17
III.
3.1
METODE PENELITIAN
Jenis dan Sumber Data Data yang digunakan dalam penelitian ini adalah data sekunder negara-
negara di kawasan ASEAN+6 dan kawasan non ASEAN+6 (Uni Eropa dan Amerika Utara) yang diperoleh dari beberapa sumber diantaranya World Development Indicators (WDI), World Bank, CEIC, dan beberapa sumber lainnya. Data yang digunakan dalam bentuk data panel yaitu gabungan data deret waktu dari tahun 2002 sampai dengan tahun 2010 dan data cross-section. Penulis juga melakukan studi pustaka dengan membaca jurnal dan artikel yang terkait dengan penelitian ini. Data yang diperlukan dalam penelitian ini adalah permintaan impor dengan menggunakan data indeks volume impor, pendapatan riil dengan proxy GDP riil, harga relatif dengan proxy nilai tukar riil, dan volatilitas nilai tukar riil. Berikut adalah variabel yang digunakan dalam penelitian ini: M
: Indeks volume impor (2000 = 100)
Y
: GDP riil (constant 2005 LCU)
RER
: Nilai tukar riil (2005 = 100), dimana peningkatan mengindikasikan depresiasi
V
: Volatilitas nilai tukar riil yang diperoleh dengan menggunakan standar deviasi.
3.2
Metode Analisis Dalam penelitian ini, untuk mendukung analisis mengenai hubungan
impor dengan volatilitas nilai tukar riil di kawasan ASEAN+6 dan non ASEAN+6 (Uni Eropa dan Amerika Utara), maka digunakan berbagai metode analisis data dengan bantuan software Microsoft Excel 2007, Eviews 6, dan Stata 12. 3.2.1 Granger Causality Test pada Data Panel Hubungan kausalitas (causality) adalah hubungan jangka pendek antara kelompok tertentu dengan menggunakan pendekatan ekonometrik yang mencakup juga hubungan timbal balik dan fungsi-fungsi yang muncul dari analisis spektrum, khususnya hubungan penuh antar spektrum dan hubungan partial antar spektrum.
18
Dari pandangan ekonometrik, ide utama dari kausalitas adalah sebagai berikut. Pertama, jika X memengaruhi Y, berarti informasi masa lalu X dapat membantu dalam memprediksikan Y. Dengan kata lain, dengan menambah data masa lalu X ke regresi Y dengan data Y masa lalu maka dapat meningkatkan kekuatan penjelas (explanatory power) dari regresi. Kedua, data masa lalu Y tidak dapat membantu dalam memprediksikan X karena jika X dapat membantu dalam memprediksikan Y, dan Y dapat membantu memprediksikan X, maka kemungkinan besar terdapat variabel lain, katakan Z, yang memengaruhi X dan Y (Fauzi, 2007). Pada tahun 1969, Granger memperkenalkan hubungan sebab akibat antara dua variabel yang saling berkaitan. Hubungan kausalitas dapat dibagi atas tiga kategori, yaitu hubungan kausalitas satu arah, hubungan kausalitas dua arah dan hubungan timbal balik. Dengan panjang lag optimal, p, maka prinsip kerja dari Granger Causality Test pada data panel didasarkan atas regresi model pooled sebagaimana diuraikan sebagai berikut: (3.1) (3.2) Pada persamaan regresi model pooled pertama (3.1), X memengaruhi Y atau hubungan kausalitas satu arah dari X ke Y apabila koefisien
tidak sama dengan nol
(0). Hal yang sama juga untuk persamaan regresi model pooled kedua (3.2), Y memengaruhi X atau terdapat hubungan kausalitas satu arah dari Y ke X jika koefisien
tidak sama dengan nol. Sementara apabila keduanya terjadi maka
dikatakan terdapat hubungan timbal balik (feedback relationship) antara X dan Y atau terdapat hubungan kausalitas dua arah (bidirectional causality) antara X dan Y.
