Bidang Unggulan : Ketahanan Pangan
LAPORAN AKHIR HASIL PENELITIAN HIBAH BERSAING INSTITUSI BATCH I TAHUN ANGGARAN 2012
REMEDIASI TANAH YANG TERCEMAR Pb TAILING DENGAN TANAMAN INDIGENOUS DAN BIOCHAR Ketua Anggota
: Prof. Dr. Ir. Zaenal Kusuma, SU. : Ir. Bambang Siswanto, MS.
Dibiayai oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan dan Kebudayaan, Melalui DIPA Universitas Brawijaya Nomor : 0636/02304.2.16/15/2012, tanggal 9 Desember 2011, dan berdasarkan SK Rektor Universitas Brawijaya Nomor : 366/SK/2012 tanggal 13 Agustus 2012
LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS BRAWIJAYA 2012
1
2
ABSTRAK Pencemaran tanah disebabkan oleh berbagai faktor, antara lain penggunaan bahan agrokimia yang berlebihan ataupun dari tailing yang berasal dari kegiatan penambangan emas rakyat skala kecil. Pertambangan emas rakyat memberikan dampak positif bagi kegiatan perekonomian berupa penyerapan tenaga kerja, maupun peningkatan kesejahteraan masyarakat. Namun, kegiatan ini juga berdampak negatif bagi area di sekitarnya khususnya lahan pertanian, karena tailing memiliki karakteristik kimia yang buruk, khususnya ditinjau dari kadar C-organik, N, P, dan K tanah. Penelitian ini bertujuan untuk : memperoleh jenis tumbuhan yang mampu tumbuh optimal di tanah tercemar tailing serta berpotensi sebagai tanaman remediator; mengetahui macam bahan amandemen yang dapat memperbaiki karakteristik kimia tanah tercemar tailing; dan mempelajari mekanisme dan kemampuan penyerapan logam berat oleh tanaman remediator terpilih. Hasil penelitian menunjukkan bahwa : Chromolaena odorata berpotensi meremediasi tanah tercemar tailing, yang ditunjukkan dari berkurangnya kandungan logam berat merkuri (Hg) dan timbal (Pb) sebesar 7,3% dan 45,4% dari total logam berat awal di tanah; Pupuk kandang dan biochar yang dikombinasikan dengan ferosulfat (FeSO4) mampu menurunkan pH tanah tercemar tailing dari 9,1 menjadi 6-7 sekaligus meningkatkan kandungan C-organik, N, P, K, dan KTK tanah. Bahan amandemen biochar mampu mereduksi logam berat merkuri (Hg) dan timbal (Pb) sebesar 13% dan 68% dari total kadar merkuri (Hg) dan timbal (Pb) di awal percobaan; Chromolaena odorata memiliki kemampuan yang sama dengan Vetiveria zizainoides L. dalam menyerap logam berat merkuri (Hg) (5,8 mg kg-1 - 33,2 mg kg-1) dan timbal (Pb) (48 mg kg-1 – 92,00 mg kg-1). ---------------------------------------------------------------------------------------------Kata Kunci : Remediasi, Tailing, Tambang emas rakyat, Tanaman Indigenous
3
ABSTRACT Soil contamination is not only caused by excessive use of agrochemicals but it is also caused by tailings from artisanal gold mine activities. Artisanal gold mining has positive impact on people's economic activities such as employment, and improvement of the community welfare. However, it also has negative impact on the surrounding area, particularly agricultural land, because the poor chemical characteristics of tailings, especially C-organic, N, P, and K contents. The objectives of this study were to: obtain the type of plants that can grow optimally on tailing contaminated soils to be employed as potential remediator plants; find out the amendment materials that can be used for improving chemical characteristics of the tailing contaminated soils; study the mechanisms and capability of heavy metal absorption of selected remediator plants. The results showed that: Chromolaena odorata was a potential plant to remediate tailing contaminated soils, as indicated by decreasing mercury (Hg) and lead (Pb) contents