstoffen (6 routes voor demoproces), willen diversiteit in de ontwikkeling en stimuleren ook een geconcentreerd zwavelzuurproces, het arkenol proces. Bluefire past het arkenol proces toe. De website blaakt van zelfvertrouwen. Bluefire voelt toch als lotgenoot van TNO in de gekozen route. Bluefire zegt: technologie is de bottleneck niet, dat zijn de financiën. Ze willen geld om fabrieken te bouwen. De ethanol die nu via enzymatische routes wordt geproduceerd is nog te duur. Maar Bluefire zit dicht bij een acceptabele prijs, dicht bij marktprijs. En TNO dan? TNO denkt een beter proces in handen te hebben dan arkenol en onder de prijs uit te kunnen komen. De tijd zal het leren. Kan de ontwikkeling van cellulose ethanol een internationale ontwikkeling genoemd worden? Of is de ontwikkeling eerder lokaal? Houden de spelers in de ontwikkeling elkaar in de gaten? Ja, dat klopt. Er is een grote diversiteit in het veld. Misschien zijn er grofweg 10 processen voor de productie van bioethanol uit cellulose. Ieder probeert zijn eigen route te verdedigen / promoten. De verschillende partijen houden elkaar in de gaten en leren van elkaar. Niet altijd wordt er informatie uitgewisseld, maar soms wel. En hoe pakt dat uit voor Nederland? Kan er geleerd worden van ontwikkelingen in het buitenland? Dhr. Van Groenestijn is in gesprek met partijen in zweden en af en toe wordt inderdaad info uitgewisseld. Maar er zijn ook tegenvallers. TNO heeft het plan om verschillende voorbewerkingsmethodes naast elkaar te kunnen onderzoeken, w.o. ammoniak vezel explosie (AFEX). Slechts één of twee labs in USA hebben expertise en zijn niet happig op het verstrekken van info, of geven zelfs foutieve informatie. De voorsprong die zij op het moment hebben is voor hen te belangrijk. Is dat vanwege commerciële belangen? Ja. Dus het is nog niet bekend hoe proces werkt. TNO heeft toch ook commerciële belangen? Ja dat klopt. Bijvoorbeeld het Biosulfurol proces. De cruciale details houd je voor jezelf. Investeerders die het product kopen of erin investeren willen een uniek product, zij willen de enige zijn die zoiets kan. Stukken zijn gepatenteerd. Andere stukken worden geheimgehouden, soms is het beter ergens niet te veel over te vertellen. Wat is de rol van TNO en wat zijn hun belangen in de ontwikkeling van cellulose ethanol? Het doel van TNO is om implementatie van een bepaalde technologie in de markt te veroorzaken en daar zelf voldoende aan te verdienen om rond te komen en de (onderzoeks-) infrastructuur overeind te houden. Het is ook de taak van TNO om tot marktimplementatie te komen. Die implementatie kan begeleid worden, zolang de klant dat wenst. Vaak is dat een pilot faciliteit, maar TNO kan ook optreden als adviseur voor het opzetten of optimaliseren van een fabriek. Daarnaast start TNO ook weer nieuwe ontwikkelingen. Je moet vooruit blijven kijken. Als je de verschillende ethanol routes naast elkaar legt, welke is dan het meest gunstig en waarom? Geconcentreerd zwavelzuur ziet er qua kosten goed uit (lage kosten), maar de ontwikkeling is minder ver tov. de enzymatische route. Hierdoor is het afbreukrisico hoger. Er
Gijs van der Meer - Thesis
162
is dus ook een kans dat stug wordt doorgegaan met de enzymatische route, maar de vraag is hoe lang. Het lijkt onwaarschijnlijk gezien de kosten van enzymen. Een hoge olieprijs kan een duur proces rechtvaardigen. Maar dat geldt voor iedereen. Enzymgebaseerde processen zijn op dit moment afhankelijk van een hoge olieprijs / ethanolprijs. Maar, deze processen kunnen worden ingehaald door nog goedkopere chemische processen. Al met al zal het nog wel even duren voordat commerciële productie van ethanol uit cellulose plaats vindt. Dat kan nog wel een paar jaar duren, afhankelijk van olie / ethanolprijs. Bijvoorbeeld, Iogen wil ook in de EU een fabriek bouwen, hiervoor liggen er plannen