5. přednáška - Optická mikroskopie pro TM III
Optická (světelná) Mikroskopie pro TM III
[email protected] Ústav skla a keramiky VŠCHT Praha
+42- 0- 22044- 4151
5. přednáška - Optická mikroskopie pro TM III
Osnova přednášky Mikroskopování ve zkřížených nikolech Zhášení anizotropních krystalů
Interferenční barvy a retardace Charakter zóny Optický charakter minerálu - konoskopie Anomálie optických vlastností
5. přednáška - Optická mikroskopie pro TM III
Mikroskopování ve zkřížených nikolech - diagnostický nástroj - doplňující informace pro identifikaci minerálů (úhel zhášení, dvojlom, charakter minerálu, charakter zóny) - provedení - polarizátor + analyzátor (výsuvný polarizátor nad objektivem, otočený o 90°) - kdysi Nikolův hranol - zkratka XPL (crossed polarizers), PPL - polarizované světlo
- situace bez preparátu - zorné pole tmavé
/microscopy primer/
5. přednáška - Optická mikroskopie pro TM III
Rozlišení izotropních a anizotropních látek - izotropní látky - v XPL stále tmavé (kubické krystaly, sklo, tmel, bubliny, praskliny) - anizotropní látky - stále tmavé jen v řezu nulového dvojlomu [řezy kolmé na osu c (o. jednoosé) a kolmé na O1 a O2 (o. dvojosé)] - anizotropní látky - v ostatních řezech se projevuje zhášení Zhášení:
- při otáčení stolkem o 360° se krystal 4x rozsvítí a 4x zhasne - jeden z hlavních o. směru (𝜀, 𝜔; 𝛼, 𝛽, 𝛾) souhlasí s rovinou kmitu pol. světla světlo prochází beze změny - v diagonální poloze - maximální rozsvícení a interferenční barvy /microscopy primer/
5. přednáška - Optická mikroskopie pro TM III
Zhášení - přímé, šikmé a symetrické - zhášení se vztahuje na protažení krystalu nebo štěpné trhliny - přímé (rovnoběžné) zhášení - rovnob. a kolmé k rovině kmitu pol. světla - všechny kr. o. jednoosé, monoklinické v pásmu (100:001) - odlišení nezhášejících řezů od izotropních (konoskopický obr.), opakní (vysunutí analyzátoru)
/Gregerová 2002/
5. přednáška - Optická mikroskopie pro TM III
Zhášení - přímé, šikmé a symetrické - zhášení se vztahuje na protažení krystalu nebo štěpné trhliny - přímé zhášení - rovnoběžné a kolmé k rovině kmitu pol. světla
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Zhášení - přímé, šikmé a symetrické - šikmé zhášení - protažení či trhliny šikmé k rovině kmitu pol. světla - úhel zhášení, 𝜑 - menší než 45° , na desetiny stupně, více řezů a vzít maximum, tabelován je maximální úhel zhášení vzhledem k o. směru např. 𝛾/c.
/Gregerová 2002/
5. přednáška - Optická mikroskopie pro TM III
Zhášení - přímé, šikmé a symetrické - symetrické (souměrné) zhášení - rovina kmitu paprsku půlí úhel mezi trhlinami nebo hranami krystalu.
