06. EBT-SMP-99-40 Pada gambar di samping nilai cos ∠ BAC adalah …
TRIGONOMETRI
A. 01. UN-SMK-TEK-03-31 Koordinat kutub titk A (4, 120o), koordinat kartesiusnya adalah ... A. (–2, 2√3) B. (2, 2√3) C. (–2, –2√3) D. (2, –2√3) E. (2√3, –2) 02. EBT-SMP-02-39 Seorang anak yang tingginya 1,65 m berdiri pada jarak 50 m dari sebuah menara di tanah datar. Jika anak tersebut memandang puncak menara sudut elevasi 30o. (sin 30o = 0,500, cos 30o = 0,866 dan tan 30o = 0,577), maka tinggi menara adalah … A. 26,65 m B. 29,50 m C. 30,50 m D. 44,95 m 03. EBT-SMP-94-34 Puncak suatu menara C dilihat dari A dengan sudut elevasi 45o. Jika AB = 20 cm, maka tinggi menara BC adalah … A. 25 meter B. 30 meter C. 35 meter 45o D. 75 meter A 04. EBT-SMP-93-44 Perhatikan gambar menara di samping yang terlihat dari titik A dengan jarak 42 m, dan sudut elevasi 60o. Tinggi menara adalah … 42 A. meter 3 B.
21 3 meter
C.
21 2 meter
D.
42 3 meter
C
B
60o A 42 m
05. EBT-SMP-92-44 Perhatikan gambar di bawah ! Sebuah layang-layang dinaikkan dengan benang yang panjang AC = 250 meter, sudut yang dibentuk benang AC dan AB besarnya 32o. Maka tulisan layang-layang tersebut adalah … A. 132.5 meter C B. 156,3 meter C. 181,4 meter D. 212 meter A B
B. C. D.
15 40 15 25 15 20 20 25
C 15 cm B 25 cm A
07. EBT-SMP-01-40 Gambar di samping menunjukkan seseorang mengamati benda B dari C dengan sudut C = 50o. Bila jarak A dan B = 60 m, lebar sungai adalah … (tan 50o = 1,192; sin 50o = 0,766; cos 50o = 0,642) A. 96,38 cm B. 93,45 cm C. 78,33 cm D. 50.34 cm 08. EBT-SMP-00-40 Pohon B yang berada tepat di seberang A dilihat dari batu C sedemikian sehingga besar ∠ACB = xo dan jarak A ke C menurut pengukuran adalah 62 meter. Jika sin xo 0,849, cos xo = 0,528 , dan tan xo 1,0507, maka lebar sungai tersebut adalah … A. 117,424 meter B. 99,634 meter C. 52,638 meter D. 32,736 meter
C 50o
B
A
B
xo A
C
09. EBT-SMP-98-35 Sebuah tangga panjangnya 14 meter bersandar pada tembok sebuah rumah. Tangga itu membentuk sudut 80o dengan lantai. (sin 80o = 0,985, dan tan 80o = 5,671). Tinggi ujung atas tangga dan lantai adalah … A. 2,44 m B. 7,94 m C. 12,78 m D. 13,75 m 10. EBT-SMP-97-35 Pemancar TV tingginya 200 m.Pada ujung atas ditarik kawat hingga ke tanah. Sudut yang dibentuk kawat dengan tanah mendatar 38o. Diketahui cos 38o = 0,788, sin 38o = 0,616, tan 38o = 0,781. Panjang kawat yang diperlukan (dalam bilangan bulat) … A. 254 m B. 256 m C. 304 m D. 325 m
274
11. EBT-SMP-95-40 Sudut elevasi puncak suatu menara dari tempat yang jaraknya 50 m dari kaki menara itu adalah 37o. Jika sin 37o = 0,602, cos 37o = 0,799 dan tan 37o = 0,754 a. Gambarlah sketsanya b. Hitunglah tinggi menara tersebut ! 12. MD-99-13 Sebuah tiang bendera tingginya 3 m mempunyai bayangan di tanah sepanjang 2 m. Pada saat yang sama pohon cemara mempunyai bayangan di tanah sepanjang 10 m. Maka tinggi pohon cemara tersebut adalah … A. 15 m B. 16 m C. 20 m D. 25 m E. 30 m 13. EBT-SMP-04-33 Seorang pengamat berdiri di atas menara yang terletak di tepi pantai melihat kapal dengan sudut depresi 30o. Jika jarak kapal ke pantai 300 m, maka tinggi menara dari permukaan air laut adalah … A. 150√3 m B. 150√2 m C. 100√3 m D. 100√2 m 14. EBT-SMP-04-34 Untuk menjaga tegaknya suatu tiang, disiapkan 3 kawat masing-masing