Probabilitas dan Statistika “Ruang Sampel”
Adam Hendra Brata
Probabilitas Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Probabilitas Probabilitas adalah suatu ilmu untuk memprediksi suatu kejadian (event) atau dapat disebut peluang suatu kejadian berdasarkan pendekatan matematis. Dengan ilmu probabilitas, kita dapat memprediksikan suatu kejadian berdasar kumpulan data yang telah diolah dengan ilmu statistik.
Ruang Sampel Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Ruang Sampel Ruang Sampel adalah kumpulan semua even (kejadian) atau himpunan dari semua outcome yang mungkin dari suatu eksperimen random dinyatakan dengan S Suatu elemen/unsur/anggota pada Ruang sampel (S ) disebut titik sampel (sample point) Menurut banyaknya hasil dalam ruang sampel dibedakan menjadi ruang sampel diskrit dan ruang sampel kontinu
Ruang Sampel Probabilitas - Ruang Sampel Pencacahan Permutasi
Ruang Sampel Ruang sampel S dikatakan diskrit , bila ruang sampel tersebut mengandung titik (unsur) yang berhingga atau tak berhingga yang dapat disusun menurut barisan sederhana - Percobaan pelemparan uang koin
Kombinasi
Sedangkan ruang sampel dikatakan kontinu , bila ruang sampel mengandung titik yang tak hingga yang dinyatakan dalam garis real atau dinyatakan dalam interval dengan semesta bilangan real - Percobaan pengukuran tinggi badan
Ruang Sampel Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Contoh Ruang Sampel Eksperimen melempar sebuah mata koin dua kali (dua buah koin yang dilempar sekali), maka ruang sampelnya : S = { GG , GA , AG , AA}
Eksperimen pelemparan sepasang dadu merah dan hijau, maka ruang sampelnya : S = {(x,y) | x = 1 , 2 , … , 6 ; y = 1 , 2 , … ,6 }
Eksperimen mengukur berat badan seseorang yang beratnya antara 45,5 dan 50,5 , maka ruang sampelnya : S = { x | 45,5 < x < 50,5 }
Ruang Sampel Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Pelemparan 2 Keping Koin
Ruang Sampel Probabilitas - Ruang Sampel
Pelemparan 2 Keping Koin Koin 1
Koin 2
Hasil
Angka A
Pencacahan
E1 = AA
Angka A Garuda G
Permutasi
Angka A
Kombinasi
E3 = GA
Garuda G
Garuda G
E2 = AG
E4 = GG
Kejadian
Koin 1
Koin 2
E1
Angka
Angka
E2
Angka
Garuda
E3
Garuda
Angka
E4
Garuda
Garuda
Pencacahan Probabilitas - Ruang Sampel
Pencacahan Pencacahan adalah menyatakan banyaknya kemungkinan berbeda dari suatu persoalan
Pencacahan Permutasi Kombinasi
Contoh Berapa banyak rute yang dapat ditempuh dari kota S ke kota T, jika diketahui jaringan jalan seperti berikut ? X1
Y1
X2 A
S X3
T Y2
Pencacahan Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Aturan Penjumlahan (Sum Rule) Jika ada suatu prosedur terdiri dari m-buah pekerjaan, T1, T2, …, Tm, yang masing-masing dapat dilakukan dengan n1, n2, …, nm cara, dan setiap pasang pekerjaan tersebut tidak dapat dilakukan secara bersamaan, maka akan ada n1 + n2 + … + nm cara untuk melakukan pekerjaan ini Contoh Prodi TIF UB akan memberikan hadiah sebuah komputer kepada seorang mahasiswa atau seorang dosen secara eksklusif. Ada berapa banyak pilihan berbeda jika ada 800 mahasiswa dan 110 orang dosen di TIF ?
Pencacahan Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Aturan Penjumlahan (Sum Rule) Contoh Prodi TIF UB akan memberikan hadiah sebuah komputer kepada seorang mahasiswa atau seorang dosen secara eksklusif. Ada berapa banyak pilihan berbeda jika ada 800 mahasiswa dan 110 orang dosen di TIF ? Jawab: Ada 800 + 110 = 910 buah pilihan
Pencacahan Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Aturan Perkalian (Product Rule) Jika ada suatu prosedur yang terdiri atas pekerjaan-pekerjaan yang dilakukan secara berurutan T1, T2, …,Tm yang masing-masing dapat dilakukan dengan n1, n2, …, nm buah cara, maka akan ada n1×n2 ⋅ …×nm buah cara untuk mengerjakan prosedur tersebut Contoh Nomor polisi yang tertulis di plat nomor kendaraan bermotor dibuat dengan 3 buah abjad. Ada berapa buah kemungkinan kode yang dapat dibuat?
