Hvězdárna a planetárium Brno, p. o.
Pokusy z geometrické optiky Kapitola: Duté zrcadlo Pomůcky: Magnetická souprava pro pokusy z geometrické optiky nebo Optická lavice, zdroj rovnoběžných světelných parsků (svítilna s mřížkou), silný bodový zdroj světla, duté zrcadlo, rovinná zrcátka, elastický odražeč, dva reflektory, zápalky. Popis pokusů:
Před začátkem demonstrace si připravíme optickou lavici s nezbytnými prvky a místnost zatemníme pro lepší viditelnost. Zapneme zdroj rovnoběžných paprsků a duté zrcadlo umístíme tak, aby paprsky dopadaly rovnoběžně s optickou osou dutého zrcadla. Odražené paprsky se pak budou sbíhat před zrcadlem do jednoho bodu.
Duté zrcadlo vyměníme za dvojici rovinných zrcadel, která uspořádáme do tvaru části kružnice. Paprsky se budou odrážet od zrcadel a následně protínat v jednom bodu. Můžeme použít i elastický odražeč, který můžeme plynule deformovat a tím měnit tvar odrazné plochy. Tím se bude měnit i poloha ohniska.
Reflektory umístíme proti sobě tak, aby se jejich optické osy shodovaly. Poté umístíme do jednoho z nich bodový zdroj světla (v našem případě halogenovou žárovku) tak, aby se nacházel přesně v ohnisku reflektoru. Do ohniska druhého reflektoru připevníme zápalku. Po rozsvícení žárovky se paprsky budou odrážet tak, že se budou soustřeďovat v ohnisku druhého reflektoru. Za několik sekund se zápalka vznítí.
Úvod: Duté, nebo též konkávní zrcadlo je optické těleso s reflexním, konkávně zakřiveným povrchem. Optické vlastnosti dutého zrcadla závisejí především na geometrických vlastnostech zakřivené reflexní plochy. Máme tak spoustu druhů dutých zrcadel: kulové, parabolické, hyperbolické atd. Duté zrcadlo obecně odráží rovnoběžný svazek paprsků do jednoho bodu – ohniska.
1
Odraz paprsků od dutého zrcadla. Pokud se světelné paprsky šíří podél optické osy zrcadla, dopadají na jeho povrch a následně se odrážejí podle zákona odrazu. Paprsek, který se šíří přímo po optické ose do středu zrcadla, dopadá na reflexní povrch kolmo, a proto se odráží ve stejném směru zpět.
Obr. 1.: Odraz paprsků od dutého zrcadla. Ostatní rovnoběžné paprsky dopadají na povrch zrcadla pod menšími úhly, než je úhel pravý. Díky tomu se odráží do jiných směrů, než odkud se původně šířily. Tyto paprsky se pak sbíhají v ohnisku před zrcadlem a následně pokračují dál (obr. 1.).
2
Změna optických vlastností dutého zrcadla. Změnu optických parametrů dutého zrcadla můžeme demonstrovat několika způsoby. Nejjednodušší způsob je umístit malá rovinná zrcátka tak, aby připomínala tvar části kružnice, nebo paraboly (obr. 2.). Jejich natočením vůči sobě můžeme měnit směr odražených paprsků.
Obr. 2.: Odraz paprsků od nakloněných rovinných zrcátek.
3
Jiný způsob využívá flexibilní odraznou plochu, kterou můžeme různě měnit a tvarovat. Tím budeme názorně měnit směr odražených paprsků a polohu ohniska. Také můžeme předvést, že když tuto plochu narovnáme, vznikne tím rovinné zrcadlo, které má ohnisko v nekonečnu.
Obr. 3.: Odraz paprsků pomocí flexibilní odrazové plochy. Využití dutých zrcadel v praxi. V praxi se hojně využívá dutých parabolických zrcadel. Nejznámějším příkladem jsou automobilové reflektory. Ty fungují tak, že v jejich ohnisku je umístěn zdroj světla, který září ve všech směrech. Paprsky se odrazí od povrchu reflektoru a šíří se společně do jednoho směru. Dutá zrcadla můžeme využít i obráceně, pokud potřebujeme rovnoběžné paprsky soustředit do jednoho místa. Nejznámější příklad je parabolická anténa, která slouží k příjmu satelitního televizního signálu. I když nepracuje přímo s viditelným světlem, její princip je totožný.
