PODPORA ELEKTRONICKÝCH FOREM VÝUKY CZ.1.07/1.1.06/01.0043
Tento projekt je financován z prostředků ESF a státního rozpočtu ČR.
SOŠ informatiky a spojů a SOU, Jaselská 826, Kolín
1
ČÍSLICOVÁ TECHNIKA ČÍSLICOVÁ TECHNIKA 3
Autorem tohoto výukového materiálu je Ing. Miroslav Veverka
SOŠ informatiky a spojů a SOU, Jaselská 826, Kolín
2
OBSAH
Tranzistor ve spínacím režimu Vlastnosti logických členů DA převodníky AD převodníky Diagnostika číslicových obvodů Literatura
3
Tranzistor ve spínacím režimu
4
Obecné vlastnosti spínače ■ ROFF – izolační odpor v rozepnutém stavu ■ ROFF →∞ ■ RON – odpor v sepnutém stavu ■ RON → 0 ■ tON, tOFF – doba sepnutí, doba rozepnutí ■ tON, tOFF → 0 ■ výstupní odpor tranzistoru skokem přechází z velké hodnoty do malé a naopak 5
Zapojení spínače ■ nejčastěji se používá zapojení se společným emitorem ■ po přivedení napětí na vstup tranzistor sepne, dostane se do saturace a je na něm napětí UCES
RZ
+UCC
IC RB
IB UCE
U1
6
Zatěžovací přímka ■ je určena napájecím napětím UCC a zatěžovacím odporem RZ. I C
■ sepnutému stavu odpovídá bod 1, určující UCEsat
1
IB
2
IB=0
IC0
■ vypnutému stavu odpovídá bod 2, tranzistor nelze uvést do zcela nevodivého stavu, protože se uplatňuje zbytkový proud kolektoru IC0
UCC RZ
UCES
UCC
→UCE
7
Výpočet spínacího stupně ■ velikost kolektorového proudu sepnutého tranzistoru:
UCC – UCES . UCC IC¨= = RZ RZ
UCES ≅ 0,1 až 1 V
■ má-li tranzistor sepnout proud o velikosti IC, musí do báze přitékat proud minimálně: .
IB =
IC h21E
■ h21E volíme z dolního okraje katalogových hodnot
8
Výpočet spínacího stupně ■ proud báze je vhodné zvětšit o 50 až 100 %, pokud chceme tranzistor přesytit ■ velikost rezistoru RB spočítáme:
U1 – UBE . U1 – 0,7 RB¨= = IB IB
9
Příklad výpočtu spínacího stupně ■ bezkontaktní spínač bude spínat cívku stykače s parametry U = 48 V, RZ = 200 Ω. Spínací napětí bude U1 = 3,5 V.
48 V IC = = 240 mA 200 Ω ■ vybereme tranzistor, který má UCmax > Unap, ICmax > IC, h21E = 50
IC 0,24A IB = = = 4,8 mA h21E 50 U1 – UBE 3,5 – 0,7 V RB = = = 583 Ω IB 4,8 mA 10
Vlastnosti logických členů
11
Logický člen TTL NAND ■ víceemitorový tranzistor T1 vytváří spolu s R1 (omezuje vstupní proud) vlastní logický součin ■ T2 je budičem tranzistorů T3 a T4 ■ T3 a T4 představují aktivní koncový stupeň (totem pole), jeden z nich je vždy otevřen a druhý zavřen ⇒ na výstupu jsou "tvrdé" napěťové úrovně, výstupy nelze paralelně zapojovat 12
Činnost ■ je-li alespoň jeden ze vstupů A nebo B na úrovni log. 0, prochází přechodem emitor-báze tranzistoru T1 proud do vnějšího vstupního obvodu , T1 je nasycen a na jeho kolektoru je napětí shodné s napětím na emitoru ■ T2 je uzavřen, na rezistoru R3 je nulové napětí a T4 je uzavřen ■ přes R2 teče do báze T3 proud a na výstupu je napětí log. 1
13
