Model Pengembangan Industri Perikanan Berbasis Pelabuhan Perikanan (Danial et al.)
MODEL PENGEMBANGAN INDUSTRI PERIKANAN BERBASIS PELABUHAN PERIKANAN DI KOTA MAKASSAR SULAWESI SELATAN (Development Model of Fisheries Industry Base on Fishing Port Bases in Makassar City, South Sulawesi) 1)
2)
3)
Danial , John Haluan , Mustaruddin , dan Darmawan
4)
ABSTRACT Makassar city of South Sulawesi Province has potency and opportunity to develop fisheries industry to become the biggest fisheries industry in the eastern Indonesian region. Geographically, the Makassar city is located in a strategic eastern Indonesian region that bringing consequency to become the gate of export for trading product. The research objectives are to create development model of fisheries industry in Makassar city base on the fishing port, to describe the existing condition of fishing activities and its influence level to formulate significant influence factors, and to formulate development strategy of fisheries industry in Makassar city. This research was conducted from March to November 2009 in Makassar city. Data was taken from fishery industries as respondent, such as fishing characteristic, fishing industry, management industry, export, and policy. The result of SEM analysis showed the goodness of fit index criterias, namely: chisquare, probability, RMSEA, CFI, IFI, GFI, AGFI, and PGFI. Based on the regression analysis on weight values of the interaction with other factors, it can be significant or non-significant relation, wherereas the significant relation is necessary. The goverment policy on the development of Untia Archipelago Fishing Port in Makassar city is to continue fishing activity to provide materials of fishery industry. Developing model of fisheries industry base on the fishing port with eight factors can be used to plan the fishery industry development. Key words: model, fishing port, fishery industry, SEM PENDAHULUAN Perikanan adalah semua kegiatan yang berhubungan dengan pengelolaan dan pemanfaatan sumber daya ikan dan lingkungannya mulai dari praproduksi, produksi, pengolahan sampai dengan pemasaran yang dilaksanakan dalam suatu sistem bisnis perikanan (UU No. 31 Tahun 2004). Faktor utama yang mendukung pengembangan usaha perikanan khususnya pada kegiatan penangkapan ikan adalah tersedianya prasarana pelabuhan perikanan. Pelabuhan perikanan merupakan kawasan pengembangan industri perikanan karena pembangunan pelabuhan perikanan di suatu daerah atau wilayah merupakan embrio pembangunan perekonomian. Keberadaan pelabuhan perikanan dalam arti fisik, seperti kapasitas pelabuhan, harus mampu mendorong kegiatan ekonomi lainnya sehingga pelabuhan perikanan menjadi suatu kawasan pengembangan industri perikanan (Yusuf et al., 2005). 1)
Jurusan Ilmu Kelautan, FPIK, Universitas Muslim Indonesia, Makassar Departemen Pemanfaatan Sumberdaya Perikanan, FPIK, IPB
2,3,4)
77
Forum Pascasarjana Vol. 34 No. 2 April 2011: 77-87
Salah satu provinsi yang terletak di Kawasan Timur Indonesia adalah Provinsi Sulawesi Selatan dengan ibukota Makassar memiliki potensi dan peluang pengembangan industri perikanan menjadi sentra industri perikanan terbesar di Kawasan Timur Indonesia. Secara geografis, hal tersebut didukung oleh letak Kota Makassar yang merupakan salah satu kota terbesar dan merupakan pintu gerbang KTI, dan otomatis akan menjadi pintu gerbang ekspor hasil perdagangan secara umum (Danial, 2006). Tujuan penelitian ini adalah membuat model pengembangan industri perikanan di Kota Makassar yang berbasis pelabuhan perikanan, memaparkan kondisi terkini kegiatan perikanan tangkap di Kota Makassar dan tingkat pengaruhnya terhadap faktor-faktor yang berpengaruh signifikan, serta merumuskan strategi pengembangan industri perikanan Kota Makassar. METODE PENELITIAN Waktu dan Tempat Penelitian Penelitian ini dilaksanakan selama enam bulan, yaitu dari bulan Maret sampai dengan bulan Oktober 2009, di Kota Makassar, Sulawesi Selatan. Jenis dan Jumlah Data Pengambilan data dilakukan terhadap responden yang ada kaitannya dengan industri perikanan