by 7.3% and 45.4%, respectively, of the total initial heavy metals content; manure and biochar combined with ferrosulfat (FeSO4) were capable to decrease the pH of tailing contaminated soils from 9.1 to 67 and increased the soil organic-C, N, P, K contents, and CEC. Application of biochar reduced mercury (Hg) and lead (Pb) concentrations by 13% and 68% of the initial contents of total mercury (Hg) and lead (Pb), respectively; Chromolaena odorata showed similar ability to Vetiveria zizainoides L. in absorbing mercury (Hg) (5.8 mg kg-1 to 33.2 mg kg-1) and lead (Pb) (48 mg kg-1 to 92.00 mg kg-1). --------------------------------------------------------------------------------------Keywords : Remediation, tailing, artisanal gold mine, indigenous plant
4
RINGKASAN Saat ini penambangan emas rakyat skala kecil di Indonesia terdapat sekitar 713 titik. Tailing yang dihasilkan dari kegiatan penambangan emas rakyat sebagian besar dibuang pada lahan pertanian, sehingga mengakibatkan produktivitas tanah menjadi rendah. Tailing adalah limbah hasil proses amalgamasi dan sianidisasi selama pemisahan bijih emas. Tailing mengandung logam berat dalam jumlah yang cukup tinggi sehingga berpotensi merusak lingkungan sekaligus berbahaya bagi kehidupan manusia dan makhluk hidup lainnya. Untuk itu diperlukan pengelolaan yang tepat sehingga pencemaran logam berat tidak berbahaya bagi manusia, serta lahan yang tercemar dapat kembali menjadi lahan pertanian yang sehat. Solusi yang bisa dilakukan adalah menggunakan bahan amandemen untuk memperbaiki karakteristik tanah serta tanaman remediator untuk meremediasi tanah tercemar. Penelitian ini bertujuan untuk: (1) Memperoleh jenis tumbuhan yang mampu tumbuh optimal di tanah tercemar tailing serta berpotensi sebagai tanaman remediator; (2) Mengetahui macam bahan amandemen yang dapat memperbaiki karakteristik kimia tanah tercemar tailing; (3) Mempelajari mekanisme dan kemampuan penyerapan logam berat oleh tanaman remediator terpilih, dan (4) Mempelajari potensi tanah pasca remediasi bagi pertumbuhan dan produktivitas tanaman pangan. Penelitian terdiri dari tiga tahapan, yakni: (1) Eksplorasi tumbuhan lokal (indigenous) teradaptasi sebagai tanaman remediator dan analisis berat; (2) Kajian pengaruh penggunaan bahan amandemen terhadap perbaikan karakteristik kimia tanah ; (3) Kajian pemanfaatan jenis tanaman remediator dan bahan amandemen terhadap penyerapan logam berat. Hasil penelitian menunjukkan bahwa: (1) Chromolaena odorata berpotensi meremediasi tanah tercemar tailing, yang ditunjukkan dari berkurangnya kandungan logam berat merkuri (Hg) dan timbal (Pb) sebesar 7,3% dan 45,4% dari total logam berat awal di tanah; (2) Pupuk kandang dan biochar yang dikombinasikan dengan ferosulfat (FeSO4) mampu menurunkan pH tanah tercemar tailing dari 9,1 menjadi 67 sekaligus meningkatkan kandungan C-organik, N, P, K, dan KTK tanah. Bahan amandemen biochar mampu mereduksi logam berat merkuri (Hg) dan timbal (Pb) sebesar 13% dan 68% dari total kadar merkuri (Hg) dan timbal (Pb) di awal percobaan; (3) Chromolaena odorata memiliki kemampuan yang sama dengan Vetiveria zizainoides L. dalam menyerap logam berat merkuri (Hg) (5,8 mg kg-1 33,2 mg kg-1) dan timbal (Pb) (48 mg kg-1 – 92,00 mg kg-1). ---------------------------------------------------------------------------------------------Kata Kunci : Remediasi, Tailing, Tambang emas rakyat, Tanaman Indigenous
5
SUMMARY