sepanjang 40 cm yang diikatkan di puncak tiang, dan ujung kawat lainnya diikatkan pada tonggak-tonggak di tanah. Bila sudut elevasi antara kawat dan tanah 30o, berapa sentimeterkah jarak tonggak ikatannya dari pangkal tiang ? tan 30o = 0,577, cos 30o = 0,866, sin 30o = 0,5. A. 20,00 B. 23,08 C. 34,64 D. 35,42 15. EBT-SMP-05-29 Seorang anak menaikkan layang-layang dengan benang yang panjangnya 200 m (benang dianggap lurus). Sudut yang dibentuk oleh benang dengan arah mendatar 35o. Jika sin 35o = 0,574, cos 35o = 0,819 dan tan 35o = 0,700, tinggi layang-layang adalah … A. 114,8 m B. 168,8 m C. 140 m D. 162 m
16. EBT-SMP-06-29 Seorang pengamat berdiri 100 m dari sebuah gedung. Sudut elevasi yang dibentuk oleh pengamat dan puncak gedung 40o dan tinggi pengamat dari tanah 1,5 m. Diketahui sin 40o = 0,643, cos 40o = 0,766, tan 40o = 0,839. Tinggi gedung adalah … A. 85,4 m B. 83,9 m C. 65,8 m D. 64,3 m 17. EBT-SMA-87-02 Di bawah ini adalah gambarpenampang sebuah pipa. Jika jari jari pipa 13 cm dan AB = 10 cm (AB adalah permuka an air dalam pipa), maka tinggi air yang paling dalam adalah … A. 5 cm A B B. 12 cm C. 18 cm D. 20 cm E. 25 cm 18. EBT-SMA-86-03 Tinggi air pada sebuah pipa yang mendatar adalah 16 cm Apabila garis tengah pipa air 52 cm, maka lebar permuka an air dalam pipa tersebut adalah … A. 24 cm B. 37,5 cm C. 40,98 cm D. 48 cm E. 49,5 cm 19. MA-84-20 Dua orang mulai berjalan C masing-masing dari titik A dan titik B pada saat yang sama. Supaya keduanya A 300 450 B sampai di titik C pada saat yang sama, maka kecepatan berjalan orang yang dari titik A harus A. 2 kali kecepatan orang dari B B. 1 √2 kali kecepatan orang di B 2
C. √2 kali kecepatan orang di B D. 2√2 kali kecepatan orang di B E. √3 kali kecepatan orang di B 20. MA-81-39 Bila sin2 α = ialah … A. –1 ≤ x ≤ 8 B. 1 ≤ x ≤ 8 1
C. 3 2 ≤ x ≤ 8 D. 0 ≤ x ≤ 1 1
E. 1 ≤ x ≤ 3 2
275
2x − 7 maka harga x yang memenuhi x +1
21. MA-97-08 Sebuah talang air akan dibuat dari lembaran seng yang lebarnya 30 cm dengan melipat lebarnya atas tiga bagian yang sama seperti pada gambar 10 cm
10 cm θ
10 cm
θ
Jika θ menyatakan besar sudut dinding talang tersebut π dengan bidang alasnya (0 < θ < 2 ), maka volume air yang tertampung paling banyak bila θ = … A. 75 0 B. 60 0 C. 45 0 D. 30 0 E. 22,5 0
24. MD-00-12 Diketahui segitiga ABC. Panjang sisi AC = b m, sisi BC = a cm dan a + b = 10 cm. Jika ∠ A = 30o dan ∠ B = 60o, maka panjang sisi AB = … A. 10 + 5√3 cm B. 10 – 5√3 cm C. 10√3 – 10 cm D. 5√3 + 5 cm E. 5√3 + 15 cm 25. MD-03-08
x B C D Jika BC = CD, maka sin β = … 1 A. 1 + 4 tan 2 x tan x B. 4 + tan 2 x 1 C. tan 2 x + 4 1 D. 1 + 2 tan 2 x tan x E. 1 + 2 tan 2 x
22. MA-75-19 Seorang pengintai pada suatu balon yang tingginya h dari permukaan medan yang datar melihat parit pertahanan P dengan sudut α dengan garis mendatar dan melihat senapan mesin S dengan sudut β dengan garis mendatar. Jarak senapan mesin S dengan parit pertahanan P adalah … β α h
h (tan α – tan β) h (cot β – cot α) h C. tan α − tan β h D. cot β − cot α 23. MA-84-01 Seorang mencoba menentukan tinggi nyala api di puncak tugu Monas di Jakarta dengan cara mengukur sudut lihat dari suatu tempat sejauh a dari kaki tugu itu α dan β seperti dalam gambar. Jika x tinggi nyala api itu, maka x sama dengan … A. B.