yang memiliki karakteristik industri penangkapan ikan, industri pengolahan dan pemasaran, serta pengambil kebijakan. Jenis data yang diperlukan dan dikumpulkan untuk analisis penelitian ini adalah faktor (konstruk) yang terkait dengan variabel yang diteliti pada industri perikanan, yaitu internal industri, eksternal industri, sumber daya alam dan lingkungan, lingkungan industri perikanan, kinerja industri perikanan, kebijakan pemerintah, pelayanan pelabuhan perikanan, dan daya saing industri perikanan. Jumlah data yang diambil diusahakan sesuai dengan anjuran di dalam penggunaan SEM (structural equation modeling), yaitu sebenarnya ketentuan minimal 100 responden dan maksimal 400 responden (Hair et al., 1998). Sehubungan dengan hal tersebut, dalam penelitian ini jumlah responden yang dipilih sebanyak 150. Metode Pengumpulan Data Penelitian ini menggunakan data primer dan data sekunder. Pengumpulan data primer dilakukan dalam dua jenis, yaitu pengamatan langsung dan pengambilan data, serta konfirmasi dan pengecekan ulang atas jawaban dari responden. Metode ini digunakan untuk mengamati kegiatan yang akan diteliti secara langsung dengan menggunakan daftar pertanyaan (kuesioner). Setelah mendapat persetujuan dari pemilik atau pengelola perusahaan yang menjadi obyek penelitian, dilakukan pengamatan secara langsung.
78
Model Pengembangan Industri Perikanan Berbasis Pelabuhan Perikanan (Danial et al.)
Pengambilan data responden Pengambilan data responden dilakukan dengan dua tahap, yaitu penentuan kelompok sampel dan wawancara kepada responden. Penetapan kelompok industri dilakukan berdasarkan kriteria berikut: industri perikanan penangkapan, industri perikanan pengolahan, industri perikanan pemasaran (nelayan, pengelola perusahaan, pedagang pengumpul, Dinas Perikanan dan Kelautan, Polairud, dan konsumen). Untuk mendapatkan hasil yang proporsional dan mendekati kebenaran, dilakukan pengambilan sampel dengan cara purposive random sampling. Metode ini dilakukan dengan menggunakan daftar pertanyaan dan langsung melakukan wawancara kepada responden yang terpilih sebagai sampel penelitian. Data dan informasi yang diperoleh adalah hasil tatap muka dan wawancara langsung dengan responden. Jawaban pertanyaan dengan memilih angka yang berskala 1-5 (skala likert), nilai jawaban menggunakan pernyataan yang sangat tidak setuju sampai sangat setuju. Pengumpulan data sekunder Data sekunder adalah data yang diperoleh secara tidak langsung dari hasil wawancara atau hasil pengamatan dan data yang diperoleh dari beberapa catatan yang dipublikasikan atau yang tidak dipublikasikan. Data ini diperoleh dari lingkungan, obyek penelitian maupun di luar obyek penelitian atau instansi pemerintah setempat yang terkait, seperti Dinas Perikanan dan Kelautan Provinsi Sulawesi Selatan, Dinas Kelautan dan Ketahanan Pangan Kota Makassar, BPS Provinsi Sulawesi Selatan, dan BPS Kota Makassar. Analisis Data Pengolahan data awal Pengolahan data melalui kegiatan pengelompokan data yang sejenis, tabulasi dan lain-lain, kemudian dilakukan analisis data. Analisis persamaan struktural Menurut (Hair et al., 1998) terdapat beberapa langkah dalam penggunaan SEM dengan rincian sebagai berikut. Pengembangan model berdasarkan teori dan existing condition Prinsip di dalam SEM adalah menganalisis hubungan kausal antara variabel eksogen dan endogen. Langkah awal SEM adalah pengembangan model hipotetik, yaitu suatu model yang mempunyai justifikasi teori atau konsep, kemudian dilakukan verifikasi berdasarkan data empirik melalui SEM. Dengan demikian, peneliti dalam mengembangkan teori harus melakukan serangkaian eksplorasi ilmiah melalui telaah pustaka guna mendapatkan justifikasi atas model teoritis yang dikembangkan (Solimun, 2002). Penyusunan rancangan path diagram Langkah kedua membuat path diagram dengan tujuan mempermudah peneliti melihat hubungan kausalitas yang ingin diuji. Jika hubungan kausal tersebut ada yang belum sesuai, dapat dibuat beberapa model yang kemudian diuji menggunakan SEM untuk mendapatkan model yang paling sesuai (Gambar 1).