op de tekentafel. Momenteel heerst er nog twijfel, maar bij verandering van de prijzen kan het heel snel gaan. Dan zou er binnen 1,5 jaar een fabriek kunnen staan. Wat voor voorbehandeling past Iogen toe? Thermisch mild zuur of misschien overgestapt op stoom explosie of misschien combinatie van 2 methoden. Gevolgd door enzymatische hydrolyse. Lijkt op als in co-productie 2007. Iogen is op bezoek geweest bij het EET project Co-productie, om te kijken wat zij doen. Iogen is van oorsprong een enzymproducent. Daar zit ook een stukje voordeel. Enzymen worden on-site geproduceerd tegen de kostprijs. En beide processen kunnen gecombineerd worden. De productie kan haast als halffabricaat gecombineerd worden in het gehele conversieproces. Deze combinatie levert een stukje voordeel op. Dat stukje mist in huidige nieuwe samenwerkingsverbanden (Zoals DuPont-Danisco). Ontwikkeling vindt wel samen plaats, maar er is letterlijk een fysieke afstand tussen de productieprocessen. Novozymes, genencor werken met iedereen samen, zij leveren aan iedereen. Het genoemde voordeel van Iogen is slechts een kleine stap in de verlaging van de kosten en een voor de hand liggende toepassing bij grootschalige initiatieven op het gebied van 2G ethanolproductie. De grote stap in kostenbesparing moet nog komen. Bent u bekend met N2 Energie? Nee, niet bekend. N2 Energie is een kleine onderneming, schijnbaar uit het niets, die met behulp van een zgn. Gravity Pressurized Vessel (GPV) cellulosehoudende biomassa willen omzetten naar ethanol. Wel bekend met GPV reactor. Is een interessant initiatief, maar de toepassing in Apeldoorn is stopgezet vanwege technische storingen, die erg moeilijk oplosbaar waren. Het is een leuke methode, maar wel met veel risico’s. Hoe kijkt u aan tegen de ontwikkeling van Biogas? Deze ontwikkeling is absoluut interessant. Kennis die is opgedaan in het EET project co-productie 2007 gaat worden gebruikt om biogas te produceren. Er zijn gesprekken gaande met bedrijven. Er wordt gekeken naar de voorbehandeling, het ontsluiten van biomassa combineren met een vergister. Voor vergisting zijn geen enzymen benodigd, er zitten al cellulasses en hemicellulasses in om biomassa (w.o. gras) om te zetten in biogas. Is dat dan een robuust proces? Een vergister is flexibel, het consortium van microorganismen past zich aan de omstandigheden aan, dit geeft het proces veerkracht. Er wordt gedacht aan het thermisch mildzuur voorbehandelen om gras en stro toegankelijk te maken voor de vergister. Stel dat als er gekeken wordt naar het inzetten van cellulosehoudend materiaal voor energiedoeleinden, is het mogelijk dat de nadruk op biogas komt te liggen? Ja, dat is zeker mogelijk. Materiaal kan gebruikt worden voor productie van biogas, ethanol en FT biodiesel. Waar je rekening mee moet houden is het volgende: FT installaties zijn zeer groot, ethanol installaties zijn iets kleiner en biogas installaties zijn zeer klein. Dit is een voordeel, want daardoor zijn ze makkelijker te realiseren en decentraal; dichter bij de biomassabron. Deze ontwikkeling kan naast andere ontwikkelingen als ethanol en FT biodiesel bestaan. Zou het kunnen dat bijvoorbeeld Shell tegen deze ontwikkeling is? Die zien wellicht liever vloeibare dan gasvormige energiedragers? Er is een beweging aan de gang, Dhr Van Groenestijn zit in een biogas project; biogas uit mest opwerken tot transportbrandstof en aardgaskwaliteit. Injecteren in het aardgasnet of voor tractor. Op deze kleine ontwikkeling heeft Shell geen invloed, maar het gaat wel gebeuren. Groen gas uit lignocellulose heeft potentie, maar ook daar liggen de kosten van het gas momenteel nog hoog. De productie is nog niet rendabel zonder subsidie. Misschien is het nog wel moeilijker op te lossen dan ethanol. Ethanol kan nog wel goed komen zonder subsidie, voor biogas is dit nog maar de vraag.