26. MD-99-12 tan 2 x Jika = 1 , 00 < x < 900 maka sudut x adalah … 1 + sec x A. 00 B. 300 C. 450 D. 600 E. 750 27. MD-92-22
Jika p – q = cos A dan 2
2 pq = sin A , maka
2
p +q =… A. 0 B. 1 C. 1 D.
α A. a sin (α– β) B. a tan (α– β) C. a cot (α– β) sin (α − β ) D. a sin α sin β sin (α − β) E. a cos α cos β
A
2 1 4
E. –1
β
28. MD-89-09 sin x cos x sama dengan ... tan x A. sin2 x B. sin x C. cos2 x D. cos x 1 E. sin x 276
29. MD-97-11 1 - cos x = … sin x - sin x A. 1 + cos x - cos x B. 1 - sin x sin x C. 1 - cos x cos x D. 1 + sin x sin x E. 1 + cos x
33. MD-03-09 Pada sebarang segitiga ABC berlaku sin A sin B sin ( A + B ) B. sin B A C. 1+ tan B 1+ sin A sin B D. sin A sin B cos( A + B ) E. cos B
A. 1 +
30. MD-90-23
π , maka 2 sin x + cos x + sin3 x + cos3 x + sin5 x + cos5 x + … = A. 1 B. 2 1 C. cos 2 x sin 2 x
Jika 0 < x <
D. E.
34. EBT-SMA-01-15 Diketahui sin α – cos α =
31. MD-87-33 Diketahui deret sin x + cos x sin x + cos2 x sin x + … Jika 0 < x < π maka jumlah deret tersebut sama dengan A. sin x 1 + cos x B. sin x C. tan 1 x
B. C. D. E.
B. C.
sin x 1 + cos x E. cos x
D.
D.
25 1 5 25 49 5 7 49 25
1 2 3 4 3 2
E. 2
π 2
. 0o ≤ α ≤ 180o. Nilai
35. MD-99-30 Jumlah deret tak hingga 1 – tan2 300 + tan4 300 – tan6 300 + … + (–1)n tan2n 300 +… A. 1
2
Untuk 0 < x <
7 5
sin α + cos α = … A. 1
cos 3 x + sin 3 x cos 3 x + sin 3 x cos 2 x sin 2 x cos 2 x sin 2 x cos x cos x + sin x
32. MD-88-24
a+b =… b
, maka jumlah deret tak berhingga
cos x + cos x sin x + cos x sin2 x + cos x sin3x + ….. adalah … cos x + sin x A. sin x 1 + cos x B. sin x sin x C. 1 + cos x 1 + sin x D. cos x cos x E. 1 + sin x
277
Sudut-sudut khusus
07. EBT-SMA-88-01 cos 3150 = … 1
A. – 2 √3
01. EBT-SMP-94-35 Ditentukan sin 35o = 0,574, sin 55o = 0,819 Nilai sin 125o = … A. 0,574 B. 0,819 C. –0,574 D. –0,819 02. EBT-SMA-93-18 Koordinat Cartesius dari titik (4√3 , 3000) adalah … A. (2√3 , 6) B. (2√3 , – 6) C. (– 2√3 , – 6) D. (6 , – 2√3) E. (– 6 , 2√3) 03. EBT-SMP-93-45 Nilai cos 120o adalah … 3 A. − 2 2 B. − 2 1 C. − 2 1 D. 2
1
B. – 2 √2 1
C. – 2
B.
1 2 1 2
3
1 2
√2
E.
1 2
√3
08. EBTANAS-IPS-99-23 Nilai dari cos 1.0200 = … A. – 1 √3 B. –
E.
09. MD-00-13 π π 3π 3π cos2 6 – sin2 4 + 8 sin 4 cos 4 = … A. –4 1
4 3
B. –3 4 C. 4 1
4
D. 4 3
E. 3 4
10. MD-94-13
B. – 2 √3
05. EBT-SMP-96-35 Nilai tan 150o adalah …
3 1
1 2
√2 1
D. – 2 √2 E. √2
3 3
cot (–3300) = …
1
C. 1 3 1 2 1
1 2
√3
1
−2
D.