Dalam
penelitian
ini,
Granger
Causality Test
dilakukan
untuk
menganalisis hubungan variabel-variabel independen dan impor pada data penel. Dengan menggunakan software ekonometrik, hipotesis nol yang digunakan untuk hubungan dua variabel adalah X tidak memengaruhi Y dan Y tidak memengaruhi X. Dasar penolakan hipotesis nol dengan menggunakan kriteria probabilitas < 0.1. 3.2.2 Data Panel Dinamis Dalam sebuah penelitian, terkadang ditemukan suatu persoalan mengenai ketersediaan data (data availability) untuk mewakili variabel yang digunakan dalam penelitian. Misalnya, terkadang bentuk data dalam series yang tersedia pendek sehingga proses pengolahan data time series tidak dapat dilakukan
19
berkaitan dengan persyaratan jumlah data yang minim. Lain halnya terkadang ditemukan bentuk data dengan jumlah unit cross section yang terbatas pula, sehingga sulit untuk dilakukan proses pengolahan data cross section untuk mendapatkan informasi perilaku dari model yang hendak diteliti. Dalam teori ekonometrika, kedua kondisi seperti yang telah disebutkan di atas salah satunya dapat diatasi dengan menggunakan data panel (pooled data) agar dapat diperoleh hasil estimasi yang lebih baik/efisien dengan terjadinya peningkatan jumlah observasi yang berimplikasi terhadap peningkatan derajat kebebasan (degree of freedom) (Fauzi, 2007). Data panel (atau longitudinal data) adalah data yang memiliki dimensi ruang (individu) dan waktu. Dalam data panel, data cross section yang sama diobservasi menurut waktu. Jika setiap unit cross section memiliki jumlah observasi time series yang sama maka disebut sebagai balanced panel. Sebaliknya jika jumlah observasi berbeda untuk setiap unit cross section, maka disebut unbalanced panel. Aplikasi metode estimasi dengan menggunakan data panel banyak digunakan baik secara teoritis maupun aplikatif dalam berbagai literatur mikroekonometrik dan makroekonometrik. Popularitas penggunaan data panel ini merupakan konsekuensi dari kemampuan dan ketersediaan analisis yang diberikan oleh data jenis ini. Penggabungan data cross section dan time series dalam studi data panel digunakan untuk mengatasi kelemahan dan menjawab pertanyaan yang tidak dapat dijawab oleh model cross section dan time series murni. Menurut Baltagi (1995), penggunaan data panel telah memberikan banyak keuntungan secara statistik maupun menurut teori ekonomi. Manfaat dari penggunaan data panel antara lain adalah: 1. Mampu mengontrol heterogenitas individu. 2. Memberikan lebih banyak informasi, lebih bervariasi, mengurangi kolinearitas antar variabel, meningkatkan degrees of freedom, dan lebih efisien. 3. Lebih baik untuk mempelajari studi yang bersifat dinamis (dynamics of adjustment)
20
4. Mampu mengidentifikasi dan mengukur efek yang secara sederhana tidak dapat diperoleh dari data cross section murni atau data time series murni. 5. Dapat menguji dan membangun model perilaku yang lebih kompleks. Relasi di antara variabel-variabel ekonomi pada kenyataannya banyak yang bersifat dinamis. Analisis dapat digunakan sebagai model yang bersifat dinamis dalam kaitannya dengan analisis penyesuaian dinamis (dynamic of adjustment). Hubungan dinamis ini dicirikan oleh keberadaan lag variabel dependen diantara variabel-variabel regresor. Sebagai ilustrasi data panel dinamis dalam Indra (2009) adalah sebagai berikut: (3.3) dengan dan
menyatakan suatu skalar,
menyatakan matriks yang berukuran 1 x K
matriks berukuran K x 1. Dalam hal ini
diasumsikan mengikuti model
one way error component sebagai berikut: (3.4) dengan
menyatakan pengaruh individu dan
menyatakan gangguan yang saling bebas satu sama lain atau dalam beberapa literatur disebut sebagai transient error. Dalam model data panel statis, dapat ditunjukkan adanya konsistensi dan efisiensi baik pada Fixed Effect Model (FEM) maupun Random Effect Model (REM) terkait perlakuan terhadap
. Dalam model dinamis, situasi ini secara
substansi sangat berbeda, karena
merupakan fungsi dari
merupakan fungsi dari
. Karena
adalah fungsi dari
korelasi antara variabel regresor
dengan
maka
juga
maka akan terjadi
. Hal ini akan menyebabkan
penduga least square (sebagaimana digunakan pada model data panel statis) menjadi bias dan inkonsisten, bahkan bila
tidak berkorelasi serial sekalipun.