79
Forum Pascasarjana Vol. 34 No. 2 April 2011: 77-87 E2
E1 1
E3 1
X51
E4 1
X52
E5 1
X53
E6 1
X54
E7 1
X55
E8 1
X56
1
X57
X58 X81
1
H1
KIP X82
A1 A2 A3
1 1
DIP
X11
D1
X83
II
X41
X42 X85
1
X13
1
X21
1
H2 H3
D2 X84
X12
1
1 1
H4 H5
LIP B1 B2
1
X22 EI
B3 B4
1 1
X71
1
X72
1
X73
1
X74
1
G1 G2
PLP
X23 X24
SAL
KP
X31
X32
X33
X34
X61
X62
X63
C1
C2
C3
C4
F1
F2
F3
G3 G4
Keterangan: Model Path Diagram X11 X12 X13 X21 X22 X23 X24 X31 X32 X33 X34 X41 X42 X51 X52 X53 X54 X55
Kemampuan SDM industri perikanan Inovasi penggunaan teknologi industri Kemampuan keuangan & aset perusahaan Perkembangan teknologi perikanan Ketersediaan jasa pelatihan Ketersediaan infrastruktur Kondisi industri pemasok Sumber daya ikan Daerah penangkapan ikan Lingkungan dan kondisi perairan Energi pendukung Program jangka pendek Program jangka panjang Laba (rugi) perusahaan Volume penjualan Pertumbuhan penjualan Pertumbuhan pelanggan Kemampuan harga bersaing
X56 X57 X58 X61 X62 X63 X71 X72 X73 X74 X81 X82 X83 X84 X85
Mutu produk Tingkat penyerapan tenaga kerja Jaringan pemasaran luas Pembangunan pelabuhan perikanan Pembentukan BUMN Pengaturan pemanfaatan tanah industri Pelayanan kegiatan produksi melalui tambat labuh Pelayanan industri processing Pelayanan kegiatan pemasaran Pelayanan kebutuhan logistik kapal Kemampuan teknologi informasi dan komunikasi pemasaran Jaminan mutu produk Produk mempunyai kemampuan imitabilitas Harga produk kompetitif Ketersediaan sumber daya bahan baku berkelanjutan
Gambar 1. Model hubungan dan pengaruh antar faktor dan pengaruh variabel terhadap masing-masing faktor Konversi diagram alir ke dalam persamaan Persamaan struktural menyatakan hubungan kausalitas antara-faktor (konstruk) sebagai berikut: Faktor endogen = Faktor eksogen + error Persamaan strukturnya adalah sebagai berikut:
Y1 = 1Y2 + 2 Y3 + 3 Y4 + 4 Y5 + 1
dengan Y1 = Faktor endogen Y2 = Faktor eksogen 80
β = Bobot regresi (regression weigth) δ = Disturbance term (error)
Model Pengembangan Industri Perikanan Berbasis Pelabuhan Perikanan (Danial et al.)