1 2
A.
D.
C.
√3
1
−2 3
B.
2 1 2
cos 1500 + sin 450 +
C.
A.
2 1 2
C. 0 D. 1
04. EBT-SMP-92-45 Nilai dari sin 210o adalah … A.
D.
11. MD-93-26 tan (–450) + sin 1200 + cos 2250 – cos 300 = … A. 1 + 1 √2
−3 3
B.
2 1 2
2 1 2
–
C. – 1 –
06. EBT-SMA-96-15 sin 150 o + sin 120 o =… Nilai dari cos120 o − cos 300 o A. –2 – √3 B. –1 C. 2 – √3 D. 1 E. 2 + √3
1 2
2
D. –1 – E. 1 –
278
1 2
√2
1 2
√2
√2
√2
12. UN-SMK-TEK-04-31 Nilai dari 120o = ... A. B. C. D. E.
1 5 1 3 2 5 3 5 2 3
π radian π radian π radian
17. UN-SMK-PERT-04-12 Nilai sin 240o + sin 225o + cos 315o adalah ... A. –√3 3 B. – 2 C. – 1 2
π radian
3 2 3 3
D.
π radian E.
13. UN-SMK-TEK-04-12 Nilai dari sin 300o adalah ... A. √3 B. 1 √3 3
C.
– 1 √3
D.
– 2 √3
E.
–√3
18. UN-SMK-PERT-05-09 sin 30o + cos 330o + sin 150o = ... Nilai dari tan 45o + cos 210o
3 1
2− 3 2+ 3 2+ 3
D.
C. 0 D. 1 E.
1− 3 1+ 3
C.
2 1 2
2 1 2
1− 3
B.
14. EBTANAS-IPS-99-23 Nilai dari cos 1.0200 = … A. – 1 √3 B. –
1+ 3
A.
2− 3 1+ 2 3
E.
1− 2 3
√3
19. MD-84-25 2
15. UN-SMK-TEK-04-32 Diketahui sin 1 A = 1 , 0o < α < 900. 2
2
Nilai cos α = ... A. 1 B. C. D. E.
3 4 1 2 1 4 1 8
–
D.
1 2 1 2
E.
0
2
sin 150 o cos 225 o A. –2 B. – 1 2
C. 1 D. 1 √2
2 1 2 1 2
– √2
C.
2
0
20. MD-90-11 sin 270 o cos135 o tan 135 o
16. UN-SMK-TEK-05-09 Nilai dari cos 1200o = ... A. – 1 √3 B.
0
2
0
tan 30 sin 60 + tan 60 cos 30 =… 0 0 sin 30 cos 60 A. 10 B. 5 C. 3 D. 2 E. 1
2
E. 2
√3
279
=…
21. MD-93-25
27. MA-78-15 1 2
Jika A + B + C = 1800 maka sin
Jika cos β = – √3 dan sudut β terletak pada kuadran II, maka tan β = … A. √3 B. C.
1 9 1 2
A. cos B. sin
√3
1 2
(B + C) = . . . .
1 A 2 1 B 2
C. tan (B + C) D. cos 2A E. sin 2A
1
D. – 3 √3 E. –√3
28. MD-05-09 Bilangan bulat terkecil n yang memenuhi : 1
22. MD-91-14
n cos 6 π > 30
3π Jika diketahui x = , maka … 4 A. sin x = cos x B. sin x + cos x = 0 C. sin x – cos x = 1
D. sin x + cos x =
1 2
adalah … A. 32 B. 34 C. 35 D. 36 E. 38
√2
E. sin x < 2 cos x
23. MD-95-24 Jika tan x = –√3 maka cos x sama dengan … A. 1 B. – 1 2
Kesetaraan Trigonometri 01. MD-97-12
C. –1 D. – 1
Jika cos x =
2 1 2
E. – √3
A. B. C. D. E.
24. MD-85-30 Jika segitiga ABC siku-siku di B dan ∠ A = 300, maka (1) sin C =
1 2
√3
(2) cos B = 0 (3) tan A = (4) cos C =
1 3 1 2
3
5 5
maka cot (
π −x) =… 2
–2 –3 4 5 6
02. EBTANAS-IPS-98-25 Diketahui sin A = 1 dan A sudut lancip. Nilai tan A 10
=… A. 1 B.