Gijs van der Meer - Thesis
163
Biobased economy? Hoe kijkt u aan tegen de ontwikkelingen richting een zgn. Biobased Economy? Hierbij wordt niet alleen gekeken naar brandstoffen, maar ligt de nadruk op cascading, waarbij stap voor stap de meest waardevolle stoffen uit de biomassa worden gewonnen. Dwingen de kosten voor de productie van ethanol tot het kijken naar het verhogen van de opbrengst: cascading? Het is zeker nuttig om te fractioneren, eerste diverse stoffen (zoals eiwitten / enzymen) uit de biomassa te halen, maar de vezel blijft over en leidt tot processen waar over gesproken is. De vezelfractie is het residu; de lignocellulose. Dus deze ontwikkelingen bijten elkaar niet. Misschien zelfs dat processen in elkaar schuiven bij hardnekkige stoffen (Als eiwitten stevig opgeborgen zitten in de lignocellulose), maar het kan ook afzonderlijk. Zou de brandstofproductie uit biomassa ten koste kunnen gaan van de productie van andere stoffen? Waar goed op gelet moet worden bij bioraffinage is dat een mismatch kan optreden tussen de volumes van een gewenst product en de bijproducten (1 kg. ethanol levert als bijproduct 1 kg tandpasta…?! Niet handig!) Bioraffinage wil dat nog wel eens over het hoofd zien. Dit is ook een aandachtspunt bij de toepassing van energie uit algen. Het kan zijn dat er nieuwe toepassingen worden gevonden, maar de bijproducten blijven een aandachtspunt, helemaal bij opschaling. Zijn er kansen voor bioethanol? Ja, die zijn er zeker. Kansen zijn de hoge olieprijs en de wens om klimaatbeschermende maatregelen. Er is overeenstemming over het niet benutten van voedingsmiddelen voor brandstof (food vs. Fuel) & tegenvallende CO2 reductie uit eerste generatie biobrandstoffen. Zodoende is er overeenstemming dat we naar lignocellulose moeten. Mede hierdoor is er een fantastische basis voor de 2G ontwikkeling; lignocelloluse. De bottleneck is technischeconomische haalbaarheid. Dit is de enige bottleneck, daar zit de oplossing. Maar hoe is deze op te lossen? In de VS doen ze het als volgt: een flinke zak met geld voor de ontwikkeling. In NL gebeurt dat onvoldoende of onder lastige voorwaarden. Maar wat moeten we dan doen in NL / EU, afwachten? Wachten op wat er van buiten komt? Nee, we moeten in NL meedoen. Is markt sterk genoeg om de kar te trekken, of komen straks de Amerikanen om fabrieken te bouwen? Dat laatste zou kunnen. Dat is een keuze - van de overheid. Dhr. Van Groenestijn zou het zelf goed vinden om het in eigen hand te houden; een eigen unieke technologie. Gijs: NL heeft vooraanstaand onderzoek. De Nederlandse overheid is half bezig, onderzoek wordt wel gestimuleerd, maar veel te weinig. Daar moet de overheid wat aan doen. Anders maak je jezelf afhankelijk van buitenlanders om hier te investeren. En misschien wordt er niet geïnvesteerd in EU. Kunnen grote Europese bedrijven het initiatief nemen? Ja en daar zijn ze mee bezig. Abengoa is een goed voorbeeld, dit is een belangrijk bedrijf. Ze zouden ook in Nederland kunnen gaan bouwen. Maar je blijft afhankelijk van de wil en zin van anderen. Er liggen kansen, maar Nederland is niet sterk in het grijpen van kansen. Er is een grote markt op komst. Is dit wellicht een Europese aangelegenheid? Er wordt wel subsidie gegeven, bijvoorbeeld in Zweden. Het gebeurt wel, maar levert vaak lastige constructies op, waarin samenwerking plaats moet vinden tussen de EU, universiteiten en bedrijven. Dit is geen ideale uitgangspositie en kan lang duren om rond te krijgen. Dergelijke constructies kunnen vervelende compromissen in de technologie opleveren, als gevolg van gecombineerde belangen, die het functioneren in de weg kunnen staan. Liever een zak met geld – uiteraard met verantwoording.
Gijs van der Meer - Thesis
164
9. Woldberg (Mark) - Royal Nedalco Gesprek met Dhr. van Gijs van der Meer
Mark
Woldberg
ten
behoeve
van
het
afstudeeronderzoek
Datum: 14 juli Locatie: Nedalco – Bergen op Zoom Goedgekeurd op 13 augustus Mark Woldberg is manager business development biobrandstoffen en biobrandstofmarkten bij Koninklijke Nedalco. Nedalco is een oud bedrijf, begonnen als restverwerker van de suikerindustrie. Melasse is een bijproduct van de suikerproductie uit suikerbieten. Dit werd gebruikt als diervoeder, maar bleek ook goed om te zetten naar alcohol. Nedalco heeft altijd bij melasse gezeten tot eind jaren 90. Toen werd gedacht dat melasse duurder zou worden als grondstof en is er gekeken naar andere mogelijkheden. Een optie was Cargill, een graanverwerker: aanwezigheid van suikers in de vorm van zetmeel. Wellicht reststromen / goedkopere grondstoffen