4
Obr. 4.: Vznícení zápalky pomocí dvou reflektorů. Tyto dva principy můžeme spojit v jeden názorný pokus, kdy proti sobě namíříme dva reflektory. Jeden bude plnit funkci ,,vysílače‘‘ a druhý ,,přijímače‘‘. Paprsky od halogenové žárovky se budou šířit tak, že po odrazech se společně zkříží v ohnisku druhého reflektoru. Zde demonstrativně umístíme zápalku, která se po chvíli vznítí (obr. 4.).
5
Hvězdárna a planetárium Brno, p. o.
Pokusy z geometrické optiky Kapitola: Odraz na rovinném zrcadle
Pomůcky: Laser, dvě rovinná zrcadla, magnetická stupnice a magnetické malé rovinné zrcadlo, zdroj světla (šablona pro jeden paprsek), odrazka, koutový odražeč. Popis pokusů: - Zákon odrazu: rovinné zrcadlo je položené na zemi a svítíme na něj laserem. Měníme úhel dopadu paprsku tak, aby efekt vynikl. - Magnetická tabule: na tabuli si nachystáme magnetickou stupnici a světelný zdroj s jedním paprskem. Do středu stupnice do bodu [0;0] umístíme zrcadlo . Do toho středu namíříme světelný paprsek. - Systém zrcadel: namíříme laser na zrcadlo a budeme se ptát, co se stane, když každému odraženému paprsku dáme do cesty další zrcadlo, navedeme studenty na systém zrcadel. Pak si vezmeme systém zrcadel na sebe navzájem kolmých – koutový odražeč. Ten nám dokáže paprsek vrátit zpět ke zdroji světla. - Odrazka: namíříme na odrazku laser, abychom viděli efekt, který způsobuje. - Prezentace: pomocí prezentace můžeme ukázat další využití zákona odrazu – kosmonauti na Měsíci, špionážní letadla, architektura atd.
1
Když namíříme laser na rovinné zrcadlo, pozorujeme první zákon geometrické optiky – zákon odrazu. Po dopadu na rovinné zrcadlo se světelný paprsek odrazí ve stejné rovině – odražený paprsek leží v rovině dopadu (nevychýlí se do boku).
Obr. 1: Dráha paprsku z laserového ukazovátka, odraz paprsku od rovinného zrcadla. Na první pohled (obr. 1) se zdá, že paprsek dopadá a odráží se pod stejným úhlem. Abychom se ujistili, že tomu tak skutečně je, přesuneme se na magnetickou tabuli. Do cesty světla ze zdroje dáme šablonu, aby nám vznikl jeden paprsek. Na tabuli umístíme malé zrcadlo. Paprsek světla necháme dopadat na zrcadlo, v místě dopadu stanovíme kolmici, tedy 0°. Od této kolmice pak měříme velikosti úhlů. Zákon odrazu nám říká, že úhel dopadu a odrazu je stejný. Což dokazuje i náš pokus. Jak bychom mohli využít tento jednoduchý zákon v praxi? Namiřme laser zase na zrcadlo a podívejme se na dráhu paprsku. Kdybychom do této dráhy vložili další zrcadlo, opět by se nám od jeho roviny paprsek odrazil někam do prostoru. Pokud tento proces budeme neustále opakovat, dokážeme přivést světelnou stopu, kam budeme chtít. Stačí vytvořit systém zrcadel. Třeba pomocí tří zrcadel na sebe navzájem kolmých – koutový odražeč (obr. 2), ho přivede přímo zpět ke zdroji, odkud vychází. 2
Obr. 2: Koutový odražeč – tři navzájem kolmá zrcadla. Tohoto principu využívá například odrazka. Je v ní systém plošek, které dokáží vrátit světlo k jeho zdroji, třeba k řidiči v autě. Díky tomu jsou lidé vidět na silnici a jsou lépe chráněni před nehodami. Zákon odrazu též využili vědci k prvnímu přesnému změření vzdálenosti Země – Měsíc. Roku 1971 zanechala mise Apollo 15 na povrchu Měsíce reflektor, který je složen ze stovek koutových odražečů. K Měsíci se vyslala série laserových impulsů. Ty se od koutových odražečů odrazily a vrátily nazpět k Zemi. Změřením času mezi vystřelením a návratem paprsku se určila vzdálenost Měsíce s přesností 5 m. Dnes se hodnota přesnosti měření vzdálenosti Země – Měsíc pohybuje v rozmezí milimetrů. Zákon odrazu využívají i špionážní letadla či architekti při zajímavých kompozicích staveb.
3
Hvězdárna a planetárium Brno, p. o.