Untuk mengilustrasikan kasus tersebut, berikut diberikan model data panel autoregresif (AR (1)) tanpa menyertakan variabel eksogen: (3.5) dengan
dimana
satu sama lain. Penduga fixed effect bagi
dan
saling bebas
diberikan oleh: (3.6)
21
dengan dari
dan
. Untuk menganalisis sifat
, dapat disubstitusi persamaan (3.5) ke (3.6) untuk memperoleh
persamaan sebagai berikut: (3.7) Penduga ini bersifat bias dan inkonsisten untuk
dan T tetap, bentuk
pembagian pada persamaan (3.7) tidak memiliki nilai harapan nol dan tidak konvergen menuju nol bila
. Secara khusus, hal ini dapat ditunjukan
(Nickel (1981) dan Hsiao (1986) dalam Verbeek (2004)) bahwa:
sehingga, untuk
tetap, akan dihasilkan penduga yang inkonsisten.
Untuk mengatasi masalah ini, pendekatan method of moments dapat digunakan. Arellano dan Bond (1991) dalam Verbeek (2004) menyarankan suatu pendekatan Generalized Method of Moments (GMM). Pendekatan GMM merupakan salah satu yang populer. Setidaknya ada dua alasan yang mendasari, pertama, GMM merupakan common estimator dan memberikan kerangka yang lebih bermanfaat untuk perbandingan dan penilaian. Kedua, GMM memberikan alternatif yang sederhana terhadap estimator lainnya, terutama terhadap maximum likelihood. Namun demikian, penduga GMM juga tidak terlepas dari kelemahan. Adapun beberapa kelemahan metode ini, yaitu: (i) GMM estimator adalah asymptotically efficient dalam ukuran contoh besar tetapi kurang efisien dalam ukuran contoh yang terbatas (finite), dan (ii) estimator ini terkadang memerlukan sejumlah implementasi pemrograman sehingga dibutuhkan suatu perangkat lunak (software) yang mendukung aplikasi pendekatan GMM (Indra, 2009). Ada dua jenis prosedur estimasi GMM yang umumnya digunakan untuk mengestimasi model linear autoregresif, yakni: 1. First-differences GMM (FD-GMM atau AB-GMM) 2. System GMM (SYS-GMM)
22
First-differences GMM (AB-GMM) Untuk mendapatkan estimasi tertentu,
akan
dilakukan
yang konsisten dimana
first-difference
mengeliminasi pengaruh individu
pada
persamaan
dengan (3.5)
untuk
sebagai berikut: (3.9)
namun, penduga dengan least square akan menghasilkan penduga inkonsisten karena
dan
yang
berdasarkan definisi berkorelasi, bahkan jika
. Untuk itu, transformasi dengan menggunakan first difference ini dapat menggunakan suatu pendekatan variabel instrumen. Sebagai contoh, digunakan sebagai instrumen. Disini, tetapi tidak berkorelasi dengan penduga variabel instrumen bagi
akan
berkorelasi dengan , dan
tidak berkorelasi serial. Disini,
disajikan sebagai berikut: (3.10)
syarat perlu agar penduga ini konsisten adalah:
penduga (3.11) merupakan salah satu penduga yang diajukan oleh Anderson dan Hsiao (1981). Mereka juga mengajukan penduga alternatif dimana digunakan sebagai instrumen. Penduga variabel instrumen bagi
disajikan
sebagai berikut: (3.12) syarat perlu agar penduga ini konsisten adalah:
Perhatikan bahwa penduga variabel instrumen yang kedua memerlukan tambahan lag variabel untuk membentuk instrumen, sehingga jumlah amatan efektif yang digunakan untuk melakukan pendugaan menjadi berkurang (satu
23
periode sampel “hilang”). Dalam hal ini pendekatan metode momen dapat menyatukan penduga dan mengeliminasi kerugian dari pengurangan ukuran sampel. Langkah pertama dari pendekatan metode ini adalah mencatat bahwa:
yang merupakan kondisi momen (moment condition). Dengan cara yang sama dapat diperoleh:
yang juga merupakan kondisi momen. Kedua estimator (IV dan IV (2)) selanjutnya dikenakan kondisi momen dalam pendugaan. Sebagaimana diketahui penggunaan lebih banyak kondisi momen meningkatkan efisiensi dari penduga. Arellano dan Bond (1991) dalam Verbeek (2004), menyatakan bahwa daftar instrumen dapat dikembangkan dengan cara menambah kondisi momen dan membiarkan jumlahnya bervariasi berdasarkan t. Untuk itu, Arellano dan Bond (1991) dalam Verbeek (2004) mempertahankan T tetap. Sebagai contoh, ketika T = 4 diperoleh:
Semua kondisi momen dapat diperluas ke dalam GMM. Selanjutnya, untuk memperkenalkan penduga GMM, misalkan didefinisikan ukuran sampel yang lebih umum sebanyak T, sehingga dapat dituliskan: (3.16) sebagai vektor transformasi error, dan
24
(3.17)
sebagai matriks instrumen. Setiap baris pada matriks
berisi instrumen yang
valid untuk setiap periode yang diberikan. Konsekuensinya, himpunan seluruh kondisi momen dapat dituliskan secara ringkas sebagai: (3.18) yang merupakan kondisi bagi
. Untuk menurunkan penduga
GMM, tuliskan persamaan sebagai: (3.19) Karena jumlah kondisi momen umumnya akan melebihi jumlah koefisien yang belum diketahui,
akan diduga dengan meminimumkan kuadrat momen sampel
yang bersesuaian, yaitu: (3.20) dengan
adalah matriks penimbang definit positif yang simetris. Dengan
mendiferensiasikan terhadap
akan diperoleh penduga GMM sebagai:
(3.21) Sifat dari penduga GMM (3.21) bergantung pada pemilihan selama
definit positif, sebagai contoh
yang konsisten
yang merupakan matriks
identitas. Matriks penimbang optimal (optimal weighting matrix) akan memberikan penduga yang paling efisien karena menghasilkan matriks kovarian asimtotik terkecil bagi
. Sebagaimana diketahui dalam teori umum GMM (Verbeek,
2004), diketahui bahwa matriks penimbang optimal proposional terhadap matriks kovarian invers dari momen sampel. Dalam hal ini, matriks penimbang optimal seharusnya memenuhi:
25
dalam kasus biasa, dimana tidak ada restriksi yang dikenakan terhadap matriks kovarian
, matriks penimbang optimal dapat diestimasi menggunakan first-step
consistent estimator bagi
dan mengganti operator ekspektasi dengan rata-rata
sampel, yakni (two step estimator) (3.23) dengan
menyatakan vektor residual yang diperoleh dari first-step consistent
estimator. Pendekatan GMM secara umum tidak menekankan bahwa
pada
seluruh individu dan waktu, dan matriks penimbang optimal kemudian diestimasi tanpa mengenakan restriksi. Sebagai catatan bahwa, ketidakberadaan autokorelasi dibutuhkan untuk menjamin validitas kondisi momen. Oleh karena pendugaan matriks penimbang optimal tidak terestriksi, maka dimungkinkan (dan sangat dianjurkan
bagi
sampel
berukuran
kecil)
menekankan
ketidakberadaan
autokorelasi pada vit dan juga dikombinasikan dengan asumsi homoskedastis. Dengan catatan di bawah restriksi sebagai berikut:
(3.24)
matriks penimbang optimal dapat ditentukan sebagai (one step estimator) (3.25) sebagai catatan bahwa persamaan (3.25) tidak mengandung parameter yang tidak diketahui, sehingga penduga GMM yang optimal dapat dihitung dalam satu langkah bila error
diasumsikan homoskedastis dan tidak mengandung
autokorelasi. Jika model data panel dinamis mengandung variabel eksogenus, maka persamaan (3.3) dapat ditulis kembali menjadi: (3.26) Parameter persamaan (3.26) juga dapat diestimasi menggunakan generalisasi variabel instrumen atau pendekatan GMM. Bergantung pada asumsi yang dibuat terhadap