Činnost ■ objeví-li se na vstupech A a B současně log. 1, emitorové přechody T1 jsou uzavřeny a přechod b-c se chová jako propustná dioda, T1 pracuje v inverzním režimu (zamění se funkce e ↔ c) ■ proud určený rezistorem R1 prochází touto diodou do báze T2, který se nasytí a svým emitorovým proudem otevře T4 ■ mezi kolektorem a emitorem T2 je malé saturační napětí, proto je T3 uzavřen
14
Činnost ■ na výstupu je kolektorové napětí nasyceného T4 – log. 0 ■ je-li vstup v log. 1, vtéká do něj proud, výstup obvodu v log. 1 musí tedy tento proud dodávat ■ je-li vstup v log. 0, vstupní proud z něj vytéká, výstup obvodu ve stavu log. 0 musí tento proud přijímat
15
Hradlo s otevřeným kolektorem ■ hradlo spíná tranzistorem T4 výstup směrem k nulovému napětí ■ log. 1 je přivedena pomocí zdvihacího rezistoru (pullup) ■ rezistor je pro funkci nutný, jeho velikost ovlivňuje velikost proudu
16
Hradlo s otevřeným kolektorem ■ na výstupu je "tvrdá" log. 0 a "měkká" log. 1 ■ takto bývají vybavena výkonová hradla ■ možnost vytvoření montážního součinu (wired-or) spojením výstupů několika hradel ■ výstup montážně spojených obvodů s otevřeným kolektorem je v log. 0, je-li alespoň jeden z výstupů v log. 0 ■ log. 1 je na výstupu pouze v případě, jsou-li všechny výstupy v log. 1
17
Hradlo s otevřeným kolektorem
Ucc
A B
1
Y
1
Ucc
A B
1
1
Y
A B │ Y -------------0 0 │ 1 0 1 │ 0 1 0 │ 0 1 1 │ 0
montážní (negovaný) součet (NOR)
A B │ Y ------------0 0 │ 0 0 1 │ 0 1 0 │ 0 1 1 │ 1
Y = A.B montážní součin (AND)
18
Třístavový výstup ■ signálem OE se výstup odpojí od vnitřních obvodů členu a z vnějšího pohledu má vysokou impedanci ■ vhodné pro paralelní spojování (sběrnice), v jednom okamžiku je aktivní jen jeden obvod
A
Y=A
OE
19
Rodiny TTL ■ liší se ■ ve ztrátovém vákonu ■ v rychlosti ■ TTL
normální vlastnosti
■ TTL L
Low Power – nízký příkon
■ TTL S Schottky – malé zpoždění při normálním ztrátovém výkonu ■ TTL LS Low Power Schottky – malý ztrátový výkon při malém zpoždění ■ TTL ALS Advanced LS – ještě menší ztrátový výkon při ještě menším zpožděním 20
Nepoužité vstupy hradel ■ vždy se připojí na takovou úroveň, která neovlivní funkci ■ nezapojený vstup se chová jako by byl na log. 1, ale je to nespolehlivé a je citlivý na poruchy
21
Šumová imunita ■ je rozdíl výrobcem zaručované elektrické výstupní a přípustné vstupní hodnoty signálu pro danou logickou hodnotu. garantované UIH
2,4 2,0
garantované UOH
0,8 V až 2 V – zakázané pásmo garantované UIL
0,8 0,4 0
garantované UOL
22
Šumová imunita
23
Indikace logického výstupu pomocí LED svítí při
Zapojení
výstup lze použít
výpočet
R &
1
ne
UOH − UD R= ID
Ucc
&
R
0
ne
R=
UCC − UD − UOL ID
24
Indikace logického výstupu pomocí LED svítí při
Zapojení
výstup lze použít
výpočet
Ucc
&
1
ano
R
UOH − UBE R= ID
Ucc R
0
ano
UCC − UBE − UOL R= ID
&
25
Indikace logického výstupu pomocí LED svítí při
Zapojení
výstup lze použít
výpočet
Ucc R
RB = 1
Rb
ano
&
