Komputer menggunakan dan memanipulasi data untuk perhitungan aritmatik, pemrosesan data dan operasi logik. Data adalah bilangan biner dan informasi berkode biner yang dioperasikan untuk mencapai beberapa hasil perhitungan. Informasi biner disimpan dalam memori komputer atau register prosesor dan diinterpretasikan sebagai data atau informasi kontrol.
Data numerik Merepresentasikan integer dan pecahan fixed-point, bilangan real floating-point dan desimal berkode biner
Data logikal Digunakan oleh operasi seperti OR, AND, COMPLEMENT, COMPARE dan SHIFT
Data bit-tunggal Digunakan oleh operasi : SET, CLEAR, & TEST
Data Alfanumerik Digunakan untuk manipulasi string oleh instruksi seperti MOVE dan SEARCH
Sistem Bilangan adalah suatu cara untuk mewakili besaran dari suatu item. Sistem bilangan yang sering digunakan manusia adalah sistem bilangan desimal, menggunakan 10 macam simbol. Sistem bilangan biner sering digunakan didunia komputer, karena sesuai untuk menyatakan dua keadaan ON atau OFF. Setiap sistem bilangan menggunakan suatu bilangan dasar atau basis (base atau radix).
Desimal dengan basis 10 (deca berarti 10) menggunakan 10 macam simbol Biner dengan basis 2 (binary) menggunakan 2 macam simbol bilangan Oktal dengan basis 8 (octal) menggunakan 8 macam simbol Heksadesimal dengan basis 16 (hexa = 6, deca = 10) menggunakan 16 macam simbol bilangan.
Simbolnya yaitu 0,1,2,3,4,5,6,7,8, dan 9 Bentuk nilai bilangan desimal dapat berupa integer desimal (decimal integer) dan pecahan desimal (decimal fraction) Integer desimal 8765 = 8x103 + 7x102 + 6x101 + 5x100 Pecahan desimal 0,05 = 0x10-1 + 5x10-2
Menggunakan simbol 0 dan 1 Contoh : Biner
Desimal
10
2
1010
10
10000000 128
Bilangan biner dapat dinyatakan dalam bentuk jumlahan suku-suku basis berpangkat sesuatu. 11012 = 1x23 + 1x22 + 0x21 + 1x20 = 8 = 13
+ 4 + 0 + 1
Mempunyai 8 macam simbol bilangan yaitu 0,1,2,3,4,5,6, dan 7 Contoh : 12138 = 1x83 + 2x82 + 1x81 + 3x80 = 1x512 + 2x64 + 1x8 + 3 = 65110
Memori utama disebagian komputer diorganisasikan ke dalam satuan yang terdiri dari 8 bit, yang disebut byte. Masing-masing byte digunakan untuk menyimpan satu karakter. Satu byte bisa dipandang terdiri dari 2 group 4 bit. Masing-masing bagian 4 bit ini disebut nibble. 4 bit pertama disebut high-order nibble 4 bit kedua disebut low-order nibble.
Kelompok 4 bit memberikan sebanyak 16 kombinasi, sehingga dikenal bilangan heksadesimal. Menggunakan simbol 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, dan F
Bila suatu nilai dinyatakan dalam suatu sistem bilangan tertentu dan kita ingin mengetahui nilai tersebut dalam suatu bilangan lain, maka nilai tersebut harus dikonversikan terlebih dahulu ke sistem bilangan yang diinginkan. Disebut juga konversi antar basis, dari basis r ke basis t.
Metode sisa (the remainder method) Membagi bilangan yang akan dikonversikan dengan nilai 2 secara beruntun. Contoh : 2210 22 : 2 = 11 sisa 0 11 : 2 = 5 sisa 1 5 : 2 = 2 sisa 1 2 : 2 = 1 sisa 0 1 : 2 = 0 sisa 1 Hasil konversi (ditulis dari bawah ) = 101102
Dapat digunakan metode sisa dengan pembagi 8. Contoh : 246 246 : 8 = 30 sisa 6 30 : 8 = 3 sisa 6 3 : 8 = 0 sisa 3 Hasil konversi = 3668
Dapat digunakan metode sisa, dengan pembagi 16 Contoh = 28310 283 : 16 = 17 sisa 11 = B 17 : 16 = 1 sisa 1= 1 Hasil konversi = 11B16
Dengan cara mengalikan masing-masing bit dalam bilangan biner tersebut dengan nilai posisinya. Contoh = 11012 = 1x23 + 1x22 + 0x21 + 1x20 =8+4+0+1 = 1310 11,012 = 1x21 + 1x20 + 0x2-1 + 1x2-2 = 2 + 1 + 0 + 0,25 = 3,2510
Dapat dilakukan dengan mengelompokan tiap 3 bit dalam bilangan biner tersebut dan menyatakan setiap kelompok tersebut dalam digit oktal. Pengelompokan dilakukan dari belakang. Contoh = 11011102 1 101 110 = 1 5 6, hasil konversi 1568
Dapat dilakukan dengan mengelompokan tiap 4 bit dalam bilangan biner tersebut dan menyatakan setiap kelompok tersebut dalam digit heksadesimal. Contoh = 10010001 1001 0001 = 9 1 , hasil konversi 9116
Dengan cara mengalikan masing-masing bit dalam bilangan oktal tersebut dengan nilai posisinya. Contoh = 4668 = 4 x 82 + 6 x 81 + 6 x 80 = 256 + 48 + 6 = 310 Hasil konversi 31010
Dapat dilakukan dengan menyatakan masing-masing digit oktal dengan 3 bit biner yang ekivalen. Contoh = 6058 6 0 5 = 110 000 101 Hasil konversi = 110000101
Dapat dilakukan dengan merubah bilangan oktal tersebut menjadi bilangan biner, kemudian merubah bilangan biner yang dihasilkan menjadi bilangan heksadesimal. Contoh = 2256 2 2 5 6 = 010 010 101 110 (1) 0100 1010 1110 = 4 A E (2) Hasil konversinya = 4AE16
Dengan cara mengalikan masing-masing bit dalam bilangan heksadesimal tersebut dengan nilai posisinya. Contoh = C1316 C1316 = 12 x 162 + 1 x 161 + 3 x 160 = 3072 + 16 + 3 = 3091 Hasil konversinya = 309110
Dengan mengkonversikan masing-masing digit heksadesimal ke 4 digit biner. Contoh = F716 F 7 = 1111 0111 Hasil konversi = 1111 01112
Dapat dilakukan dengan merubah bilangan heksadesimal tersebut menjadi bilangan biner terlebih dahulu, kemudian merubah bilangan biner yang dihasilkan menjadi bilangan oktal. Contoh = 22D16 2 2 D = 0010 0010 1101 001 000 101 101 = 1 0 5 5 Hasil konversinya = 10558