/Gregerová 2002/
5. přednáška - Optická mikroskopie pro TM III
Zhášení - přímé, šikmé a symetrické
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Zvláštní typy zhášení - undulózní (vlnové) zhášení - zcela zhasnuta je jen část krystalu, při otáčení se zhasnutá číst přesune přes celý krystal - deformovaná krystalové struktura, např. jednosměrný horotvorný tlak u křemene
/P. Brož - wiki/
5. přednáška - Optická mikroskopie pro TM III
Zvláštní typy zhášení - dvojčatění - srůst dvou a více krystalů téhož minerálu bez společného osního kříže - stejné atomové uspořádání na rovinách srůstu - dvojčatění je typický rozlišovací znak některých minerálů, např. tridymit, plagioklasy, kalcit - rozezná se v XPL, každý zháší samostatně, lamely - polysyntetické zdvojčatění - střídání světlých a tmavých pruhů u lichých a sudých lamel - parketování - dvojčatný srůst podle více ploch - epitaxe - srůst krystalů různých minerálů - stejné atomové uspořádání na rovinách srůstu, podobné mřížkové parametry, např. hematit-rutil
5. přednáška - Optická mikroskopie pro TM III
Zvláštní typy zhášení - příklad: polysyntetické zdvojčatění plagioklasů
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Vznik interferenčních barev - anizotropní krystaly v XPL - interferenční (polarizační) barvy v poloze rozsvícení, nejjasnější 45° od polohy zhášení - čiré krystaly, barevné krystaly částečně interferenční barvy překrývají
Popis vzniku interferenční barvy ► 1) polarizovaný paprsek - předozadní rovina kmitu 2) rozklad v krystalu na navzájem kolmé OA a OB šíří se různou rychlostí podle hlavních o. směrů, rychleji podle 𝛼, pomaleji podle 𝛾 4) v analyzátoru se opět rozloží podle hl. směrů, vznik pravolevé OA′ a OB′ a předozadní OA′′ a OB′′ 5) OA′′ a OB′′ se ruší, OA′ a OB′ interferují
/Bartuška 1987/
6) zpoždění o celé 𝜆 se projeví zeslabením, 𝜆/2 zesílením
7) porušení rovnováhy mezi složkami bílého světla - vznik pol. barvy
5. přednáška - Optická mikroskopie pro TM III
Vznik interferenčních barev - v analyzátoru dochází ke změně fáze o 𝜆/2
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Michel-Lévyho stupnice interferenčních barev - sled interferenčních barev v závislosti na fázovém zpoždění udává Newtonova škála Michel-Lévyho stupnice interferenčních barev - je Newtonova škála doplněná o tloušťku preparátu a dvojlom. - ML stupnice se dělí do řádů podle opakujících se barev (fialovočervená)
- 1. řád - černá (0 nm), šedá, bělavá, žlutá, červená (536 nm) - 2. řád - fialová, modrá, zelená, žlutá, červená (počáteční písmena podle abecedy) - další řády jsou více a více bledé (perleťové) - rozsah barev se mění v různých řádech /microscopy primer/
5. přednáška - Optická mikroskopie pro TM III
Konstrukce MichelLévyho stupnice - výška interferenční barvy je dána retardací, 𝑅 [nm], alt. Δ - 𝑅 = 𝑡 ⋅ 𝐷, kde 𝑡 je tloušťka preparátu, 𝐷 je specifický dvojlom 𝛾 − 𝛼 - v řezu maximálního dvojlomu - pro určení dvojlomu je třeba určit tloušťku řezu (ostřením nebo z výšky i. barvy známého minerálu) a řád
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Stanovení výšky interferenčních barev - určit retardaci, 𝑅, lze podle podle ML stupnice - problém je učit řád - vyšší řády jsou bledší, ale to lze špatně rozeznat Pokles interferenčních barev na ztenčeném okraji krystalu: 1) rozsvícený krystal v XPL s ztenčujícím se okrajem (b) 2) interferenční linky musí klesat až do 1. řádu 3) počet červenofialových linek + 1 určuje řád barvy v ploše krystalu (a) /Bartuška 1987/ /Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Stanovení výšky interferenčních barev - kompenzátory s plynule proměnným fázovým zpožděním - vykompenzování interferenční barvy - odečtení fázového zpoždění kompenzátoru od fázového zpoždění krystalu - 𝛾 obou jsou na sebe kolmá - jinak posun k vyšším řádům - otočit stolkem - barva postupně klesá až do černé (tm. šedé) v prvním řádu - izotropní okolí (sklo, tmel) původně černé bude mít barvu krystalu Křemenný klín - je klínový výbrus křišťálu, rovnoběžný s c