voor alcoholproductie. Cargill heeft verschillende kwaliteiten zetmeel; a, b & c kwaliteit. C kwaliteit zetmeel is de laagste, wordt toegepast voor diervoer. De markt voor diervoer was ook niet erg goed, dus werd bij Cargill gekeken naar een alternatieve afzetmogelijkheid. Zo is de samenwerking ontstaan, die resulteerde in het gebruik van C zetmeel voor alcoholproductie. De fabriek in Bergen op Zoom draait voor zo’n 30 – 40 % op C zetmeel van Cargill en voor de rest op melasse. De fabriek van Nedalco in Delfzijl, die op melasse draaide, is gesloten. In Sas van Gent en Manchester zijn ook fabrieken geopend die ook draaien op C zetmeel van Cargill. Zo is Nedalco van een melasseverwerker verworden tot een zetmeelverwerker, maar nog steeds van reststromen. Het voordeel van het gebruik van reststromen zit in de lagere grondstofkosten. Daarnaast bestaat de mogelijkheid voor synergie wat betreft transport & logistiek, afvalwater, stoom e.d. Het nadeel is dat reststromen overwegend klein zijn – waardoor schaalvoordelen niet op zouden kunnen gaan. Dat is nog steeds zoals Nedalco naar de markt kijkt, welke stromen zijn beschikbaar en toepasbaar en kunnen rendabel ingezet worden. Grondstoffen hebben een aandeel van zo’n 60 – 70% in de kostprijs. De markt voor consumptiealcohol is al jaren redelijk constant. Van bioethanol voor transport zag het ernaar uit dat de markt groot zou worden en de traditionele markt voorbij zou schieten. Voor Nedalco is het dan de vraag hoe dat je core business gaat beïnvloeden. In principe zijn alcohol voor transport en consumptie uitwisselbaar. Je wilt als bedrijf wel je positie blijven behouden dus moet je ook kijken naar de markt voor bioethanol voor transport. Begin 2000 is deels bij toeval de nieuwe fermentatie technologie (C5 gist) op het pad van Nedalco gekomen. Dit heeft meegespeeld om in de markt voor bioethanol mee te willen spelen / te willen investeren . En waarschijnlijk zal er op termijn ook consumptiealcohol uit lignocellulose geproduceerd worden. Wat voor termijn, dat is onduidelijk, maar Nedalco wil hier zodoende wel in investeren. Er is gekeken naar een goede manier om te investeren, aanvankelijk in een project op whole grain basis, dus 100% tarwe (Wat andere fabrieken ook doen). Dat project zou plaats kunnen vinden bij de locatie Sas van Gent. Destijds was dat nog aardig rendabel, maar rond 2006 – 2007 werd het kritiek; doorgaan of niet. En de grondstofprijzen bleven stijgen. Van groot belang is de huidige markt voor bioethanol voor transport. De prijs van tarwe is hoog en die van geïmporteerde ethanol uit Brazilië laag (Daarnaast is de prijs van rietsuiker minder hard gestegen dan de prijs van tarwe). Zodoende ontstaat er een aanzienlijk verschil in de kostprijs van in de EU geproduceerde ethanol uit tarwe en geïmporteerde ethanol uit Brazilië. Ondanks de importtarieven bepaalt ethanol uit Brazilië de maximum prijs op de Europese markt voor bioethanol (consumptie-ethanol is in Nederland meer beschermd dan ethanol voor transport). Dus is er geconcludeerd dat tarwe geen geschikte grondstof is om ethanol van te produceren die moet concurreren met Braziliaanse ethanol gemaakt van suikerriet. Het is dan ook lastig te begrijpen dat Abengoa – nog - wel door gaat met de bouw van productiecapaciteit voor ethanol uit tarwe, het lijkt onmogelijk winstgevend. Ook de concurrentie met voedsel en diervoeding speelt mee bij het gebruik van tarwe, dus is er afgestapt van het whole grain idee en is er gekeken naar andere mogelijkheden. Hierbij
Gijs van der Meer - Thesis
165
heeft meegespeeld waar de technische capaciteiten liggen, wat betreft gisten en enzymen, die beschikbaar zijn of er gaan komen. Zodoende is Nedalco bij tarwegries gekomen, dat is het vliesje van de tarwekorrel. Tarwegries wordt nu verwerkt in diervoeding, maar heeft wel een lagere waarde dan tarwe. Het is een goedkopere grondstof en redelijk goed toegankelijk met nieuwe technologie. Toch is het nog steeds een risico. Het is een technologische uitdaging het vereist een flinke investering. Er is ingeschat dat het wel haalbaar was. De nieuwe businesscase is uitgewerkt maar uiteindelijk moest er geconcludeerd worden dat ook deze grondstof te duur zou zijn en de productie dus niet rendabel. Het competitief voordeel van Brazilië is groot. Er zijn veel factoren van belang geweest, maar onder de huidige omstandigheden werkt het niet. Dat is geen definitieve beslissing. Er zou wat moeten veranderen in de wet en regelgeving, of de prijzen voor ethanol zouden moeten stijgen, of de kostprijs zou omlaag moeten. Een