Pemilihan matrik input dan estimasi model SEM hanya menggunakan matrik kovarians atau matrik korelasi sebagai data input untuk keseluruhan estimasi yang dilakukan. Kline et al. (2001) yang diacu dalam Kusyanto (2006) menyarankan agar menggunakan matrik kovarians pada saat pengujian teori. Antisipasi munculnya masalah identifikasi Langkah-langkah untuk menguji ada atau tidaknya problem identifikasi adalah sebagai berikut. (1) Model diestimasi berulang-ulang, dan setiap estimasi dilakukan dengan menggunakan starting value yang berbeda-beda. (2) Model dicoba diestimasi, kemudian angka koefisien dari salah satu variabel dicatat, berikutnya koefisien itu ditentukan sebagai sesuatu yang fix pada faktor atau variabel kemudian estimasi ulang. Evaluasi kriteria goodness of fit Tahapan ini merupakan kegiatan mengevaluasi kesesuaian model yang dibuat menggunakan kriteria goodness of fit index. Secara garis besar tahapan ini terdiri dari 3 kegiatan: 1) evaluasi data (digunakan untuk mengetahui apakah data telah memenuhi asumsi-asumsi SEM atau tidak, 2) uji kesesuaian dan uji statistik, dan 3) efek analisis. Interpretasi dan modifikasi model Apabila langkah-langkah sebelumnya sudah dilaksanakan dan model cukup baik, langkah berikutnya dalam SEM melakukan interpretasi dan modifikasi. Interpretasi pada penggunaan SEM bukan untuk menghasilkan teori, tetapi menguji model yang mempunyai pijakan teori yang benar dan baik. Jika interpretasi terhadap residual yang dihasilkan model melalui pengamatan variabel mempunyai nilai residual standard lebih besar dari besaran tertentu, model dapat diterima sehingga tidak perlu dilakukan modifikasi model. Jika model belum baik, perlu diadakan modifikasi dan penggunaan indeks modifikasi ini merupakan pedoman melakukan modifikasi terhadap model yang diujikan dengan syarat harus terdapat justifikasi teoritis yang cukup kuat untuk modifikasi. Perumusan strategi pengembangan industri perikanan Berdasarkan delapan faktor (konstruk) yang dilihat, dirumuskan strategi pengembangan industri perikanan di Kota Makassar yang berbasis Pelabuhan Perikanan Nusantara (PPN) Untia. Dasar dari hasil rumusan tersebut dapat dilihat dari hubungan mana yang signifikan atau tidak signifikan, kemudian hubungan yang signifikan akan menjadi perhatian dalam mengembangkan industri perikanan di Kota Makassar. HASIL DAN PEMBAHASAN Hasil Analisis SEM Kesesuaian model dengan data Model awal disusun dengan mengacu pada path diagram yang telah dirancang sebelumnya. Selanjutnya, hasil estimasi dari kedelapan konstruk (faktor) laten atau variabel laten diilustrasikan pada Gambar 2. Gambar 2 memperlihatkan hasil evaluasi kriteria goodness of fit index untuk model awal pada pengukuran masing-masing konstruk. Tujuannya adalah untuk mengukur apakah model pengembangan industri perikanan berbasis PPN di Kota 81
Forum Pascasarjana Vol. 34 No. 2 April 2011: 77-87
Makassar sudah memenuhi kriteria goodness of fit index. ditunjukkan pada Tabel 1. Chi-Square = 1088,4 df = 480 prob = 0,000
,13 ,34 ,68
,61
,48
E2
E1
,82
E3
1,06
E4
,64
E5
,98
E6
1,03
E7
E8
1
1
1
1
1
1
1
X52
X53
X54
X55
X56
X57
X58
1 X51 ,90
1,00
1,55
1,34
1,35
1,33
1,43
1,21 X81
KIP 1,00
A1 ,57 A2 ,89 A3
1
1
1
DIP X11
X12
D1
1,15 1,12
1
1 X42
X83
1
1
,91 H1 1,19 H2 1,07 H3
,56 X84
1
1,04 H4
II -,23
X13
1
,58
D2
X41
X82
1,07 1,12
,63 ,65
Hasil evaluasi
X85
1,00
,97
1
1,26 H5
,14
LIP 69 B1 ,80 B2
1
1
X21
,6
,70
X22
1,13 1,07
1,63 B4
1
X71 -,16
,79 B3
,85
X23
-1,29
X24
PLP
8,32
1,00
5,36
,62
,13 ,30
SAL
1,89
,84
1 C1
1,00
,64
2,40
X32
X33
1 ,68
1
C2