h21e(UOH − UBE) ID
UCC − UD R= ID
Ucc R
Rb &
RB = 0
ano
h 21e(UOH − UBE ) ID
UCC − UD R= ID 26
DA převodníky
27
DA převodník ■ pojmenování: ■ číslicově analogový převodník ■ digitálně analogový převodník ■ převodník číslo-napětí ■ Digital Analogue Converter ■ DAC, D/A, DA, ČA ■ převádí vstupní číslicový signál (sestávající z určitého počtu bitů) na výstupní analogový signál – nejčastěji napětí nebo proud
28
Operační zesilovač ■ základním prvkem převodníků je operační zesilovač ■ ideální OZ: ■ Au – napěťové zesílení ■ Ri – vstupní odpor ■ RO – výstupní odpor
→∞ →∞ →0
■ v převodnících se používá v zapojení jako invertující zesilovač ■ pro výstupní napětí platí vztah: R U =–U ⋅ Z 1 R 2 1
U1
U2
29
Schematická značka DA převodníku
digitální vstupy
referenční napětí
analogový výstup
30
DAC s váhovou strukturou odporové sítě ■ OZ je zapojení jako sumátor, kde se jednotlivé bity reprezentují spínače B1 B2 a B3 ■ jednotlivé proudy se sčítají na společném odporu představovaném vstupním odporem OZ ■ volby rezistorů v řadě R, 2R, 4R odpovídají váhám binárního kódu ■ B1 je nejvyšší řád, B3 je nejnižší řád ■ jednotlivé váhy jsou RZ/Ri tedy ½, ¼, ⅛
31
DAC s váhovou strukturou odporové sítě ■ výstupní napětí DAC: RZ RZ RZ UO = −UREF ⋅ (B1 + B2 + B3 ) R1 R2 R3 ■ bit B1 způsobí napětí 8.(10/20)=4V ■ bit B2 způsobí napětí 8.(10/40)=2V ■ bit B3 způsobí napětí 8.(10/80)=1V ■ bity B1 až B3 způsobí napětí 8.(1/2+1/4+1/8)=8.(7/8)=7V
Bi=0: vypnuto Bi=1: zapnuto B1 0 0 0 0 1 1 1 1
B2 0 0 1 1 0 0 1 1
B3 UO[V] 0 0 1 1 0 2 1 3 0 4 1 5 0 6 1 7
■ rozsah DAC je 0 až 7/8 referenčního napětí 32
8 bitový DAC ■ min přírůstek napětí: 8.(1/256)=0,03125V ■ max napětí pro hodnotu na vstupu 11111111: 8.(255/256)=7,96875V ■ velké rozdíly mezi hodnotami rezistorů 1 ku 256 ■ pro 16 bitů: podíl 1 ku 65536
33
Příklad výpočtu DAC ■ příklad výpočtu DAC: máme čtyřbitový převodník, UREF = –10 V; spočítejte: a) jaké napětí přísluší nejnižšímu bitu? b) jaké napětí odpovídá binárnímu kódu 10112 ? c) jaké je nejvyšší výstupní napětí(pro 11112)? ■ řešení: a) UO = 10×1/16 = 0,625 V b) UO = 10×(1×1/2 + 0×1/4 + 1×1/8 + 1×1/16) = =10×11/16 = 6,875 V c) UO = 10×(1/2 + 1/4 + 1/8 + 1/16)=10×15/16= = 9,375 V
34
DAC pro 2 řády v BCD kódu ■ příklad převodníku dvoumístného čísla v kódu BCD řád desítek
řád jednotek
35
DAC s příčkovou strukturou odporové sítě ■ označovaný R-2R nebo R-R/2 ■ odstraňuje nevýhodu předešlého typu převodníku – řádově velmi odlišné hodnoty odporů, jež nelze vyrobit v integrované podobě s dostatečnou přesností
36
DAC s příčkovou strukturou odporové sítě ■ výstupní napětí
Uvýst
RZ 1 1 1 = –UREF ( B3 + B 2 + B 1) R 2 4 8
kde Bi je 0 nebo 1 R=10kΩ ■ výhody: ■ jen dvě hodnoty rezistorů ■ zdroj referenčního napětí nemá tak velké výkyvy proudového zatížení ■ lze realizovat převodník pro velký počet bitů (např. 16 bitů)
37