daling van de grondstofprijzen naar het niveau van 2004 – 2005 is onwaarschijnlijk, maar wel benodigd voor een rendabele investering. Daarnaast gaan de energieprijzen omhoog. Het ziet er ook niet naar uit dat de prijs van ethanol omhoog gaat. Deze wordt in de praktijk bepaald door geïmporteerde ethanol uit Brazilië. De kostprijs voor ethanol uit Brazilië zal wat omhoog gaan, maar tegelijkertijd gaat het importtarief waarschijnlijk wat omlaag. Dit als gevolg van onderhandelingen in het kader van WTO onderhandelingen. Maar wat zal er gebeuren bij een sterk toenemende vraag naar bioethanol uit de EU? Kan Brazilië aan die vraag voldoen? Zal de prijs gaan stijgen? Gezien de capaciteit zou Brazilië theoretisch gezien de gehele Europese markt van bioethanol kunnen voorzien. Maar gebeurt natuurlijk niet, er zijn ook andere interessante markten zoals de VS en Azië. In ieder geval is de capaciteit wel groot genoeg om de komende tijd de prijs in EU te bepalen. Daarnaast zijn de prognoses dat de exportcapaciteit van Brazilië toeneemt. De vraag wordt veel gesteld: er is toch een toenemende marktvraag? Maar kan je de markt ook bedienen? Niet als jouw kostprijs te hoog ligt. Dan kan je je investering waarschijnlijk niet op die manier terugverdienen. Dat is met name belangrijk in de eerste paar jaar. En de verwachting bij Nedalco is dat er de komende 5 jaar geen grote winst te behalen valt in de markt van bioethanol. We kijken natuurlijk ook naar de concurrenten. Abengoa is bezig in Rotterdam, waar ze een fabriek bouwen die moet gaan draaien op maïs, Ensus is actief in Engeland en er zijn meer van dat soort projecten. Nedalco heeft z’n twijfels over de haalbaarheid en kan zich niet voorstellen dat daar geld mee wordt verdiend. Als is geïnvesteerd, dan kun je op een gegeven moment niet meer terug, maar wij hebben onze twijfels en we zullen het zien. Wat betreft Nedalco en 2G ethanol, het uitgangspunt is niet zozeer nieuwe technologie ontwikkelen, maar goedkope grondstoffen benutten. Grondstoffen bepalen voor zo’n 60 – 70% de kostprijs. Zo heeft Nedalco dat in het verleden gedaan en zo willen we dat in de toekomst ook doen. Je ziet momenteel veel ontwikkeling in alternatieve voorbewerkingmethodes. Die zouden het gebruik van andere grondstoffen mogelijk moeten maken die wellicht goedkoper zijn. Nedalco maakt onderscheid in een drietal categorieën grondstof. Cat 1: Suiker / zetmeel, Cat 2: Lignocellulose grondstoffen, met een klein aandeel lignine, Cat 3: Lignocellulose grondstoffen, met een hoger aandeel lignine. Als je kijkt naar de markt zie je dat verschillende partijen actief zijn; enerzijds bestaande ethanolproducenten, zoals Nedalco en anderzijds technologiegedreven bedrijven. Nedalco kijkt naar cat. 2 grondstoffen, grondstoffen met veel hemicellulose en weinig lignine. Lignine geeft de plant / grondstof structuur, deze is lastig te verbreken. Hoe meer lignine de grondstof bevat, hoe lastiger deze te verwerken is. Dus minder lignine is eenvoudiger te verwerken en komt eerder in aanmerking voor succes wat betreft 2G ethanol. Voorbeelden zijn wheat bran, corn fiber en suikerbietenpulp, die we samen categorie 2a noemen – en waarbij een vorm van concurrentie met diervoeding blijft bestaan. Categorie 2b bestaat bijvoorbeeld uit switchgras of andere energiegewassen.
Gijs van der Meer - Thesis
166
Categorie 3 bestaat uit taaie grondstoffen als corn stover en hout. Cat3: meest taai, meest lastig te verwerken, bijvoorbeeld: corn stover en hout. Nedalco verwacht op korte termijn, zeg 5 jaar, geen grote successen wat betreft verwerking van dit type grondstof. In deze categorie zijn bedrijven als Iogen, Sunopta en Mascoma actief. De bedrijven die actief zijn in categorie 2, zijn overwegend ook actief in categorie 1. Belangrijke voorbeelden zijn: ICM (Een Amerikaanse bouwer van (ethanol-) fabrieken), POET (Process engineer en bouwer van ethanolfabrieken) en Abengoa. Zij zijn al actief in de markt en kijken wat er nu aan komt, de ‘next best thing’. Dit in tegenstelling tot de technologiegedreven bedrijven. Die kijken verder in de toekomst, naar wat er mogelijk zou kunnen zijn en waar ze geld in zouden willen stoppen. In externe communicatie is door Nedalco als voorbeeld van 2G ethanol stro gebruikt. Dit is enerzijds makkelijker, maar anderzijds niet helemaal terecht. Als je kijkt naar ethanol productie dan kan je drie achtereenvolgende stappen onderscheiden; voorbehandeling, hydrolyse en fermentatie. Voorbehandeling en hydrolyse zijn nauw met elkaar verbonden, hier worden de suikerketens opengebroken. Uit lignocellulose