C3
,94
X34
X61
1 1,14
1
C4
F1
1,23
1
1
1
1
1,39 G1 1,02 G2 ,73 G3 1,24 G4
1,00
,50 X62 1
X73
X74
KP
1,82
2,36
X31
X72
9,66
EI
,81 1
1,00
X63
1,18
F2
1
1,15
F3
-,69 ,46
Gambar 2. Model awal dari SEM industri perikanan di Kota Makassar Tabel 1. Indeks pengujian kelayakan kesesuaian model awal Indeks kesesuaian model terhadap data Syarat sebuah model fit Chi-square Diharapkan kecil Significance probability > 0,05 RMSEA(root mean square error of < 0,08 approximation) > 0,90 CFI (comparative fit index) > 0,90 IFI (incremental fit index) > 0,90 GFI (goodness-of-fit index) > 0,90 AGFI (adjusted goodness-of-fit index) > 0,90 PGFI (parsimony goodness of fit index) Sumber: Hasil pengolahan data dengan analisis SEM (2010)
Hasil analisis 1 088,4 0,000 0,092 0,758 0,763 0,681 0,627 0,583
Evaluasi model Buruk Marginal Buruk Buruk Buruk Buruk Buruk Buruk
Berdasarkan Tabel 1, model tersebut belum fit atau belum sesuai karena nilai Chi-square masih tinggi, yaitu sebesar 1.088,4 dan nilai probabilitas (p) = 0,000 masih lebih kecil dari 0,05. Selanjutnya nilai RMSEA, CFI, IFI, GFI, AGFI, PGFI masih jauh dari nilai standar sehingga model akan dimodifikasi. Revisi model melalui suatu modifikasi dapat dilakukan dengan cara melihat covariance modification indices. Nilai modification indices (MI) pada covariance menandakan akan turunnya nilai chi-square jika covariance dari indikator-indikator tersebut dikorelasikan. Nilai modification indices tertinggi adalah sebesar 35.935 yang menghubungkan covariance dari variabel H4 dengan H5, dengan mengorelasikan variabel H4 dengan H5, nilai chi-square akan turun paling sedikit 35.935. Selanjutnya, langkah yang harus dilakukan adalah mengorelasikan variabel yang mempunyai nilai MI yang lebih besar dari 4 (nilai MI > 4), sampai diperoleh sebuah model yang dinilai benar-benar fit (Gambar 3). 82
Model Pengembangan Industri Perikanan Berbasis Pelabuhan Perikanan (Danial et al.) -,09
Chi-Square = 568,689 df = 406 prob = 0,000
,04 ,22 ,48
,31
-,27
,66 -,08
,57
E1 ,17
,09
1
X51
E2
E3
1,05
,10 E4
- 1 ,15 X53
1,00
X54
X55
1,34
1,20 1,36
1,01
E6
1 ,18
,80
,6 5
E5
1
X52
,13
,17 ,78
,47
E7
1 -,63
E8
1
1
X57
1,24
,03
1
X56 1,11
1,28
X58
1,40
,13
-,05
,01 KIP
1
A1 ,56
,30
X11
A2
-,18
1,04
D1
,18
,14
,14
X42 1,00
1
,71
-,29
B2
1
-,25 -,13
LIP
1 1,59
B4
1
,25
1,32
X23
,76
,30
,24
-,23 ,26
,36
,18 ,42
,18
X72
X73
X74 SAL
1,32 G1
1
,67
X33
X34
,16
G2 ,7,20 9
1
G3
1
,22 1,18
G4
KP
1,76 2,12 1,00
X32
1
3,76 -,64
2,35
X31
X71
6,32
PLP ,86
1,82
,49 H5
1,00
,22
,17
1,22 -,18 1
1,04
,08
,33
1,03 ,14
H4
-,15
1,58 ,26
X24
X85
7,99
-,13
H3
,15
-,22 ,16
,27,27
1,02
1 ,30 1
-,09
,23
1,00
,73
X84
,57
,76 EI
B3
1,90 ,40 H2 ,06
,16
,00 ,30
1,10
X22
X83 ,55
1,10
1,09
X21 1,04
,77
1,22
-,24 X41 ,25
9,09 B1
X82
,08
X13 ,68
1,02 H1
1
DIP
II
1,00
1
,17
-,16
-3,64 1 -,18
,82 A3
1
2,00
,11
D2 1
1,07 X12
1,00
,14 ,70
1,00
-,14
-,15
1,07
1
X81
,32
,01 ,69
-,26
-,11
,15
,06
1,00
,48
X61
X62
X63
,17 1
,82 C1
1 C2
,66
1
,92
1
C3
1,22
1
C4
1,21 F1
1
1
1,17 F2
1,09 F3 ,13
,22
,40
-,59 ,20