- značení K I-III (kompenzace do třetího řádu, alt. 𝜆/2 až 3𝜆), lze teor. určit i barvy 4. řádu 1) vykompenzovat krystal, viz výše 2) určit maximální barvu a pak specifický dvojlom z ML stupnice, viz výše /Bartuška 1987/
5. přednáška - Optická mikroskopie pro TM III
Stanovení výšky interferenčních barev Berekův kompenzátor - proměnné fázové zpoždění, rozsah více řádů
- destička kalcitu vyříznutá kolmo k ose c - nulový dvojlom - retardace vzniká natáčením destičky
/microscopy primer/ /Bartuška 1987/
5. přednáška - Optická mikroskopie pro TM III
Měření tloušťky preparátu A) z výšky interferenční barvy známého minerálu 1) najít minerál se známým dvojlomem, 𝐷, v řezu maximálního dvojlomu 2) určit fázové zpoždění, 𝑅 3) tloušťka, 𝑡, výbrusu je dána vztahem: 𝑡 =
𝑅 𝐷
B) pomocí mikrometrického šroubu ostření
- zaostření na spodní a horní povrch vzorku, odečet na stupnici mikrometrického šroubu, 1 díl = XX μm. - tloušťka, 𝑡, je dána vztahem: 𝑡 = 𝑛 ⋅ Δℎ, kde 𝑛 je střední index lomu /Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Charakter zóny (ráz délky) - identifikační znak pro protáhlé krystaly, značí se Chz Chz udává index lomu ve směru protažení - vyšší index lomu ve směru protažení, 𝛾 - pozitivní charakter zóny - Chz+ - nižší index lomu ve směru protažení, 𝛼 - negativní charakter zóny - Chz- používá se slídový (𝜆/4) a sádrovcový (𝜆) kompenzátor s konstantním fázovým posunem
Slídová destička - historický název, nyní tenký krystal křemene - retardace je asi 150 nm, tj. 𝜆/4 zeleného sodíkového světla - šedá interferenční barva v XPL - interferenční barvu nerostu posunuje k nejbližší vyšší nebo nižší - např. žlutá 1. řádu - vzestup na červenou (Chz+) - pokles na zelenou (Chz-)
/microscopy primer/
5. přednáška - Optická mikroskopie pro TM III
Charakter zóny (ráz délky) Sádrovcová destička - historický název, nyní tenký krystal křemene - retardace je asi 560 nm, tj. 𝜆 zeleného sodíkového světla - červenofialová interferenční barva 1. řádu v XPL - interferenční barvu nerostu posunuje do nejbližšího vyššího či nižšího řádu Postup (v XPL):
1) natočit protažení krystalu směrem 𝛾 na kompenzátoru 2) krystaly z počátku 1. řádu sádrovcová destička - posun barev vzhledem k červenofialové barvě kompenzátoru žlutá - pokles barvy modrá - vzestup barvy /Bartuška 1987/
5. přednáška - Optická mikroskopie pro TM III
Charakter zóny (ráz délky) Sádrovcová destička - historický název, nyní tenký krystal křemene - retardace je asi 560 nm, tj. 𝜆 zeleného sodíkového světla - červenofialová interferenční barva 1. řádu v XPL - interferenční barvu nerostu posunuje do nejbližšího vyššího či nižšího řádu Postup (v XPL):
1) natočit protažení krystalu směrem 𝛾 na kompenzátoru 2) krystaly z počátku 1. řádu sádrovcová destička - posun barev vzhledem k červenofialové barvě kompenzátoru žlutá - pokles barvy - negativní - Chzmodrá - vzestup barvy - pozitivní - Chz+ /microscopy primer/
5. přednáška - Optická mikroskopie pro TM III
Charakter zóny (ráz délky) - příklad: určení charakteru zóny v apatitu pomocí sádrovcové destičky
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Charakter zóny (ráz délky) - vzestup barev nastává při shodné orientaci 𝛾 krystalu a kompenzátoru ve směru protažení je vyšší index lomu - vlastní barva minerálu je komplikace - otočit o 90° - změna v opačném smyslu