, sekumpulan instrumen tambahan yang berbeda dapat dibangun. Bila
26
strictly exogenous dalam artian bahwa error
tidak berkorelasi dengan sembarang
, akan diperoleh: (3.27)
sehingga
dapat ditambah kedalam daftar instrumen untuk persamaan
first difference setiap periode. Hal ini akan membuat sejumlah baris pada menjadi besar. Selanjutnya, dengan mengenakan kondisi momen:
Matriks instrumen dapat ditulis sebagai:
(3.28)
Bila variabel dimana
tidak strictly exogenous melainkan predetermined, dalam kasus
dan
tidak berkorelasi dengan bentuk error saat ini, akan
diperoleh
.
Dalam
kasus
dimana
hanya
instrumen yang valid bagi persamaan first difference pada periode t, kondisi momen dapat dikenakan sebagai: (3.29) Dalam prakteknya, kombinasi variabel x yang strictly exogenous dan predetermined dapat terjadi lebih dari sekali. Matriks Zi kemudian dapat disesuaikan. Baltagi (1995), menyajikan contoh dan diskusi tambahan untuk kasus ini. Penduga AB-GMM dapat mengandung bias pada sampel terbatas (berukuran kecil), hal ini terjadi ketika tingkat lag (lagged level) dari deret berkorelasi secara lemah dengan first-difference berikutnya, sehingga instrumen yang tersedia untuk persamaan first-difference lemah (Blundell & Bond, 1998). Dalam model AR(1) pada persamaan (3.5), fenomena ini terjadi karena parameter autoregresif
mendekati satu, atau varian dari pengaruh individu
meningkat relatif terhadap varian transient error
.
Blundell dan Bond (1998) menunjukkan bahwa penduga AB-GMM dapat terkendala oleh bias sampel terbatas, terutama ketika jumlah periode amatan yang tersedia relatif kecil. Hal ini menekankan perlunya perhatian sebelum menerapkan
27
metode ini untuk mengestimasi model autoregresif dengan jumlah deret waktu yang relatif kecil. Keberadaan bias sampel terbatas dapat dideteksi dengan mengkomparasi hasil AB-GMM dengan penduga alternatif dari parameter autoregresif. Sebagaimana diketahui dalam model AR (1), least square akan memberikan suatu estimasi dengan bias yang ke atas (biased upward) dengan keberadaan pengaruh spesifik individu (individual-spesific effect) dan fixed effect akan memberikan dugaan
dengan bias yang ke bawah (biased downward). Selanjutnya penduga
konsisten dapat diekspektasi di antara penduga least square atau fixed effect. Bila penduga AB-GMM dekat atau di bawah penduga penduga fixed effect, maka kemungkinan penduga AB-GMM akan biased downward, yang kemungkinan disebabkan oleh lemahnya instrumen. System GMM (SYS-GMM) Indra (2009), ide dasar dari penggunaan metode system GMM adalah untuk mengestimasi sistem persamaan baik pada first-differences maupun pada level yang mana instrumen yang digunakan pada level adalah lag first-differences dari deret. Blundell dan Bond (1998) menyatakan pentingnya pemanfaatan initial condition dalam menghasilkan penduga yang efisien dari model data panel dinamis ketika T berukuran kecil. Salah satunya dengan membuat model autoregresif data panel dinamis tanpa regresor eksogenus sebagai berikut: (3.30) dengan
untuk . Dalam hal ini, Blundell dan Bond (1998) memfokuskan pada
,
oleh karenanya hanya terdapat satu kondisi ortogonal yang diberikan oleh sedemikian sehingga
tepat teridentifikasi (just Indentified).