25. MA-80-23 Bila diketahui x + y = 2700 , maka … A. cos x + sin y = 0 B. cos x – sin y = 0 C. cos x + cos y = 0 D. sin x – sin y = 0 E. sin x + sin y = –1
9 1 3
C. 3 D. 1 √10 E.
10 3 10
√10
03. EBTANAS-00-17 26. EBT-SMA-89-01
Diketahui tan A = 2 dan π < A <
1
Nilai sin ( 2 π + x) sama dengan nilai … A. B. C. D. E.
Nilai sin A . cos A = …
sin x cos x sin x sin (–x) cos x
A.
−
B.
−
C.
−
D.
2 3 2 5
E.
280
2 3 2 5 1 5
3π 2
.
04. UN-SMK-PERT-03-28 Jika sin A =
3 5
, A sudut pada kuadran II, maka cos A
09. EBTANAS-SMK-TEK-01-34 Diketahui cos A = 4 , 0o < A < 90o , maka cos 2A = ... 5
= ... A. –1 B. – 4
A.
C. D.
0
C.
4 5
E.
1
D.
B.
5
E.
05. EBTANAS-IPS-97-08 Diketahui sin A = 12 dengan sudut A tumpul. 13
10. UN-SMK-TEK-04-13 Diketahui tan A = – 1 dengan
Nilai 3 cos A = … A. 13 B. C. D. E.
3
13
B. C. D. E.
B.
–
C.
–
D.
–
E.
–
12
A. – 13 5
B. – 13 C.
adalah … A. 5
E.
E.
3 13 5 13 12 13
12. MD-96-22 Jika x dikuadran II dan tan x = a, maka sin x = … a A. 1 + a2
13 12 26 24 26 60 169 120 169
(
B. – C.
08. EBTANAS-IPS-99-25 Diketahui tan A = 1 (A sudut lancip).
D. –
2
Nilai dari cos 2A = … A. 1 B. C. D. E.
3 1 5 2 7 2 5 3 3
maka cos x = …
13
D.
< A < π, maka nilai
Diketahui tan x = 2,4 dengan x dalam selang (π ,
D.
C.
2
11. MD-88-16
119 − 169 91 − 169 119 169 120 169 130 169
07. EBTANAS-IPS-98-27 Diketahui cos A = 12 dan sudut A lancip. Nilai sin 2A
B.
π
sin A . cos A = ... A. – 2
5 12 5 13 12 15 12 15 13
06. EBTANAS-IPS-97-21 Diketahui sin a = 12 . Nilai cos 2a adalah … A.
24 25 8 10 6 10 7 25 4 25
)
a
(1 + a ) 2
1
(1 + a ) 2
1
(1 + a ) (1 + a ) 2 2
E. –
5 2 5 3 5 4 5
1 281
a
3π ) 2
13. MD-95-14 Diketahui sin α = a, α sudut tumpul, tan α = …
1
Jika tan x = 2 , maka
−a
A.
1
2 sin x + sin (x + 2 π) + cos (π – x) = …
a 2 −1 −a
B.
A.
1− a 2
1+ a 2
C.
a
D.
A.
a 2 + 2a + 1 a2 + 1
B.
a 2 − 2a + 1 a2 + 1
18. EBT-SMA-93-19 Bila 0 < a < 90 dan tan a0 =
A. B. C. D.
2
C.
a + a +1 a2 + 1
D.
a2 − a −1 a2 + 1
E.
a 2 − 2a − 1 a2 −1
E.
4 5
11
, maka sin a0 = ……
11
11
1
1
sin ( 2 π + 2A) + sin ( 2 π – 2A) = … A. B. C. D. E.
dan 90 < a < 180 , maka tan a0 = …
4 3
2 sin A 2 cos A 2 sin 2A 2 cos 2A cos 2A
20. EBTANAS-IPS-98-25 Diketahui sin A = 1 dan A sudut lancip. Nilai tan A
4
B. – 3
10
=… A.
3
C. – 4 3 4 3 5
B. C. D.
16. MD-05-08 Jika sudut θ di kuadran IV dan cos θ =
1 , maka sin θ a
E.
− a −1
B.
2
− 1− a −1
D. E.
a2 −1 a
1 10 3 10
√10 √10
Nilai sin A . cos A = …
a2 − 1
− a2 −1 a
3
Diketahui tan A = 2 dan π < A <
2
A.
1 9 1 3
21. EBTANAS-00-17
=…
C.