Ideální převodní charakteristika DAC UO 7/8
7
6/8
6
5/8
5
4/8
4
3/8
3
2/8
2
1/8
1 000 001 0 1/8
010 2/8
011 3/8
100 4/8
101 5/8
110 6/8
111 vstupní slovo 7/8 ekvivalentí hodnota
38
Parametry DAC – rozlišovací schopnost
■ počet diskrétních stupňů výstupního analogového napětí ■ souvisí s počtem bitů a typem kódu ■ vyjadřuje se v [%] RS =
100 pocet vystupnich urovni
■ menší číslo v % znamená lepší rozlišovací schopnost ■ určuje nejmenší možnou změnu výstupního napětí, odpovídá váze nejnižšího bitu vstupního slova 39
Parametry DAC – rozlišovací schopnost ■ rozlišovací schopnost ■ příklady: ■ 8 bitový převodník v binárním kódu, (28=256): RS = 100/256 =0,4% ■ 4 bitový převodník v binárním kódu: RS = 100/24 = 6,25% ■ 4 bitový převodník v BCD kódu: (BCD kód má jen 10 stavů): RS = 100/10 = 10%
40
Přesnost analogového výstupního napětí
∆U
chyba vlivem napěťového posunu (ofsetem) OZ – způsobeno napěťovou nesymetrií OZ, ∆U je řádově mV
chyba zisku, způsobeno změnou zisku OZ, změnou velikosti referenčního napětí
nelinearita, způsobeno chybou odporů jednotlivých rezistorů
41
Rychlost převodu ■ počet převodů vstupních slov na výstupní napětí za jednotku času ■ jednotka: SPS (Samples Per Second), počet vzorků za sekundu (jiné psaní: SpS)
■ doba převodu =
1 rychlost převodu
■ je to doba, za kterou se po přijetí vstupního slova ustálí výstupní napětí
42
Rychlost převodu
■ doba převodu závisí na dynamických vlastnostech obvodových prvků: ■ doby spínání a rozepínání elektronických spínačů ■ velikosti odporů ■ rychlosti OZ
43
Další parametry DAC ■ rozsah výstupního napětí ■ jedna polarita: např.: 0 až 5V ■ obě polarity: např.: –5 až +5V ■ kvantum převodníku ■ nejmenší přírůstek výstupního napětí ■ rovná se výstupnímu napětí, které odpovídá nejnižšími bitu ve vstupním slově ■ teplotní koeficient ■ změna výstupního napětí převodníku vlivem změny teploty o 1°C 44
AD převodníky
45
AD převodníky ■ pojmenování ■ analogově číslicový převodník ■ Analogue Digital Converter ■ ADC, A/D, AD ■ AČ ■ převádí vstupní analogový signál (nejčastěji napětí nebo proud) na výstupní číslicový signál o n bitech
46
Schematická značka ADC
vstupní analog. napětí referenční napětí
výstupní binární hodnota
47
AD převod ■ výstup je vyjádřen tříbitovým slovem
analogový signál vzorkovací impulsy
vzorkovaný signál
kvantování
kódování 48
Ideální převodní charakteristika ADC výstup 111 110 101 100 011 010 001 000 0 0
1 2 3 1/8 2/8 3/8
4 5 4/8 5/8
6 6/8
7→ U1 7/8 [V] 49
Ideální převodní charakteristika ADC ■ předpokládáme rozsah vstupního napětí 0 až 7 V. Vstupní analogové napětí v rozsahu ± ½ nejnižšího bitu je kvantováno jako jedna hodnota výstupních dat. Takto vzniká tzv. kvantizační chyba, která dosahuje max. ± ½ nejnižšího bitu výstupního bajtu převodníku. ■ rozlišovací schopnost – je dána počtem úrovní, do nichž jsme rozdělili rozsah vstupního analogového napětí. Při n bitech výstupního slova je počet diskrétních úrovní 2n – 1. Tomu odpovídá rozlišovací schopnost