Gambar 3. Model akhir dari SEM industri perikanan di Kota Makassar Pengujian model konseptual sebagaimana yang ditunjukkan pada Gambar 3, selanjutnya dievaluasi berdasarkan kriteria goodness of fit index dan diperoleh hasil seperti ditunjukkan pada Tabel 2. Tabel 2 dan Gambar 3 menunjukkan nilai chi-square sudah lebih kecil dibandingkan pada saat modifikasi awal, sebagai salah satu kriteria model fit dengan nilai sebesar 568.689 dengan nilai dari kriteria goodness of fit index lainnya, secara keseluruhan kriteria ini sudah memenuhi standar yang direkomendasikan. Tabel 2. Indeks pengujian kelayakan kesesuaian model akhir Indeks kesesuaian model terhadap data Syarat sebuah model fit Chi-square Diharapkan kecil Significance probability > 0,05 RMSEA(root mean square error of approximation) < 0,08 CFI (comparative fit index) > 0,90 IFI (incremental fit index) > 0,90 GFI (goodness-of-fit index) > 0,90 AGFI (adjusted goodness-of-fit index) > 0,90 PGFI (parsimony goodness of fit index) > 0,90 Sumber: Hasil pengolahan data dengan analisis SEM (2010)
Hasil analisis 568.689 0,000 0,052 0,935 0,938 0,827 0,761 0,599
Evaluasi model Baik Marginal Baik Baik Baik Baik Marginal
Berdasarkan model fit tersebut di atas, dilakukan pengujian terhadap nilai regression weights terhadap interaksi konstruk dengan faktor-faktor lainnya, yaitu: internal industri (II), eksternal industri (EI), sumber daya alam dan lingkungan (SAL), lingkungan industri perikanan (LIP), kinerja industri perikanan (KIP), 83
Forum Pascasarjana Vol. 34 No. 2 April 2011: 77-87
kebijakan pemerintah (KP), pelayanan pelabuhan perikanan (PLP), dan daya saing industri perikanan (DIP). Koefisien pengaruh II terhadap indikator kemampuan SDM industri perikanan (X11) dan inovasi penggunaan teknologi industri (X 12) berpengaruh signifikan karena signifikansi t-hitung lebih kecil dari nilai probabilitas < 0.05, hal ini disebabkan karena penggunaan teknologi sangat dipengaruhi oleh kemampuan SDM dalam memanfaatkan teknologi tersebut terhadap hasil-hasil produksi perikanan. Koefisien pengaruh II terhadap LIP tidak signifikan koefisien II terhadap indikator kemampuan keuangan dan aset perusahaan (X 13) adalah fix. Koefisien pengaruh EI terhadap indikator perkembangan teknologi perikanan (X21), ketersediaan jasa pelatihan (X 22), dan kondisi industri pemasok (X24) berpengaruh signifikan, hal ini disebabkan karena ketersediaan jasa pelatihan sangat dipengaruhi oleh perkembangan teknologi perikanan, demikian pula kondisi industri pemasok. Sedangkan koefisien pengaruh EI terhadap LIP tidak signifikan dan EI terhadap indikator ketersediaan infrastruktur(X 23) adalah fix. Koefisien pengaruh SAL terhadap KP berpengaruh signifikan, begitu pula terhadap indikator sumber daya ikan (X31), daerah penangkapan ikan (X32), dan energi pendukung (X34), juga dipengaruhi secara signifikan oleh sumber daya alam dan lingkungan karena didapatkan nilai p = 0.000. Angka ini lebih kecil dari 0.05 sehingga Ho ditolak yang berarti berbeda nyata atau signifikan. Hal ini disebabkan karena ketersediaan sumber daya ikan di perairan serta energi pendukung lainnya merupakan faktor penentu kelestarian alam dan lingkungan laut, dan indikator lingkungan dan kondisi perairan adalah fix. Koefisien pengaruh SAL terhadap LIP, KIP, dan PLP tidak signifikan, sedangkan indikator lingkungan dan kondisi perairan adalah fix. Koefisien pengaruh LIP terhadap DIP dan indikator program jangka panjang (X41) dipengaruhi secara signifikan. Sedangkan koefisien pengaruh LIP dengan konstruk KIP dan PLP tidak signifikan. Sedangkan konstruk LIP terhadap indikator program jangka pendek (X41) adalah fix. Koefisien pengaruh KIP terhadap indikator laba (rugi) perusahaan (X 51), pertumbuhan penjualan (X53), pertumbuhan pelanggan (X54), kemampuan harga bersaing (X55), mutu produk (X56), tingkat penyerapan tenaga kerja (X 57) dan jaringan pemasaran luas (X58) berpengaruh signifikan. Hal ini disebabkan karena kinerja industri perikanan pada suatu pelabuhan perikanan akan mempengaruhi berbagai variabel, semakin baik kinerja