Pokusy z geometrické optiky Kapitola: Spojná čočka Pomůcky: Magnetická souprava pro pokusy z geometrické optiky nebo Optická lavice, zdroj světelných parsků (svítilna s mřížkou), spojné čočky, promítací stínítko. Popis pokusů:
Před začátkem demonstrace si připravíme optickou lavici s nezbytnými prvky a místnost zatemníme pro lepší viditelnost. Zapneme zdroj paprsků a spojnou čočku umístíme tak, aby paprsky procházely kolmo skrz čočku. Na druhé straně čočky se budou parsky sbíhat do jednoho místa, do tzv. ohniska.
Čočku můžeme stranově a výškově přetočit, abychom demonstrovali, že je poloha ohniska nezávislá na orientaci čočky.
Spojnou čočku vyměníme za jinou (pokud máme k dispozici), která má jinou optickou mohutnost, nebo ji ponoříme do vody. Tím se posune místo, kde se paprsky protínají.
Úvod: Spojná čočka je optické těleso se dvěma vypuklými kulovými plochami se společným centrem, nebo jednou vypuklou a jednou rovinnou plochou. Je tvořena transparentním materiálem, z pravidla sklem, nebo plastickou hmotou, který má index lomu vždy větší než jedna. Optické vlastnosti čočky obecně závisejí na indexu lomu materiálu a geometrii lámavých ploch. Aby čočka fungovala, musí se lišit index lomu jejího materiálu a okolního prostředí.
1
Průchod paprsků spojnou čočkou Spojná nebo též konvergentní čočka způsobí, že původně rovnoběžné paprsky se po průchodu čočkou sbíhají do jednoho místa, tzn. konvergují (obr 1.). Paprsky se při průchodu povrchem lámou podle Snellova zákona a stejně pak i při výstupu parsku z čočky. Zakřivená plocha čočky způsobuje, že paprsky na plochu čočky dopadají pod různými úhly a podle toho se lámou.
Obr. 1.: Průchod paprsků spojnou čočkou. Paprsek, který dopadá kolmo na střed čočky rovnoběžně s její optickou osou, prochází nezměněn a dále se šíří ve stejném směru. Ostatní parsky, které procházejí čočkou rovnoběžně s její optickou osou, ale mimo její střed se lámou, protože dopadají na její povrch pod úhlem menším než kolmým. Parsky, které procházejí dále od jejího středu, jsou lámány více než paprsky, které prochází blíže středu čočky.
2
Třetí zákon geometrické optiky Třetí zákon geometrické optiky říká, že pokud prochází světelný paprsek z jednoho místa do druhého, přes libovolnou soustavu čoček či zrcadel, bude pokračovat přesně po stejné dráze, i kdybychom jej poslali z druhého místa na první. To znamená, že můžeme čočku stranově i výškově přetočit, aniž by se změnil průběh paprsků (obr. 2.). Naopak můžeme nechat procházet paprsky z bodového zdroje čočkou a vycházející paprsky budou rovnoběžné.
Obr. 2.: Průchod paprsků převrácenou čočkou – třetí zákon geometrické optiky.
3
Změna optických vlastností čočky Pokud máme dvě spojné čočky zhotovené ze stejného materiálu, ale s jinými geometrickými vlastnostmi, tak se průchod paprsků skrz ně bude lišit. V našem případě máme k dispozici dvě čočky s různou optickou mohutností (převrácená hodnota ohniskové vzdálenosti čočky). Paprsky po průchodu skrz čočku s větší optickou mohutností se budou sbíhat dříve (obr. 3).
Obr. 3.: Průchod paprsků čočkou s jinou optickou mohutností. Jestliže máme k dispozici pouze jednu čočku, můžeme její vlastnosti jednoduše změnit. Změnu tvaru můžeme vyloučit, protože bychom nejspíše čočku zničili. Pomůže nám Snellův zákon, který říká mimo jiné, že lom světla je závislý na indexu lomu čočky a okolního prostředí. Nejjednodušší způsob je ponořit čočku do vody a tím změnit index lomu prostředí. Paprsky se tím pádem budou lámat mnohem méně a poloha ohniska se viditelně posune oproti případu, kdy byla čočka ve vzduchu. O něco složitější je vytvořit ledový odlitek původní čočky a porovnat optické vlastnosti obou čoček.
4
Hvězdárna a planetárium Brno, p. o.