5 6 25 36 1 6 5 36 1 36
5
19. EBT-SMA-88-06
15. EBT-SMA-87-07
E.
√5 1
maka (sin x + cos x)2 sama dengan …
D.
2 5
E. – 5 √5
−a 1− a 2
14. MD-98-12 Jika 12 π < x < π dan tan x = a
A.
√5
D. 0
1− a 2
Jika sin a0 =
1 2
B. 1
−a
C.
E.
17. MD-91-12
A.
−
B.
−
C.
−
D.
2 3 2 5
E.
282
2 3 2 5 1 5
3π 2
.
22. EBTANAS-IPS-97-08 Diketahui sin A = 12 dengan sudut A tumpul.
Dalil Cosinus
13
Nilai 3 cos A = … A. 13 B. C. D. E.
5 12 5 13 12 15 12 15 13
23. MD-81-20 Jika tan (2x + 10o) = cot (3x – 15o) maka nilai x yang memenuhi di antaranya adalah ... A. 13o B. 19o C. 21o D. 25o E. 26o
01. EBTANAS-00-18 Diketahui segitiga ABC dengan panjang sisi AB = 5 cm, BC = 6 cm dan AC = 4 cm. Nilai cos A = … A. 1
B. C. D. E.
8 1 4 9 16 5 8 3 4
02. UN-SMK-TEK-05-26 Gambar berikut menunjukkan kerangka besi yang harus dibuat oleh seorang siswa di bengkel las. Panjang XY = ... Y A. 1 √2 cm
B. C. D. E.
2 1 2
√3 cm
√6 cm 8 3
8 cm
√6 cm
8√6 cm
60
o
45o
X
Z
03. UAN-SMA-04-03 Pada segitiga ABC diketahui sisi AB = 6 cm, AC = 10 cm dan sudut A = 60o. Panjang sisi BC = … A. 2√19 cm B. 3√19 cm C. 4√19 cm D. 2√29 cm E. 3√29 cm 04. EBT-SMA-99-17 Pada segitiga ABC, diketahui panjang sisi AB = 15 cm, BC = 14 cm, dan AC = 13 cm. Nilai tan C = … A. 5
B. C. D. E.
13 5 12 12 13 13 5 13 5
05. EBT-SMA-01-13 Nilai cos ∠ BAD pada gambar adalah … −
B.
−
C.
1 5 2 3 20 21
D. E.
283
1 2 1 3
A.
A B
1 2
4
C
3
D
06. EBT-SMA-03-03 Nilai sinus sudut terkecil dari segitiga yang sisinya 5cm, 6 cm dan √21 cm adalah …
A. B. C. D. E.
1 5 1 6 1 5 1 6 1 3
11. MA-95-02 Dalam segitiga ABC, a, b dan c adalah sudut-sudutnya.
Jika tan a =
21
A. –1
21
B. – 25
5
C. – 25
5
D.
24 25
5
E.
1
3 4
4
dan tan b = 3 maka sin c = …
24 7
07. . EBT-SMA-94-18 Nilai tangens sudut terkecil dari segitiga yang mempunyai panjang sisi masing-masing 4 cm, 6 cm dan 8 cm adalah …
12. MA-94-04 P adalah titik pusat lingkaran luar segitiga ABC. Jika sin ∠ C = a, maka sin ∠ APB =…
A.
1 2
a (1 − a 2)
A.
5 17
√3
B.
a (1 − a 2)
B.
1 15
√7
C.
2a
C.
3 11
√5
D. E.
2a 2a2
D.
1 7
√15
E. √15 08. EBT-SMA-02-06 Diketahui ∆ ABC dengan panjang sisi AB = 3 cm, AC = 4 cm dan ∠CAB = 60o. CD adalah tinggi ∆ ABC. Panjang CD = … A. 2 √3 cm 3
B. √3 cm C. 2 cm D. 3 √3 cm 2
E. 2√3 cm 09. EBT-SMA-01-14 Diketahui ∆ PQR dengan PQ = 3 cm, PR = 5 cm dan ∠QPR = 60o. Jika PS garis bagi ∠QPR, panjang PS = … A. 20 √3 cm
B. C. D. E.
9 20
B.
1 2 1 2
14.MD-04-08 Pada ∆ ABC diketahui D adalah titik tengah AC. Jika BC = a, AC = b, AB = c,dan BD = d,maka d2 = …
A. B.
1 2 1 2 1 2
1
1
1
1
1
1
a2 + 4 b2 − 2 c2 a2 − 4 b2 + 2 c2
C.