industri akan memberikan dampak positif terhadap variabel-variabel lainnya. Koefisien pengaruh KIP terhadap konstruk DIP dan KP tidak signifikan. Namun, koefisen pengaruh KIP terhadap indikator volume penjualan (X52) adalah fix. Koefisien pengaruh KP terhadap indikator pembangunan pelabuhan perikanan (X61) pembentukan BUMN (X62) adalah signifikan. Hal ini disebabkan karena kebijakan pemerintah dalam membangun sarana dan prasarana pelabuhan perikanan akan mempengaruhi berbagai variabel, semakin baik sarana dan prasarana suatu pelabuhan perikanan akan memberikan dampak positif terhadap aktivitas nelayan dan pengguna jasa lainnya. Koefisien kebijakan pemerintah terhadap indikator pengaturan pemanfaatan industri adalah fix. Koefisien pengaruh PLP terhadap indikator pelayanan industri processing (X72), pelayanan kegiatan pemasaran (X73), dan pelayanan kebutuhan logistik kapal (X74) adalah tidak signifikan. Hal ini disebabkan karena pelabuhan perikanan yang ada saat ini belum mampu melayani semua aktivitas nelayan. Koefisien PLP 84
Model Pengembangan Industri Perikanan Berbasis Pelabuhan Perikanan (Danial et al.)
terhadap indikator pelayanan kegiatan produksi melalui tambat labuh adalah fix. Koefisien pengaruh DIP terhadap indikator produk mempunyai kemampuan imitabilitas (X83), harga produk kompetitif (X84), dan ketersediaan bahan baku berkelanjutan (X85) adalah signifikan. Hal ini disebabkan karena sumber daya hayati perikanan yang ada di Makassar dan sekitarnya memiliki daya saing yang tinggi serta stok sumber daya hayati perikanan masih cukup tersedia. Indikator jaminan mutu produk (X82) tidak signifikan. Namun, koefisien DIP terhadap indikator kemampuan teknologi informasi dan komunikasi pemasaran (X 81) adalah fix. Faktor lingkungan industri perikanan mempengaruhi secara signifikan terhadap daya saing industri perikanan dengan nilai probabilitas 0.000, artinya perlu diantisipasi dengan menawarkan suatu produk atau kelas produk yang berkualitas dan memiliki harga yang bersaing. Namun, jika permintaan akan suatu produk meningkat sebagai akibat kenaikan harga, perusahaan akan menawarkan produk lain yang merupakan subtitusi dekat. Industri perikanan di Kota Makassar perlu mengembangkan produk-produk yang inovatif yang disukai oleh konsumen, bila hal tersebut bisa dilakukan akan menciptakan peluang membuka pasar yang baru, secara otomatis akan meningkatkan produksi serta meningkatkan pendapatan. Hal ini sesuai dengan pendapat Kotler (1997) yang menyatakan bahwa suatu industri perikanan dalam memenangkan persaingan pada perdagangan bebas harus mampu memanfaatkan tantangan dan peluang lingkungan industri. Strategi Pengembangan Industri Perikanan Strategi pengembangan industri perikanan berbasis PPN membutuhkan langkah-langkah optimalisasi terhadap kedelapan faktor yang membentuk model industri perikanan karena setiap faktor saling berpengaruh. (1) Kebijakan pemerintah dalam membangun PPN Untia Makassar akan menjamin kegiatan produksi penangkapan ikan untuk kelangsungan penyediaan bahan baku industri perikanan. Tanpa tersedianya bahan baku berupa ikan yang cukup dan kontinyu, industri perikanan tidak akan berkembang. (2) SDM yang melakukan aktivitas di pelabuhan perikanan Kota Makassar masih memiliki keterampilan yang kurang sehingga perlu adanya peningkatan keterampilan bagi pengguna pelabuhan perikanan khususnya kepada pengelola, agar dalam menjalankan tugas bisa lebih baik. Penggunaan SDM yang terampil dan profesional akan meningkatkan kinerja industri perikanan. (3) Pelabuhan Perikanan