grondstoffen worden twee typen suikers gewonnen, C6 suikers uit cellulose en C5 suikers uit hemicellulose. C6 suiker is te fermenteren met de huidige gisten op de markt. C5 suikers zijn lastiger te fermenteren. Nu heeft Nedalco, in samenwerking met TU Delft, een gist ontwikkeld dat efficiënt C5 suikers om kan zetten. Dit is een doorbraak. Als 25% van je grondstof bestaat uit hemicellulose, dan heb je ook een gist nodig dat dat om kan zetten. Vandaar dat andere partijen geïnteresseerd zijn in Nedalco. Deze partijen, die zich richten op cat. 3 grondstoffen, kijken voornamelijk naar voorbehandeling en hydrolyse, terwijl Nedalco een C5 gist in handen heeft. Zodoende vindt er technologie uitwisseling plaats en kan Nedalco meedoen in de ontwikkeling. Nedalco wil ook voeling houden met de markt en weten wat er gebeurt op het gebied van categorie 3 grondstoffen. Dat is ook een van de redenen waarom Nedalco samenwerkt met onder meer Mascoma. Nedalco heeft meer samenwerkingsverbanden, maar niet alle zijn openbaar. Een andere uitdaging waar je tegenaan loopt bij het benutten van categorie 3 grondstoffen wordt gevormd door agro-logistiek. Hoe krijg je de grondstoffen bij je fabriek? (Want grondstoffen worden heel verspreid gewonnen) Voor de productie van ethanol is zodoende nieuwe infrastructuur en logistiek vereist. Iets waar Nedalco niet in thuis is. Nedalco heeft andere uitgangspunten en is daardoor minder geïnteresseerd in deze ontwikkeling. Kunt u wat vertellen over Nedalco en het EET project “Co-productie van bioethanol, melkzuur…” Niet heel erg bekend met het project. Er zijn meerdere projecten geweest en Nedalco neemt nog steeds deel aan onderzoeksprojecten, waaronder een project dat valt onder het EOSprogramma. Hierin wordt onderzoek gedaan naar de productie van ethanol uit suikerbietpulp en tarwezemelen. Cellulose ethanol kan volgens twee routes geproduceerd worden; biochemisch (hydrolyse en fermentatie) en thermochemisch (vergassing en synthese). De VS is voornamelijk een benzine – dus ethanol – markt, zodat daar ook ethanol productie via thermochemische route wordt onderzocht. De EU is een gecombineerde benzine- / dieselmarkt, daar wordt niet gewerkt aan ethanol productie via thermochemische weg. (Wel biodiesel via thermochemische route) De biochemische route vereist een hoge mate van homogeniteit van de grondstof, terwijl dat bij de thermochemische route veel minder van belang is. Dit is een belangrijk punt. Nedalco werkt met duidelijk identificeerbare reststromen, bijvoorbeeld reststromen uit de graanverwerkende industrie. Een deel van de plant wordt niet geoogst en is niet benodigd voor natuurlijke bemesting. Dat deel is in principe een beschikbare reststroom. Maar als een reststroom een - nieuwe – toepassing krijgt, gaat de waarde van die stroom ook omhoog en daarmee de prijs. Zo wordt ook gezocht naar alternatieve toepassingen voor bierbostel / spent grain en zijn er mogelijkheden binnen de papier en pulp industrie. In deze gevallen gaat het uiteindelijk om beperkte hoeveelheden. Door samenwerking en synergie voordelen zijn deze misschien toch rendabel te benutten, maar voor kleine stromen blijft het lastig. Waar denkt u dat de ontwikkeling van cellulose ethanol heen gaat? Doorbraken op het gebied van cellulose ethanol zullen in de VS plaats gaan vinden. In Europa is de markt niet interessant genoeg, in ieder geval niet op dit moment. Zoals het er nu
Gijs van der Meer - Thesis
167
uitziet zal er niet op industriële schaal cellulose ethanol in de EU geproduceerd gaan worden, tenzij je kijkt naar kleinere initiatieven als bijvoorbeeld Nedalco en wheat bran (tarwezemelen). Daarnaast heb je in Europa partijen als Sekab en BioGasol. Deze bedrijven werken voornamelijk aan technologieontwikkeling. Beide hebben banden met universiteiten. Waarschijnlijk zullen zij hun technologie verkopen als ze een mooi proces ontwikkeld hebben. Persoonlijk heeft Mark Woldberg niet het idee dat Sekab er op uit is om 2G ethanol te ontwikkelen en op de markt te brengen. Sekab zet sterk in op import van Braziliaanse ethanol. Ze hebben wel een pilot plant, maar deze verloopt erg moeizaam en met weinig resultaat. Ook doen ze niet aan C5 fermentatie. Sekab investeert weinig, het zijn vooral andere partijen die de ontwikkeling gaande houden. Er is een aantal partijen in de VS die subsidie hebben gekregen, waaronder Abengoa. Dat is een partij om in de gaten te houden. Het is een groot bedrijf met een grote onderzoekscapaciteit en financiële middelen. ICM en POET zijn ook interessante partijen. Het zijn procesontwikkelaars