As present, there are 713 spots of small-scale artisanal gold mine in Indonesia. Tailings generated from artisanal gold mining activities are mostly dumped on agricultural land in surrounding area that will in turn degrade soil productivity. Tailings are waste from amalgamation and cyanidation processes during gold ore separation. As tailings contain high amount of heavy metals, they are potential in damaging the environment and dangerous to living creatures. Therefore, tailing contaminated soil must be managed properly such that could be reused as healthy agriculture land. The use of either amendment materials or indigenous plants as remediator plants was an alternative way to remediate contaminated soil. The objectives of this study were to: (1) obtain the type of plants that can grow optimally on tailing contaminated soils to be employed as potential remediator plants, (2) find out the amendment materials that can be used for improving chemical characteristics of the tailing contaminated soils, (3) study the mechanisms and capability of heavy metal absorption of selected remediator plants, and (4) study the potential of post remediation soil for the growing food crops. The study consisted of three phases, i.e. (1) exploration of adapted local (indigenous) plants as remediator of heavy metals, (2) studying the influence of amendment materials on soil chemical characteristics, (3) studying the role of remediator plants and amendment materials on the absorption of heavy metals. The results showed that: (1) Chromolaena odorata was a potential plant to remediate tailing contaminated soils, as indicated by decreasing mercury (Hg) and lead (Pb) contents by 7.3% and 45.4%, respectively, of the total initial heavy metals content; (2) manure and biochar combined with ferrosulfat (FeSO4) were capable to decrease the pH of tailing contaminated soils from 9.1 to 6-7 and increased the soil organic -C, N, P, K contents, and CEC. Application of biochar reduced mercury (Hg) and lead (Pb) concentrations by 13% and 68% of the initial contents of total mercury (Hg) and lead (Pb), respectively; (3) Chromolaena odorata showed similar ability to Vetiveria zizainoides L. in absorbing mercury (Hg) (5.8 mg kg-1 to 33.2 mg kg-1) and lead (Pb) (48 mg kg-1 to 92.00 mg kg-1). ------------------------------------------------------------------------------------------Keywords : Remediation, tailing, artisanal gold mine, indigenous plant 6
DAFTAR PUSTAKA Alloway, B.J., 1990. Heavy Metals in Soils. Blackie Academic and Professional, London. pp.1-330. Anonymous, 2005. Petunjuk Teknik Analisis Tanah, Tanaman, air dan Pupuk. Balai Penelitian Tanah - Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian. 136 hal. Antiochia, R., L., Campanella, P., Ghezzi, and Movassaghi, K., 2007. The use of vetiver for remediation of heavy metal soil contamination. J. Analysis Bioanal Chemical, 388 : 947–956. Callahan, D.L., Baker, A.J.M., Kolev, S.D., Weed, A.K., 2006. Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry 11: 2–12. Chan, K.Y., Zwieten, B,L. avn., Meszaros, I., Downie, D., and Joseph, S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 2007, 629–634 Cruttwell McFadyen, R.E., 1995. The Ecology of Chromolaena odorata in the Neotropics. Research Station, Queensland Department of Lands, Queensland, Australia. Eapen, S., D’Souza, S.F., 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances 23: 97–114. Environmental Protection Agency. 