Pencacahan Probabilitas - Ruang Sampel Pencacahan Permutasi
Aturan Perkalian (Product Rule) Contoh Nomor polisi yang tertulis di plat nomor kendaraan bermotor dibuat dengan 3 buah abjad. Ada berapa buah kemungkinan kode yang dapat dibuat ?
Kombinasi
Jawab : Ada 26 buah kemungkinan untuk huruf pertama, kemudian 26 buah kemungkinan untuk huruf kedua dan 26 kemungkinan lain untuk huruf terakhir. Jadi terdapat 26⋅26⋅26 = 17576 buah nomor polisi yang berbeda yang bisa dibuat dari 3 buah abjad
Permutasi Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Permutasi Penyusunan kembali suatu kumpulan objek dalam urutan yang berbeda dari urutan yang semula Susunan urutan yang dapat dibentuk dari suatu kumpulan benda yang diambil seluruhnya atau sebagian Permutasi memperhatikan urutan, ( AB ≠ BA )
Permutasi Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Permutasi Terdapat beberapa jenis permutasi, yaitu : 1. Permutasi dari n benda yang berlainan 2. Permutasi dari n benda berlainan yang diambil k sekaligus 3. Permutasi dengan elemen yang sama 4. Permutasi siklis atau permutasi dari n benda yang disusun secara melingkar 5. Permutasi dengan penyekatan
Permutasi (n) Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Permutasi dari n Benda yang Berlainan Contoh Berapakah permutasi dari 4 kartu huruf A, B, C dan D yang nantinya digunakan untuk sebuah kode ?
Permutasi (n,k) Probabilitas - Ruang Sampel
Permutasi dari n Benda yang Berlainan yang Diambil k Sekaligus
Pencacahan Permutasi Kombinasi
Contoh Banyaknya bilangan yang terdiri atas 2 angka yang berbeda yang dapat disusun dari angka angka 3, 5, dan 7?
Permutasi (n,k) Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Permutasi dari n Benda yang Berlainan yang Diambil k Sekaligus Contoh Banyaknya bilangan yang terdiri atas 2 angka yang berbeda yang dapat disusun dari angkaangka 3, 5, dan 7?
Banyaknya bilangan yang terdiri atas 2 angka berbeda dan disusun dari angka-angka 3, 5, dan 7 adalah sama dengan permutasi yang terdiri atas dua unsur yang dipilih dari 3 unsur, P (3, 2) P (3, 2) = 3!/(3-2)! = 3!/1! = 3 x 2 x 1!/1! = 3 x 2 = 6
Permutasi Elemen Identik Probabilitas - Ruang Sampel
Permutasi dengan Elemen yang Sama Untuk untai S sepanjang n yang mengandung satu macam unsur identik sebanyak k :
Pencacahan Permutasi Kombinasi
Contoh Suatu untai aabc terdiri dari 4 macam unsur, yaitu a, b, dan c tetapi unsur a muncul sebanyak 2 kali. Kedua a tersebut identik. Permutasi dari aabc ?
Permutasi Elemen Identik Probabilitas - Ruang Sampel Pencacahan Permutasi
Permutasi dengan Elemen yang Sama Contoh Suatu untai aabc terdiri dari 4 macam unsur, yaitu a, b, dan c tetapi unsur a muncul sebanyak 2 kali. Kedua a tersebut identik. Permutasi dari aabc ?
Kombinasi
Total permutasi dari untai aabc adalah sebanyak 4! = 24. Tetapi total permutasi ini juga mencakup posisi a0 dan a1 yang bertukar-tukar, yang jumlahnya adalah 2! (karena a terdiri dari 2 unsur: a0 dan a1). Dengan demikian jika dianggap a0 = a1 maka banyak permutasinya menjadi 4! dibagi dengan 2!