die ook fabrieken bouwen. Ze zien de markt voor ethanol uit maïs opdrogen en kijken naar nieuwe ontwikkelingen als cellulose ethanol. POET heeft een interessant demonstratieproject lopen, “Project Liberty”, volgens een hybride model, waarbij 1G met 2G ethanol productie gaat worden wordt gecombineerd. Voorbehandeling en hydrolyse vindt afzonderlijk plaats en fermentatie, distillatie en volgende stappen gezamenlijk. Dan kunnen de extra kosten voor het 2G deelproces worden verspreid over een veel grotere gemengde productiecapaciteit. Wellicht zullen we meer van dit soort hybride modellen gaan zien. POET en ICM zijn voorbeelden, met een achtergrond in ethanol, maar je hebt meer grote proces engineers, zoals Grupo M&G, Man FE, Mitsui. Ook zij zien kansen. Ze zouden onderdelen van het proces kunnen kopen, technologieën die op de markt zijn of komen, deze eventueel samenvoegen en een totaalconcept op de markt zetten. Je hebt ook de technologieontwikkelaars als Mascoma, Verenium, Range Fuels, Iogen e.d. Sommigen hebben recent subsidie gekregen van de Amerikaanse overheid, maar er is een partij die de subsidie ook alweer heeft teruggegeven omdat ze de verwachtingen niet waar zullen kunnen maken. Categorie 3 grondstoffen blijven lastig! Je hebt dus kleine technologiebedrijven, maar ook een groep grote engineers die delen van het proces bij elkaar zoeken, samenvoegen en een totaalconcept op de markt kunnen zetten. Hier gaat vrij veel aandacht naar uit. Ik heb gehoord dat het samenvoegen van delen van het proces erg lastig is, dat dit nog een obstakel is op de weg naar commercialisering. Ja, dat klopt. De afzonderlijke stappen zijn niet onafhankelijk te zien en hangen ook samen met de grondstof. De keten moet dus op elkaar worden afgestemd. Een aantal grote chemische bedrijven heeft meegedeeld te werken aan het ontsluiten van lignocellulose om het zo als grondstof in te kunnen zetten, bijvoorbeeld voor de productie van plastics. Dit zou als goedkope en ‘groene’ grondstof kunnen dienen. Kunt u daar wat over zeggen? DOW en BrasCo zijn bijvoorbeeld bezig met het omzetten van bioethanol naar ethyleen, dan heb je groene ethyleen als bulkproduct. In Brazilië heeft dat zin, daar is het op z’n plek. Maar in de EU zie ik het niet zo snel van de grond komen, alhoewel ik daar weinig zicht op heb. Zij zouden wel het concept van cascading / bioraffinage toe kunnen passen en zo wellicht meer waarde onttrekken aan de biomassa. Ook kan de huidige ontwikkeling van cellulose ethanol dienen als opstap naar bioraffinage. Daar ben ik niet zo in thuis, kan ik niets over zeggen. De Petrochemische industrie is ook een interessante partij. Shell zit bijvoorbeeld in Choren en Iogen. BP is ook actief dmv. verschillende investeringen.
Gijs van der Meer - Thesis
168
Zou het kunnen dat ze alleen de vinger aan de pols houden? Gezien hun belangen in de huidige praktijk. Shell heeft veel macht en probeert op de rem te drukken. Maar tegelijkertijd zien ze ook dat de markt eraan komt en dat de Brazilianen kunnen leveren. BP heeft geïnvesteerd in Brazilië en naar verluidt gaat Shell dat ook doen. Ze proberen een deel van de supply chain in handen te krijgen. In de EU gaat dat niet lukken en dit is de volgende stap. Daarnaast nemen ze een aandeel in bedrijven die interessante stappen zetten. Maar het is de vraag of ze die ontwikkeling zullen bevorderen. De petrochemische industrie heeft een enorme macht en gedoogt op dit moment ethanol, maar met tegenzin. Toen er destijds een voorzitter werd gezocht voor het Platform Energietransitie is een oud Shell man benaderd. Dit lijkt een rare gang van zaken. Natuurlijk is de petrochemische industrie een belangrijke partij en je hebt ze nodig voor een transitie, maar je kunt je afvragen of dat wel zo handig is om iemand uit die industrie als voorzitter te hebben als je een energietransitie nastreeft. Is het Nedalco te doen om ethanol aan de man te gaan brengen in EU? Dat is wel de bedoeling geweest, maar nu zien we weinig mogelijkheden om dat te doen. Voor Nedalco is het erg moeilijk gebleken om 2G ethanol groot te maken, als gevolg van vier factoren. - De grondstofprijzen, - De markt (zoals ook eerder toegelicht) - Overheidsregelgeving - Onzekerheid over de duurzaamheidcriteria. Dat zijn vier belangrijke factoren, maar ze zijn nu erg onzeker. Daarnaast heeft Nedalco zijn bestaande bedrijfsvoering. Dit in tegenstelling tot bijvoorbeeld Mascoma. Zo’n partij staat er anders in, heeft investeringen die terugverdiend moeten worden. Nedalco kan wat dat aangaat iets meer afwachten, maar natuurlijk niet