5. přednáška - Optická mikroskopie pro TM III
Optický charakter (charakter minerálu) - diagnostický znak, značí se Chm - zjišťuje se zda je krystal opticky jednoosý či dvojosý a zda ke o. pozitivní či negativní
- nutné jsou velké krystaly, více řezů, musí být kolmé na osu c (jednoosé, nulový dvojlom) nebo ostrou střednou (dvojosé, nízký dvojlom, zháší, pomůže průběh štěpných trhlin či omezení zrna) - pracuje se ve sbíhavém světle - konoskopické pozorování Postup: 1. nalezení vhodného řezu krystalu - menší zvětšení 2. větší zvětšení - krystal vyplní celé zorné pole - zaostření, centrace 3. kondenzor zcela nahoru - otevřít clonu na maximum 4. zasunutí Bertrandovy čočky při XPL - zaostření. 5. vznik konoskopického (osního) obrázek - vznikne i bez B. čočky po vyjmutí okuláru - malý, ale ostrý
5. přednáška - Optická mikroskopie pro TM III
Optický charakter (charakter minerálu) Köhlerův princip osvětlení - nejčastější způsob osvětlení - roviny, kde dochází k ostrému zobrazení předmětu a vlákna - roviny zobrazení vlákna lze pozorovat po vyjmutí okuláru nebo zasunutím Bertrandovy čočky - chod paprsků při ortoskopickém (a) a konoskopickém pozorování (b)
/Bartuška 1987/
/microscopy primer/
5. přednáška - Optická mikroskopie pro TM III
Optický charakter (charakter minerálu) - vznik konoskopického obrazu (kr. o. jednoosé)
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Optický charakter (charakter minerálu) - vliv řezu na tvar konoskopického obrázku (kr. o. jednoosé) - skiodrom
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Optický charakter (charakter minerálu) - vliv řezu na tvar konoskopického obrázku (kr. o. jednoosé) v mikroskopu
/Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Optický charakter (charakter minerálu) - určení Chm po zasunutí kompenzátoru - 1. a 3. kvadrant modrý (vyšší i. barva), 2. a 4. žlutý (nižší i. barva) - kr. o. pozitivní (𝛾 krystalu a 𝜆kompenzátoru mají shodný směr) - u kr. o. negativních je to naopak /Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Optický charakter (charakter minerálu) - konoskopické obrázky o. dvojosých minerálů /Raith 2011/
5. přednáška - Optická mikroskopie pro TM III
Anomálie optických vlastností Pseudomorfózy - vznik - přeměnou nerostů při zachování vnějšího omezení - paramorfóza - přestavba mřížky u polymorfních látek - metamorfóza - změna chemického složení (např. anhydrit po sádrovci)) - fosilie - pseudomorfózy po organizmech (zoomorfózy, fytomorfózy), často kalcit příp. křemen Anizotropie u látek izotropních - např. dvojlom v důsledku pnutí ve skle - v tahu se index lomu zvýší - příčiny vzniku u skel krystalizace, prudké ochlazení - příčiny vzniku u kubických krystalů - zonální stavba u krystalů, izomorfní záměna iontů, uzavřeniny
5. přednáška - Optická mikroskopie pro TM III
Anomálie optických vlastností Anomální interferenční barvy - nejsou v Newtonově stupnici, většinou je způsobeno silnou disperzí světla (závislost indexu lomu na vlnové délce), příp. vlastní barvou nerostu, aj. Agregátový dvojlom
- agregáty drobných anizotropních krystalků - překrývají se - v XPL můžou být stále světlé (nezháší) např. submikroskopický mulit, ale i stejně orientované, např. pseudomorfózy po slídě v porcelánu (interferenční barva je dána součtem retardací)
5. přednáška - Optická mikroskopie pro TM III
Postup při studiu materiálů v polarizačním mikroskopu 1) malé zvětšení v PPL 2) střední či velké zvětšení v PPL 3) pozorování v XPL 4) měření indexů lomu 5) kritické zhodnocení, dodatečná měření, vztahy a procesy