2001. Brownfields technology primer: selecting and using phytoremediation for site cleanup. U.S. Environmental Protection Agency, Washington. Ghosh, M. and Singh, S.P. 2005. A review on phytoremediation of heavy metals and utilization of its by product. Applied Ecology and Environmental Research 3 (1): 1–18. Harris A.T., Naidoo K, Nokes J, Walker T., Orton F., 2009. Indicative assessment of the feasibility of Ni and Au phytomining in Australia. Journal of Cleaner Production 17: 194–200. www.elsevier.com/locate/jclepro Harris, A.T., and Bali, R., 2008. On the formation and extent of uptake of silver nanoparticles by live plants. Journal of Nanoparticle Research 10: 691– 695. In. Sheoran V., Sheoran A.S and Poonia P., 2009. Phytomining: A review. Journal Minerals Engineering 1007–1019. www.elsevier.com/locate/mineng Herman. D.Z., 2006. Tinjauan terhadap tailing mengandung unsur pencemar Arsen (As), Merkuri (Hg), Timbal (Pb) dan Kadmium (Cd) dari sisa pengolahan bijih logam. J. Geologi Indonesia. Vol. 1 No. 1 : 31-36. Hidayati dan Saefudin, 2003. Potensi hipertoleransi dan Serapan Logam Beberapa jenis Tumbuhan Terhadap Limbah Pengolahan Emas. Pusat Penelitian Biologi-LIPI. Hindersah, R., Kalay, A. M., dan Muntalif, B.S., 2004. Akumulasi Pb dan Cd Pada Buah Tomat Yang Ditanam Di Tanah Mengandung Lumpur Kering Dari 7
Instalasi Pengolahan Air Limbah Domestik. Konges Perhimpunan Ahli Teknologi Pangan Indonesia (PATPI), Jakarta 17-18 Desember 2004. Idris, R., Trifonova, R., Puschenrieiter, M., Wenzel, W.W., Sessitsch, A., 2004. Bacterial communities associated with flowering plants of Ni hyperaccumulator Thlaspi goesingense. Applied Environmental Microbiology 70: 2667–2677. Indrayatie, E.R. 2006. Potensi Tanaman Akar Wangi (Vetiveria zizanioides l) dalam Remediasi Limbah Cair Pabrik Tapioka. Disertasi, Universitas Brawijaya, Malang. Karimian, N., Kalbasi, M. and Hajrasuliha, S. 2012. Effect of converter sludge, and its mixtures with organik matter, elemental sulfur and sulfuric acid on availability of iron, phosphorus and manganese of 3 calcareous soils from central Iran. J. African. of Agriculture Research, 7(4): 568-576. Lehman, J., 2007. Bio-energy in the black.. Concepts and question. Front Ecology Environment 5, 381–387 Lehman, C. Dan dan franz, R. 2004. Assesisng the potential for cadmium phytoremediation with Calamagostis epigejos: a pot experiment. J. of Phytoremediation, 6(2): 169-183. Liang, B., Lehmann, J., Kinyangi, D., Grossman, J., O’Neill, B., Skjemstad, J.O.,Thies, J., Luizao, F.J., Peterson, J., Neves, E.G. .2006.Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70, 1719–1730. Masulili A, Wani Hadi Utomo and Syekhfani, 2010. Rice husk Biochar for irce based cropping system in acid soil. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and growth in West Kalimantan, Indonesia. Journal of agriculture Science. 2 (1): 39-47. Mellem, J., Baijanth H., and Odhav, B., 2009. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J. Environmental Science Health, 44: 568-575. -------------., 2012. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. J. Agicultural Research, 7 (4): 591-596. McCauley, A., Jones, C. and Jacobsen, J., 2009. Soil pH and Organic Matter. Nutrient Management Module 8. Montana State University. McMahon, G., Subdibjo, E.R., Aden, J., Bouzaher, A., Dore, G. and Kunanayagam, R. 2000. Mining and the environment in Indonesia:Long-term trends and repercussions of the Asian economic crisis. EASES Discussion Paper Series, 21438 November 2000. the Environment and Social Development Unit (EASES), East Asia and Pacific Region of the World Bank. Mendez, M.O., Glenn, E.P. and Maier, R,M. 2007. Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. J Environ Qual 36:245–253.