Permutasi Elemen Identik Probabilitas - Ruang Sampel Pencacahan
Permutasi dengan Elemen yang Sama Lebih umum lagi, jika panjang untai adalah n, mengandung m macam unsur yang masingmasing adalah sebanyak k1, k2, ..., km, maka :
Permutasi Kombinasi
Contoh Hitunglah banyak permutasi huruf yang mungkin terjadi jika diberikan huruf m,a,t,e,m,a,t,i,k,a ?
Permutasi Siklis Probabilitas - Ruang Sampel Pencacahan
Permutasi dengan n Benda yang Disusun Secara Melingkar Banyak permutasi n benda berlainan yang disusun melingkar adalah (n-1)!
Permutasi
Kombinasi
Contoh Dalam sebuah rapat ada 8 orang duduk melingkar. Berapa susunan duduk yang berlainan dalam rapat tersebut ?
Permutasi siklis dapat dihitung dengan menganggap bahwa satu elemen harus ditulis sebagai awal untai abcdefgh Jadi Permutasinya : (8-1)! = 7!
Permutasi dengan Penyekatan Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Permutasi dengan Penyekatan Banyak permutasi n benda berlainan yang disusun melingkar adalah (n-1)! Banyaknya
permutasi dari n benda jika n1 diantaranya berjenis pertama, n2 berjenis kedua dan seterusnya hingga nk berjenis ke k adalah :
Permutasi dengan Penyekatan Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Permutasi dengan Penyekatan Contoh Ada 9 bola lampu disusun seri. Berapa cara menyusun bola lampu tersebut jika 3 diantaranya merah, 4 biru dan 2 hijau ?
9! 1260 3!4!2!
Kombinasi Probabilitas - Ruang Sampel Pencacahan Permutasi Kombinasi
Kombinasi Kombinasi adalah penggabungan beberapa objek dari suatu kelompok tanpa memperhatikan urutan Dengan kata lain, kombinasi adalah pengelompokan beberapa objek tanpa melihat urutan seperti halnya permutasi Rumus
kombinasi dari n benda yang berlainan bila diambil sebanyak r adalah :
n! nCr r!(n r )!
Kombinasi Probabilitas - Ruang Sampel Pencacahan Permutasi
Kombinasi Contoh Dalam babak penyisihan suatu turnamen sepak bola, ada 4 tim yang satu sama lain akan bertanding satu kali. Banyaknya pertandingan yang terjadi adalah ?
Kombinasi
Untuk menentukan banyaknya pertandingan yang terjadi digunakan kombinasi, karena tidak melihat urutannya lagi C (4, 2) = 4!/(4-2)! 2! = 4!/(2! 2!) = 4 x 3 x 2!/(2! 2!) = 4x 3/ 2 x 1 = 12/2 = 6
Tugas 4 •
• •
Mengerjakan soal – soal yang berada di beberapa slide selanjutnya secara individu Mengerjakan soal – soal tersebut dengan cara menghitung dan ditulis di kertas Dikumpulkan pada pertemuan berikutnya (besok)
Tugas 4 1. Ada 5 buku matematika, 4 buku fisika dan 3 buku kimia. Tentukan banyak cara menyusun buku tersebut dalam sebuah rak jika : a. peletakannya sembarang b. buku fisika harus berkumpul jadi satu c. buku fisika tidak boleh berkumpul jadi satu
2. Permutasikan semua susunan huruf : STATISTIKA
Tugas 4
Bendahara
Sekretaris
Wakil
Ketua
3. Di dalam sebuah kelas dilangsungkan pemilihan pengurus kelas dengan 4 jabatan tersedia. Di dalam kelas tersebut terdapat 7 orang calon pengurus. Berapa kemungkinan cara agar setiap posisi jabatan dijabat oleh seorang siswa yang menjadi calon pengurus? A
B
C
D
E
F
G
Tugas 4 4. Seorang petani akan membeli 3 ekor ayam, 2 ekor kambing, dan 1 ekor sapi dari seorang pedagang yang memiliki 6 ekor ayam, 4 ekor kambing, 3 ekor sapi. Dengan berapa cara petani tersebut dapat memilih ternak – ternak yang di inginkannya ?
Terimakasih dan Semoga Bermanfaat v^^