√3 cm
D.
− 4 a2 + 4 b2 + 2 c2
√3 cm
E.
1 4
√3 cm
10. MD-04-06 Jika ∆ ABC siku-siku di C dan memenuhi 2 tan A = sin B , maka sin A = …
A.
13. UN-SMA-06-05 Perhatikan gambar berikut ini ! C Suatu lahan berbentuk segitiga dibatasi oleh tonggak A, B dan C 60o 12 16 Jika jarak tonggak A dan C = 12 m, jarak tonggak B dan C = 16 m A dan besar sudut ACB = 60o, maka B jarak tonggak A dan B adalah … A. 4√13 m B. 4√15 m C. 4√19 m D. 4√31 m E. 4√37 m
cm
9 3 45 4 20 3 20 6
(1 − a 2)
2
a2 − 4 b2 − 2 c2 1
1
1
1
1
a2 − 4 b2 + 2 c2
15. MD-02-22 Titik-titik sudut segitiga samakaki ABC terletak pada lingkaran berjari-jari 7 cm. Jika alas AB 2√7 cm, maka tan A = … A. 1 (√6 + √7)
B.
3
C.
7 1 6 1 3 1 2
(√6 + √7) (√6 + √7)
C.
2 −1
D.
3 −1
D.
E.
3− 2
E. (√6 + √7) 284
(√6 + √7)
16. MD-98-13 Diketahui segitiga ABC dengan sudut B = 450 dan CT 5 garis tinggi dari titik C. Jika BC = a dan AT = a 2 , 2 maka AC = … A. a√3 B. a√5 C. a√7 D. a√11 E. a√13 17. MD-01-11 Jika dari segitiga ABC diketahui AC = o
10 3
√6 cm,
BC = 10 cm dan sudut A = 60 , maka sudut C adalah ... A. 105o B. 90o C. 75o D. 55o E. 45o 18. MA-05-08 Diketahui empat titik A, B, C dan D yang berada pada lingkaran dengan panjang AB = 4 cm, BC = 3 cm, CD = 3 cm dan AD = 6 cm. Kosinus sudut BAD adalah … A. 14
B. C. D. E.
33 16 33 17 33 19 33 20 33
19. MA-97-05 Pada suatu segitiga ABC yang siku-siku di C, diketahui
bahwa sin A sin B =
2 5
dan sin (A – B) = 5a.
21. MA-79-25 Segitiga ABC siku-siku di A. Jika BC = p, AD tegak lurus BC, DE tegak lurus AC, sudut B = β, maka panjang DE ialah … C A. p sin β cos2 β B. p sin2 β p C. p sin2 β cos β D E D. p sin β tan β E. p sin β cos β B β A 22. MA-89-08 U , W, R terletak pada suatu garis lurus. Dalam ∆ SRW, RS = RW , dalam ∆ STW , ST = SW ; dalam ∆ TUW , WT = WU. Jika ∠ WRS = ∠ TSW = x 0 , maka … A. ∠ TWS = ∠ TWU B. ∠ WTU = x 0 U C. ∠ TWU = x 0 W x R D. ∠ TUW = x 0 E. ∠ SWR = x 0 T x0 S 23. MA-83-08 Dalam segitiga ABC, BB′ dan CC′ garis tinggi, Jadi C′ pada AB dan B′ pada AC. Jika diketahui BB`: AB′ = 2 dan CC′: BC′ = 3, maka sudut ABC sama dengan … A. 300 B. 450 C. 600 D. 900 E. 1350 24. EBT-SMA-00-16 Luas ∆ ABC adalah (3 + 2√3) cm2. Panjang sisi AB = (6 + 4√3) cm dan BC = 7 cm. Nilai sisi (A + C) = … A. 1
B.
Nilai a adalah … A.
−5
1
C.
B.
− 25
3
D.
C.
1 25 3 25 3 5
E.
D. E.
B. C. D. E.
1 3 1 3 1 2 1 7 7 3
√7
7 6+ 4 3 7 3− 4 3
25. EBT-SMA-98-13 Ditentukan segitiga ABC dengan panjang sisi BC = 3 cm, sisi AC = 4 cm dan sin A = 1 . Nilai cos B = … 2
20. MA-04-12 Diketahui segi empat ABCD; ∠A = ∠C = 60o , AB = 3 , AD = 2 dan DC = 2BC , maka BC = …
A.
7 4 7 1 2
A. B.
7
C.