1 1 = ɺ n n 2 −1 2 50
Principy AD převodníků
■ paralelní (komparační) AD převodník ■ AD převodník s postupnou aproximací ■ AD převodník s jednoduchou integrací ■ AD převodník s dvojitou integrací
51
Paralelní (komparační) AD převodník ■ činnost si pro jednoduchost vysvětlíme na tříbitovém převodníku ■ vstupní analogové napětí je přiváděno současně na 7 komparátorů CP1 až CP7, na jejichž druhé vstupy jsou přivedena referenční napětí UREF1 až UREF7 ■ převodník kódu převede výstup komparátorů na zvolený binární kód (nejčastěji přirozený binární)
UVST [0–7 V]
UREF1=1V
CP1
UREF2=2V
CP2
UREF3=3V
CP3
UREF4=4V
CP4
UREF5=5V
CP5
UREF6=6V
CP6
UREF7=7V
CP7
B0 Převodník kódu
B1 B2
52
Paralelní (komparační) AD převodník ■ pro komparátor platí: ■ je-li UVST ≥ UREF, pak na výstupu je log. 1 ■ je-li UVST < UREF, pak na výstupu je log. 0 Uvst [V]
CP1 CP2 CP3 CP4 CP5 CP6 CP7 B2 B1 B0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
2
1
1
0
0
0
0
0
0
1
0
3
1
1
1
0
0
0
0
0
1
1
4
1
1
1
1
0
0
0
1
0
0
5
1
1
1
1
1
0
0
1
0
1
6
1
1
1
1
1
1
0
1
1
0
7
1
1
1
1
1
1
1
1
1
1 53
Vlastnosti paralelního AD převodníku ■ velká rychlost (asynchronní činnost) – dosahuje vzorkovací rychlosti 10 MSPS až 10 GSPS ■ nevýhoda – pro rostoucí počet bitů roste rychle počet komparátorů, podle vztahu 2n – 1 ■ 8 bitů: 28 – 1 = 255 komparátorů ■ 12 bitů: 212 – 1 = 4095 komparátorů ■ 16 bitů: 216 – 1 = 65535 komparátorů ■ v praxi se vícebitové převodníky realizují jako převodníky s vícenásobnou komparací – počet komparátorů je menší, doba převodu se prodlouží
54
AD převodník s postupnou aproximací ■ tvoří vhodný kompromis mezi rychlostí a obvodovou složitostí, používá se velmi často ■ tento převodník je při větším poctu bitu obvodově jednodušší než paralelní AD převodník, ale pracuje pomaleji ■ max. dosažitelná vzorkovací rychlost je asi 200 kSPS ■ používá se často v audiotechnice, v měřících kartách do PC ■ také se nazývá kompenzační ADC.
55
Blokové schéma ■ je sestaven z rychlého DA převodníku, komparátoru a aproximačního registru.
CP
UVST UREF
TP
DAC
Aproximační registr
UDAC
výstupní bajt
ST 56
Princip činnosti ADC ■ v aproximačním registru se generují bitové kombinace, ty se rychlým DA převodníkem převádějí na analogový signál UDAC ■ aproximační registr generuje bity počínaje nejvyšším řádem. ■ tato bitová kombinace se po převodu na analogové napětí UDAC porovnává s UVST ■ je-li UDAC
UVST, vrátí se bit na nulu
57
Princip činnosti ADC ■ v dalším kroku se generuje další bit nižšího řádu ■ opět se porovnají napětí UDAC a UVST a rozhodne se o ponechání nastaveného bitu či jeho vynulování ■ postup se opakuje až po nejnižší bit ■ převod je tak dokončen po n krocích, kde n je počet bitů převodníku
58
Příklad převodu