Dalam kasus ini, tahap pertama dari regresi variabel instrumen diperoleh dengan meregresikan
pada
. Perhatikan bahwa regresi ini dapat diperoleh dari
persamaan (3.30) yang dievaluasi pada saat
dengan mengurangi kedua ruas
persamaan tersebut, yakni: (3.31) Dikarenakan ekspektasi biased) dengan
akan bias ke atas (upward
28
(3.32) dengan
. Bias dapat menyebabkan koefisien estimasi dari
variabel instrumen
mendekati nol. Selain itu, nilai statistik-F dari regresi
variabel instrumen tahap pertama akan konvergen ke
dengan parameter non-
centrality
Karena
maka penduga variabel instrumen menjadi lemah. Di sini, Blundell
dan Bond mengaitkan bias dan lemahnya presisi dari penduga first-difference GMM dengan masalah lemahnya instrumen yang mana hal ini dicirikan dari parameter konsentrasi . Menurut Firdaus (2011), beberapa kriteria yang digunakan untuk menemukan model dinamis atau GMM terbaik adalah: 1. Tidak bias. Estimator dari pooled least squares bersifat biased upwards dan estimator dari fixed-effects bersifat biased downmwards. Estimator yang tidak bias berada di antara keduanya. 2. Instrumen valid. Validitas ini diperiksa dengan menggunakan Uji Sargan. Instrumen akan valid bila Uji Sargan tidak dapat menolak hipotesis nol. 3. Konsisten. Sifat konsistensi dari estimator yang diperoleh dapat diperiksa dari statistik Arellano-Bond
dan
, yang dihitung secara otomatis
pada beberapa perangkat lunak. Estimator akan konsisten bila statistik menunjukan hipotesis nol ditolak dan
menunjukan hipotesis nol tidak
ditolak.
3.3
Model Penelitian Dalam penelitian ini, model umum yang digunakan adalah fungsi regresi
untuk seluruh kawasan. Model umum yang digunakan dipelopori oleh Kenen dan Rodrick (1986). Penulis mengembangkan model tersebut dengan menambahkan variabel baru yaitu variabel lag dependent sebagai regresor. Model umum seluruh kawasan yang akan diestimasi adalah sebagai berikut:
29
dimana: = logaritma natural dari indeks volume impor = logaritma natural dari lag indeks volume impor = logaritma natural dari GDP riil = logaritma natural dari nilai tukar riil; peningkatan menandakan depresiasi = Volatilitas nilai tukar riil = Koefisien = koefisien regresi yang menunjukan slope dari variabel penjelas = error.
Data yang digunakan adalah dari negara-negara berikut: Kawasan ASEAN+6
: Indonesia, Malaysia, Singapura, Filipina, Thailand, Cina, Korea Selatan, Jepang, India, Australia, dan New Zealand.
Kawasan non ASEAN+6
: Perancis, Jerman, Inggris, Kanada, Meksiko, dan Amerika Serikat.
3.4
Batasan Penelitian Dalam penelitian ini, akan dianalisis faktor-faktor yang memengaruhi
impor di kawasan ASEAN+6 dan non ASEAN+6, khususnya hubungan volatilitas nilai tukar riil tehadap impor. Pertimbangan memilih nilai tukar riil sebagai variabel penjelas fungsi permintaan impor dikarenakan nilai tukar riil sudah cukup dapat menggambarkan posisi daya saing suatu negara relatif terhadap negara lainnya. Dalam analisis ini faktor-faktor eksternal yang mungkin berpengaruh dalam analisis dianggap konstan.