Nusantara Untia Makassar dirancang untuk memberikan dukungan terhadap berkembangnya industri perikanan yang modern sehingga jenis dan kapasitas serta kualitas fasilitas harus ditingkatkan sesuai dengan kebutuhan konsumen dan dalam pengelolaan fasilitas dipersiapkan sumber daya manusia yang berkualitas. (4) Perlu adanya dukungan dari berbagai kementrian dalam proses peningkatan industri perikanan karena bukan hanya Kementrian Kelautan dan Perikanan saja yang berkepentingan, tetapi semua kementrian lain harus melakukan koordinasi agar kinerja industri perikanan dapat berjalan sesuai dengan apa yang diharapkan. 85
Forum Pascasarjana Vol. 34 No. 2 April 2011: 77-87
SIMPULAN DAN SARAN Simpulan
(1)
(2)
(3)
PPI Paotere sudah tidak mampu lagi menampung aktivitas perikanan sehingga kebijakan pemerintah sedang membangun PPN Untia Makassar adalah tepat, karena Kota Makassar merupakan tempat pemasaran ikan yang cukup menjanjikan, dilanjutkan oleh kapal-kapal perikanan dari berbagai daerah bahkan provinsi lain yang berdatangan untuk memasarkan hasil tangkapannya di Kota Makassar. Model pengembangan industri perikanan berbasis PPN dengan delapan faktor dapat digunakan untuk merencanakan dan meramalkan pengembangan industri perikanan. Model dengan faktor II, EI, SAL, LIP, KP, PLP, KIP, dan DIP dapat diterima setelah diuji dengan pertimbangan kriteria goodness of fit yang dipakai. Model pengembangan industri perikanan di Kota Makassar dapat digunakan untuk merumuskan strategi pengembangan industri perikanan memasuki pasar global pada beberapa lokasi pelabuhan dengan melihat faktor dan variabel yang digunakan, tetapi penambahan variabel harus tetap didasarkan pada telaah pustaka. Saran
Mengingat situasi dan kondisi PPN Untia Makassar masih dalam tahap pembangunan, perlu dilakukan penelitian tentang model pengembangan industri perikanan berbasis Pelabuhan Perikanan Nusantara Untia setelah berfungsi dengan baik. DAFTAR PUSTAKA [BPS]. 2009. Makassar Dalam Angka Tahun 2009. Makassar: Badan Pusat Statistik Kota Makassar. [BPS]. 2009. Sulawesi Selatan Dalam Angka Tahun 2009. Makassar: Badan Pusat Staistik Provinsi Sulawesi Selatan. Danial. 2006. Prospek pengembangan pelabuhan perikanan di Propinsi Sulawesi Selatan. Prosiding. Batam. Konferensi Nasional V Pesisir, Laut dan PulauPulau Kecil. Hair Jr, J.F., Anderson R.E., Tatham R.L., and Black W.C. 1998. Multivariate Data Analysis. Ffth Eition. New York: Prentice Hall-International Inc. Kline, Theresa J.B., and Klammer JD. 2001. Path model analyzed with ordinary least square multiple regression versus lisrel. The Journal of Psychology. 135(2): 213-225. th
Kotler. 1997. Manajemen Produktivitas. Terjemahan Marketing Manajement. 9 Edition. New York: Prentice Hall-International Inc.
86
Model Pengembangan Industri Perikanan Berbasis Pelabuhan Perikanan (Danial et al.)
Kusyanto D. 2006. Model industri perikanan berbasis pelabuhan perikanan samudera memasuki era globalisasi: kasus PPS Nizam Zachman Jakarta [disertasi]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor. Solimun. 2002. Multivariate Analysis. Structural Equation Modelling LISREL dan AMOS: Aplikasi di Bidang Manajemen, Ekonomi Pembangunan, Psykologi, Sosial, Kedokteran, Agrokompleks. Malang: Fakultas Matematika IPA Universitas Brawijaya. Yusuf H, Moedikdjo K, Saeni M.S., dan Nasution L.I. 2005. Dampak pembangunan pelabuhan perikanan terhadap penyerapan tenaga kerja dan pendapatan masyarakat (studi kasus di Pelabuhan Perikanan Lempasing Bandar Lampung). Buletin Ekonomi Perikanan. 6(1):57-64.
87