8
Pan, G., Pete Smith, P., and Pan,W., 2009. The role of soil organik matter in maintaining the productivity and yield stability of cereals in China. J. Agiculture Ecosystems and Environment, 129: 344–348. Pond, A.P., White, S.A., Milczarekm M. and Thompson, T.L. 2005. Accelerated weathering of biosolid-amended copper mine tailings. J Environ Qual 34:1293–1301. Prihandarini, R., 2006 Peranan Mikroorganisme Dalam Proses Pengolahan Limbah Organik. Pelatihan Dosen-Dosen se-Jawa dan Bali. Kerjasama DKSDM Dikjen Dikti Depdiknas- Unibraw Malang. Reeves,
R. 2006. Hyperaccumulation of trace elements by plants. In: Phytoremediation of Metal-Contaminated Soils. Morel, J. L., Echevarria, G., and Goncharova, N., Eds.: 25–52.
Robinson B., Banuelos G., Conesa H.M., Evangelou M.W.H., and Schulin R., 2009. The Phytomanagement of Trace Elements in Soil. Critical Reviews in Plant Science, 28: 240–266, www.informaworld.com Rondon, M. A., J. Lehmann, J. Ramirez, and M. Hurtado. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biology and Fertility of Soils, 43 : 699 -708. Sambas, E.N., 2002. Analisis vegetasi tumbuhan bawah pada areal tailing dam PT. Antam Pongkor. Pusat Penelitian Biologi-LIPI, Bogor. Schroder P, Patricia J.H and Jean-Paul S, 2002. prospects for phytoremediation of organic pollutants in europe. J.Environ Sci & Pollut Ress 9 (1) 1 – 3. Sequires V.R. 2001. Soil pollution and remediation: issue progress and prospects. Prosiding Workshop Vegetation Recovery in Degraded Land Area. Kalgorlie, Westen Australia, 27 October – 3 November 2001. Shah, K., Nongkynrih, J.M., 2007. Metal hyperaccumulation and bioremediation. Biologia Plantarum 51 (4): 616–634. Sheoran V., Sheoran A.S and Poonia P., 2009. Phytomining: A review. Journal Minerals Engineering 1007–1019 home page: www.elsevier.com/locate/mineng Slaton, N.A., Norman, R.J., and Gilmour, J.T., 2001. Oxidation rate of commercial elemental sulfur products to an alkalin silt loam from Arkansas. J. Soil science society, 65: 239-243. Soerianegara, I., dan Indrawan, A., 2005. Ekologi Hutan Indonesia. Fakultas Kehutanan Institut Pertanian Bogor. Steiner, C., B. Glaser, W. G. Teixeira, J. Lehmann, W. E. H. Blum, and W. Zech. 2008. Nitrogen Retention and Plant Uptake on a Highly Weathered Central Amazonian Ferralsol ammended with Compost and Charcoal. Journal of Plant Nutrition and Soil Science. Susilowati, L.E., 2010. Perilaku Timbal (Pb) Dalam Tanah dan Pengaruhnya Terhadap Kehidupan Bakteri Pelarut Fosfat dan Perubahan Anatomi
9
Morfologi Akar Tanaman. Disertasi. Progam Pasca Sarjana Universitas Brawijaya, Malang. Topoliantz , S., Ponge, JF., and Ballof, S. 2007. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol. Fertil. Soils, 41: 15–21 Troung, P., 2000. Vetiver gass for mine site rehabilitation and reclamation. Proc. Remade Lands International Conference, Fremantle, Australia. Yamato,M., Okimori, Y., Wibowo, I.F., Anshori , S., and Ogawa, M. 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition 52, 489–495 Yu, S., He, Z. L., Huang, C.Y., Chen, G.C., and Calvert, D.V., 2002. Adsorptiondesorption behavior of copper at contaminated levels in red soils from China. J. of Environmental Quality, 31: 1129-1136. Zynda, T. 2001. Phytoremediation. Michigan State University The Technical Assistance for Brownfield Communities (TAB) Program.
10