te lang. En Nedalco is wel actief, bijvoorbeeld met het ontwikkelde gist. Daar willen we wel geld mee verdienen. Het is niet onze core business, maar we zien wel groei in die hoek en dus moeten we ook tempo houden. Nedalco kijkt ook naar de Amerikaanse markt, onder andere vanwege de lopende samenwerkingsverbanden. Maar Nedalco blijft een alcohol producent, geen technologiebedrijf. Kunt u ten slotte nog iets zeggen over de internationale aspecten van de ontwikkeling van cellulose ethanol? Er gebeurt veel in de VS en ook in Europa. Als gevolg van de EU richtlijn ontstaat er een markt. Partijen houden elkaar in de gaten. Zit de ontwikkeling in een stadium dat een – technologisch – voordeel gecommercialiseerd zou kunnen worden? Zijn de contacten tussen actieve spelers op de markt voornamelijk commercieel? De ontwikkeling van cellulose ethanol zit tussen de fase van pilot en demonstratie in. Abengoa is bijvoorbeeld op drie continenten actief en zij kunnen daardoor breed kijken. Sekab daar verwacht ik weinig van. Iogen lijkt vooral een hoge PR waarde te hebben. (Wat overigens ook wel een beetje voor Nedalco geldt, we zijn nog niet zo succesvol geweest) Over Iogen wordt veel gesproken, maar wellicht zijn ze al geen front runner meer. Ze hebben inderdaad wel een werkende pilot van de hele productieketen, maar deze loopt moeizaam. Ze hebben ook een minder effectief C5 organisme dan Nedalco. Naar mijn weten is Iogen afgestapt van de optie om in Duitsland een fabriek te gaan bouwen en zitten ze te dubben wat ze moeten doen. Het is ook niet gemakkelijk. Cellulose ethanol is vooral in de VS en EU erg actueel. Brazilië richt zich op het moment op WKK, daar zitten grote investeringen aan te komen. Ze richten zich dus niet op 2G. Maar dat hoeven ze ook niet. In de VS worden hoge eisen gesteld wat betreft de markt die er moet komen. Als je daar dus wat kunt, dan zit je goed. Maar in principe geld dat wereldwijd. Als je een mooi proces goed werkend hebt, dan zit je goed en kan je overal aan de slag, rekening houdend met de grondstof. Maar heb je een proces voor bran, dan heb je nog geen proces met voor switchgas. Wanneer is iets commercieel haalbaar? Op een gegeven moment gaat iemand een stap maken. Als je eerste stap maakt, heb je bepaalde voordelen, maar een tweede fabriek zal altijd efficiënter zijn. Dat is een kwestie van ervaring en leren
Gijs van der Meer - Thesis
169
Wat ook meespeelt zijn de grondstof en benodigde enzymen – beschikbaarheid en kosten. Ze zijn er nog niet helemaal en het is onduidelijk wat ze gaan kosten. Daar komt bij dat ze geproduceerd worden door andere bedrijven, waar je afhankelijk van bent. Het is nu een kleine markt en dus zijn de enzymen duur. Loopt dat achter bij de verwachtingen? Sinds de jaren 70 wordt al gewerkt aan celullose ethanol. Waarom zou het nu wel gaan werken? Er wordt veel geld in gestoken door zowel overheden als bedrijven. Maar de markt is cruciaal, dat is de beste stimulans voor innovatie. De markt is er en de grondstof ook. Dat is een enorme stimulans. Nedalco kijkt ook naar de kwestie Food vs. Fuel. Maar dat is niet de reden geweest om te investeren in 2G. Economische belangen zijn bepalend geweest. Overheden worden wel beïnvloed door maatschappelijk ethische kwesties en passen daar hun beleid op aan. Daar pas je je als bedrijf op aan. Je kijkt naar de economics en waar de incentives vandaan komen. Vandaar dat ik niet veel verwacht van biochemicals. Het verbaast me niet dat de interesse er is. Daarnaast zijn het grote bedrijven, met grote onderzoeksafdelingen, maar of ze biochemicals ook gaan commercialiseren? De afnemers van chemische producten worden toch vooral door de prijs gedreven. Er zal een economische reden moeten zijn, waar die ook vandaan komt. Een verschil tussen duurzame energie uit zon en wind en duurzame energie uit biomassa is de kostprijs. In de eerste twee gevallen bepalen grofweg de investeringskosten van de installatie de kostprijs, er zijn geen grondstofkosten tijdens productie. In het geval van biomassa is dat wel zo, daar zijn wel grondstofkosten. Deze staan niet vast maar gaan fluctuerend omhoog. Zo is een hoge olieprijs voor Nedalco schitterend nieuws, maar de biomassaprijs stijgt ook. Biomassa wordt voor verschillende doeleinden ingezet, deels zijn dit concurrerende toepassingen. Bijvoorbeeld electriciteits- en warmteproductie uit biomassa is momenteel gunstiger. Maar er zijn weinig alternatieven voor de transportsector. H2 en elektrische voertuigen zijn nog ver weg, laat staan de infrastructuur eromheen.
Gijs van der Meer - Thesis
170