Pokusy z geometrické optiky Kapitola: Vypuklé zrcadlo Pomůcky: Magnetická souprava pro pokusy z geometrické optiky nebo Optická lavice, zdroj rovnoběžných světelných parsků (svítilna s mřížkou), silný bodový zdroj světla, vypuklé zrcadlo, rovinná zrcátka, elastický odražeč, laserové ukazovátko. Popis pokusů: Před začátkem demonstrace si připravíme optickou lavici s nezbytnými prvky a místnost zatemníme pro lepší viditelnost. Zapneme zdroj rovnoběžných paprsků a vypuklé zrcadlo umístíme tak, aby paprsky dopadaly rovnoběžně s optickou osou vypuklého zrcadla. Odražené paprsky se pak budou před zrcadlem rozbíhat do všech směrů.
Vypuklé zrcadlo vyměníme za dvojici rovinných zrcadel, která uspořádáme do tvaru části kružnice. Paprsky se budou odrážet od zrcadel do různých směrů. Podobně můžeme použít i elastický odražeč, který můžeme plynule deformovat, a tím měnit tvar odrazné plochy. Tím se bude měnit i míra rozbíhavosti paprsků.
Velké vypuklé zrcadlo otočíme na publikum tak, aby si všichni mohli prohlédnout svůj obraz, který bude zmenšený. Tím pádem budou vidět větší zorné pole. Zrcadlo položíme na podlahu a laserovým ukazovátkem budeme svítit shora svisle dolů na jeho povrch. Pokud se trefíme přímo doprostřed, tak se paprsek odrazí zpět k laseru, nebo se promítne na strop. Ale když posvítíme na okraj zrcadla, paprsek se může odrazit vodorovně (dokonce i na podlahu, pokud má zrcadlo malý poloměr křivosti).
1
Úvod: Vypuklé nebo též konvexní zrcadlo je optické těleso s reflexním, konvexně zakřiveným povrchem. Optické vlastnosti vypuklého zrcadla závisejí především na geometrických vlastnostech zakřivené reflexní plochy. Nejčastějším typem vypuklého zrcadla je zrcadlo kulové, ale vyrábějí se i zrcadla s mnohem komplikovanější geometrií povrchu. Vypuklé zrcadlo obecně odráží rovnoběžný svazek paprsků do různých směrů.
Obr. 1.: Odraz paprsků od vypuklého zrcadla.
Odraz paprsků od vypuklého zrcadla Pokud se světelné paprsky šíří podél optické osy zrcadla, dopadají na jeho povrch a následně se odrážejí podle zákona odrazu. Paprsek, který se šíří přímo po optické ose do středu zrcadla, dopadá na reflexní povrch kolmo, a proto se odráží ve stejném směru zpět. Ostatní rovnoběžné paprsky dopadají na povrch zrcadla pod menšími úhly, než je úhel pravý. Díky tomu se odráží do jiných směrů, než odkud se původně šířily. Tyto paprsky se pak rozbíhají do různých směrů tak, jako by měly společný počátek v ohnisku za zrcadlem (obr. 1.). Pokud má zrcadlo malý poloměr křivosti vzhledem ke svým rozměrům, tak se do vašeho oka mohou odrážet paprsky dokonce i z míst, která jsou vzdálenější, než je samo zrcadlo.
2
Změna optických vlastností vypuklého zrcadla Změnu optických parametrů vypuklého zrcadla můžeme demonstrovat několika způsoby. Nejjednodušší způsob je umístit malá rovinná zrcátka tak, aby připomínala tvar části kružnice, nebo paraboly. Jejich natočením vůči sobě můžeme měnit směr odražených paprsků. Jiný způsob využívá flexibilní odraznou plochu, kterou můžeme různě měnit a tvarovat. Tím budeme názorně měnit směr odražených paprsků a míru jejich rozbíhavosti. Také můžeme předvést to, že když tuto plochu narovnáme, vznikne vlastně rovinné zrcadlo, které má ohnisko v nekonečnu.
Využití vypuklých zrcadel v praxi Vypuklá zrcadla se v praxi využívají především kvůli jejich zobrazovacím schopnostem. Když se totiž podíváme do vypuklého zrcadla, zjistíme, že náš obraz je zmenšený a zorné pole je o to větší. Můžeme tak pozorovat široké okolí pouze pohledem na jedno vypuklé zrcadlo.
Obr. 2.: Využití vypuklého zrcadla v praxi. Foto: Webová sbírka příkladů z fyziky. Proto se tato zrcadla používají v nepřehledných zatáčkách a křižovatkách (obr. 2.). Vypuklé zrcadlo se umístí tam, odkud je dobrý výhled do všech míst. Takže pokud se podíváte odkudkoliv na toto zrcadlo, uvidíte výhled, jaký byste měli právě z tohoto místa. Stejně tak se tato zrcadla používají v obchodech k prevenci proti krádežím. 3