■ pro jednoduchost předpokládáme 4 bitový převodník pro vstupní napětí 0 až 15 V ■ převádět budeme vstupní napětí UVST = 10,3 V
59
1. krok ■ nastaví se: B3=1 ■ 8V (1/2 rozsahu) ■ UDAC=8V ■ 8V<10,3V ■ bit B3 se ponechá ■ UDAC=8V
UVST=10,3V
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
výstupní kombinace:
8V 1
1
1
0
0
0
60
2. krok ■ nastaví se: B2=1 ■ 4V (1/4 rozsahu) ■ UDAC=8V+4V=12V ■ 12V>10,3V ■ bit B2 se vynuluje ■ UDAC=8V
UVST=10,3V
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
výstupní kombinace:
8V 1
4V
1 1
1
0
0
0
0
61
3. krok ■ nastaví se: B1=1 ■ 2V (1/8 rozsahu) ■ UDAC=8V+2V=10V
UVST=10,3V
■ 10V<10,3V ■ bit B1 se ponechá ■ UDAC=10V výstupní kombinace:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
8V 1
4V
1 1
1
2V
0
1 1
0
1
0
62
4. krok ■ nastaví se: B0=1 ■ 1V (1/16 rozsahu) ■ UDAC=10V+1V=11VUVST=10,3V ■ 11V>10,3V ■ bit B0 se vynuluje ■ UDAC=10V
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
výstupní kombinace:
8V 1
4V
1 1
1
0
0
2V
1V
1
1
1
1
0
0
■ 1010 binárně = 10 dekadicky 63
ADC s jednoduchou integrací ■ jako základní prvek používá integrátor s operačním zesilovačem C UVST
R
UVÝST
– +
UVÝST = −
1 ⋅ UVST ⋅ t RC
UVST t
U VS T t U VÝS T
t
UVÝST
větší vstupní napětí znamená větší strmost nárůstu UVÝST.
t
■ napětí roste až k velikosti napájecího
64
ADC s jednoduchou integrací ■ základním principem převodu je převod napětí na frekvenci: U → f ovládání spínače
UVST
R
C – +
integrátor
komparátor U2
– +
čítač
displej
U3
– UREF
65
ADC s jednoduchou integrací ■ pro komparátor platí: ■ je-li napětí na invertujícím vstupu OZ menší než UREF, je na výstupu OZ –UNAP ■ je-li napětí na invertujícím vstupu OZ větší nebo rovné UREF, je na výstupu OZ +UNAP U2
+UNAP
t
U2 UREF +UNAP
–UNAP
t
– +
– UREF –UNAP 66
ADC s jednoduchou integrací ■ Průběhy pro AD převodník ovládání spínače
UVST UVST
0 t U2
R
C – +
komparátor U2
– +
t
UREF
integrátor
čítač
displej
U3
– UREF
U3 t
67
Odvození vztahu pro kmitočet 1 u2 = − ⋅ UVST ⋅ t RC
T t
pro okamžik t = T: u2 = UREF
uREF = − uREF
UREF
1 ⋅ UVST ⋅ T RC
1 1 =− ⋅ UVST ⋅ RC f
1 f = −UVST ⋅ RC ⋅ U REF kons tan ta
f je kmitočet
f = k · UVST 68
Činnost ADC s jednoduchou integrací ■ na vstupu UVST je napětí, které chceme převádět ■ na výstupu integrátoru (–u2) se zvětšuje napětí, až dosáhne hodnoty –UREF, na výstupu komparátoru se změní napětí z –UNAP na +UNAP a zároveň se sepne spínač, který vybije kondenzátor C. To způsobí vynulování u2 a také návrat u3 na hodnotu –UNAP. ■ krátké impulzy u3 se vedou do čítače. Protože platí f = k · UVST, čím větší je UVST, tím větší kmitočet impulzů se vede do čítače
69
ADC s jednoduchou integrací ■ Rychlost převodu je závislá na velikosti vstupního napětí a na počtu číslic na výstupu. Čím větší bude vstupní napětí a čím více převáděných číslic, tím menší bude rychlost převodu (delší doba převodu).
■ Využití: v měřící technice pro méně náročné aplikace
70
Příklad výpočtu ■ Navrhněte převodník U → f tak, aby vstupnímu napětí 10 V odpovídal kmitočet 10 kHz. V zapojení integrátoru jsou součástky R=10 kΩ, UREF= –5 V. ■ řešení:Vyjdeme ze vztahu:
f = −UVST
1 ⋅ RC ⋅ UREF
UVST f ⋅C = − UREF ⋅ R UVST 10V C=− =− = 2 ⋅ 10−8 = 20nF UREF ⋅ R ⋅ f − 5V ⋅ 10kΩ ⋅ 10kHz 71
Vlastnosti ■ Nevýhody: ■ přesnost převodu závisí na stabilitě hodnot R, C, UREF ■ přesnost klesá s rostoucím UVST Tskut Tideal
Tch t
UREF
skutečný spínač (τ=C.RON) ideální spínač (RON=0)
■ Časový úsek Tch je stále stejný, není závislý na délce periody. Čím větší je UVST, tím menší je perioda T a tím větší váhu má úsek Tch
72
AD převodník s dvojitou integrací ■ princip činnosti je stejný jako u převodníku s jednoduchou integrací, ale měřící proces má dvě fáze ■ 1. fáze – integruje se převáděné napětí U1 (U1>0) po dobu T1 předem přesně stanovenou. Doba T1 je odměřovaná pomocí vnitřního generátoru a čítače.
U
T1= konst t
1 UT1 = − ⋅ T1 ⋅ U1 RC
UT1 73
Princip činnosti ■ 2. fáze – v okamžiku T1 se na vstup integrátoru přepne zdroj referenčního napětí opačné polarity než bylo U1. Integruje se do dosažení nulové hodnoty napětí v okamžiku T2
U
T1
T2 t
1 UT 2 = + ⋅ T 2 ⋅ UREF RC
UT2
74
Odvození vztahů ■ Odvodíme, že (T2 – T1) = konst . U1: ! 1 1 UT1 − T 2 = − ⋅ T1 ⋅ U1 + ⋅ T 2 ⋅ UREF = 0 RC RC
1 1 ⋅ T1 ⋅ U1 = ⋅ T 2 ⋅ UREF RC RC
T2 =
T1 UREF
⋅ U1
kons tan ta ■ čas T2 je úměrný vstupnímu napětí U1. 75
Schéma zapojení integrátor UVST
R
C – +
–UREF
Řídící logika oscilátor
komparátor U2
&
– +
čítač
displej 76
Časové průběhy
U2
T1
(1) (2) T1+T2 T1+T2
t
k.UVST1 k.UVST2
integrace UVST
integrace UREF
77
Činnost ■ 1. fáze – integrace UVST ■ čítač je vynulován ■ na vstup integrátoru je připojeno napětí, které chceme převézt ■ řídící logika otevře hradlo a čítač čítá impulzy až do přetečení ■ po přetečení čítače se přepne na vstup integrátoru UREF – časový okamžik T1
78
Činnost ■ 2. fáze – integrace UREF ■ čítač se vynuluje ■ na vstupu integrátoru se připojí UREF ■ hradlo je otevřené a čítač čítá impulzy ■ napětí U2 klesá k nule, při U2=0 komparátor zastaví čítání impulzů ■ počet impulzů v čítači za dobu T2 – T1 je úměrný velikosti UVST
79
Vlastnosti ■ vlastnosti: ■ přesnost převodu nezávisí na R, C ■ přesnost nezávisí na dlouhodobé stabilitě oscilátoru ■ velmi přesný ■ dlouhá doba převodu (kolem 100 ms) ■ využití: ■ v číslicových voltmetrech, T1 se volí jako násobek periody síťového kmitočtu 50 Hz: T1 = n . 20 ms, kde n je celé číslo, kompenzuje se tím zvlnění stejnosměrného napětí
80
Diagnostika číslicových obvodů
81
Diagnostika ■ hlavní úkol diagnostiky – zjištění stavu zařízení ■ výsledek diagnostiky: ■ detekce poruchy – cesta ke zjištění existence poruchy (porucha je nebo není) ■ lokalizace poruchy – cesta k určení místa poruchy – náročnější činnost ■ hlavní smysl diagnostiky: ■ zvýšení spolehlivosti systému ■ přispívá ke zkrácení prostojů (doby nečinnosti) systému ■ metody diagnostiky: ■ destruktivní ■ nedestruktivní
82
Nedestruktivní metody diagnostiky 1. měření elektrických a odvozených veličin – nejčastěji používaná metoda 2. měření teploty v určitých (kritických) místech systému, termografie – barevné rozlišení teplot 3. analýza zvuku (infrazvuku, ultrazvuku) – spíše pro periferní zařízení s pohyblivými částmi 4. měření sil a momentů – týká se mechanických částí – kontaktů (přechodový odpor závisí na přítlačné síle pružinky) 5. vizuální kontrola – uplatňuje se zde hlavně zkušenost technika
83
Úplné poruchy ■ přerušené napájecí napětí ■ přerušený zemní přívod ■ přerušení signálového spoje ■ zkrat mezi napájením a zemí ■ zkrat mezi signálovým spojem a zemí ■ zkrat mezi signálovým spojem a napájením ■ zkrat mezi signálovými spoji
84
Částečné poruchy ■ obtížnější diagnostika ■ svodové a přechodové odpory signálových cest (v kabeláži nebo na desce) ■ změny statických parametrů číslicových obvodů (mimotoleranční hodnoty) ■ změny dynamických vlastností logických obvodů
85
Technické prostředky diagnostiky ■ voltmetr ■ zobrazí nejen logickou úroveň, ale i napěťovou úroveň "dobrá" nebo "špatná" logická 0 nebo 1 ■ lze jím měřit jen v klidových stavech ■ jednoduchá logická sonda ■ rozliší log. 0, 1 bez nároku na jejich kvality ■ nerozliší impulz nebo skupinu impulzů tak krátkou, že ji lidské oko nezaznamená ■ má omezenou možnost zobrazení periodického signálu ■ při vysoké frekvenci měřeného průběhu dioda svítí "polosvitem" 86
Technické prostředky diagnostiky ■ dokonalejší logická sonda ■ musí ukazovat více napěťových úrovní ■ pro zobrazení ojedinělých impulzů má sonda monostabilní klopný obvod, který rozsvítí (nebo zhasne) indikaci na viditelně dlouhou dobu ■ indikace sondy nerozliší množství impulzů, kmitočet, střídu průběhu ■ vyhodnotí tvrdé připojení na napájení nebo na zem ■ vyhodnotí zakázaný stav
5V dobrá log. 1 špatná log. 1
2,4 V 2V
neutrální stav 0,8 V špatná log. 0 0,4 V dobrá log. 0
87
Technické prostředky diagnostiky ■ pulzní sonda – pulser ■ lze s ní zkoušet na zapájených součástkách na desce – metoda IC (in curcuit) ■ zjistí logické úrovně v měřeném místě, po stisku tlačítka generuje krátký impulz opačné logické úrovně, který nepoškodí logické obvody ■ dlouhodobým ověřováním bylo zjištěno, že impulz o šířce asi 300 ns nezpůsobí zničení logického obvodu ■ číslicová sonda ■ čítač impulzů metodou IC ■ čítané impulzy ukládá do paměti i s časem výskytu
88
Literatura
89
Literatura ■ BERNARD, Jean-Michel, HUGON, Jean, LE CORVEC, Robert. Od logických obvodů k mikroprocesorům. Praha : SNTL, 1988. 688 s. ■ MATOUŠEK, David. Číslicová technika : základy konstruktérské praxe. 1. vyd. Praha : BEN - technická literatura, 2001. 208 s. ISBN 80-7300-025-3. ■ ANTOŠOVÁ, Marcela, DAVÍDEK, Vratislav. Číslicová technika : učebnice. 1. vyd. České Budějovice : KOPP, 2003. 288 s. ISBN 80-7232-206-0. ■ MALINA, Václav. Digitální technika. 1. vyd. České Budějovice : KOPP, 1996. 208 s. ■ BAYER, Jiří, HANZÁLEK, Zdeněk, ŠUSTA, Richard. Logické systémy pro řízení. 1. vyd. Praha : Vydavatelství ČVUT, 2000. 269 s. ■ ŠIMEK, Tomáš, BURGET, Pavel. Elektronické systémy 1 : přednášky. 1. vyd. Praha : Vydavatelství ČVUT, 2001. 192 s. 90