21
D.
10
E.
19 3
285
2 5 1 3 1 2 2 3 1 2
√5 √5 √3
26. EBT-SMA-99-18 Ditentukan segitiga PQR dengan panjang sisi PQ = 10
cm dan sin ∠ PRQ =
1 4
2 . Jari-jari lingkaran luar
31. EBT-SMA-95-16 Diketahui segitiga ABC dengan panjang sisi-sisinya a = 9 , b = 7 dan c = 8. Nilai cos A adalah …
segi tiga tersebut adalah … A. 40√2 cm B. 20√2 cm C. 20 cm D. 10√2 cm E. 10 cm 27. EBTANAS-00-18 Diketahui segitiga ABC dengan panjang sisi AB = 5 cm, BC = 6 cm dan AC = 4 cm. Nilai cos A = … A. 1
B. C. D. E.
8 1 4 9 16 5 8 3 4
28. EBT-SMA-98-14 Diketahui segitiga ABC dengan panjang AB = 6 cm, besar ∠A = 30o dan ∠C = 120o. Luas segitiga ABC adalah … A. 18 cm2 B. 9 cm2 C. 6√3 cm2 D. 3√3 cm2 E. 2√3 cm2 29. EBT-SMA-97-14 Ditentukan segitiga ABC dengan panjang sisi-sisinya AB = 9 cm, AC = 8 cm dan BC = 7 cm. Nilai sin A adalah …
A. B. C. D. E.
2 3 1 3 2 5 1 2 3 5
√5
B. C. D. E.
3 7 2 7 1 7 2 7 1 7
5 12
C.
13 28
D.
11 21
E.
33 56
1 4
A.
−
B.
11 24 11 18 18 24 21 24
D. E.
33. EBT-SMA-93-20 Diketahui segitiga ABC dengan panjang AC = BC = 6, AB = 6√3. Luas segitiga ABC tersebut adalah … satuan luas A. 36√3 B. 18√3 C. 9√3 D. 9√2 1
E. 4 2 √2 34. EBT-SMA-91-17 Nilai sinus sudut A dalam segitiga ABC yang panjang sisi-sisnya : a = √ 7 , b = 3 dan c = 2 adalah …
√5 √5
√7
B.
C.
√5
√7
2 7
32. UN-SMA-05-06 Diketahui segitiga ABC dengan AB = 4 cm, AC = 6 cm, BC = 8 cm dan ∠ ABC = α. Nilai cos α = …
30. EBT-SMA-96-14 Diketahui segitiga ABC, panjang sisi AC = 3, AB = 2 dan ∠ A = 60o. Nilai cos C adalah …
A.
A.
A.
1 4
B.
1 2
C.
3 4
D.
1 2
√3
E.
1 6
√35
√3
35. EBT-SMA-92-15 Pada segitiga ABC diketahui sisi a = 4 , sisi b = 6 dan sudut B = 450. Nilai kosinus sudut A adalah …
A.
1 6
√2
√6
B.
1 6
√6
√6
C.
1 6
√7
D.
1 3
√2
E.
1 3
√7
√7
286
36. EBT-SMA-90-21 Luas daerah segitiga ABC pada gambar dibawah adalah 4 cm
1050 A. B. C. D. E.
300
√6 – √2 2(√6 – √2) 4(√3 – 1) 4(√3 + 1) 2(√6+ √2)
37. EBT-SMA-86-07 Suatu segitiga ABC diketahui A = 1500, sisi a = 12 cm dan sisi c = 5 cm, maka luas segitiga ABC = … A. 12 cm2 B. 13 cm2 C. 14 cm2 D. 15 cm2 E. 16 cm2 38. EBT-SMA-89-02 Dalam segitiga ABC diketahui b = 8 cm , c = 5 cm dan sudut A = 600. Maka a = …. A. √7 cm B. 7 cm C. 89 cm D. 49 cm E. √129 cm 39. EBT-SMA-89-03 Jajaran genjang ABCD, diketahui AB = 5cm, BC = 4cm dan ∠ ABC = 1200, maka luas jajaran genjang itu sama dengan … A. 5√3 satuan B. 10 satuan C. 20 satuan D. 10√3 satuan E. 20√3 satuan
42. EBT-SMA-86-04 Pada gambar di samping ini KL dan KN masingmasing garis singgung. ∠ LMN = 750, maka ∠ LKN = … K N A. 750 B. 600 C. 37,50 D. 300 O M E. 150 L 43. MA-85-16 Jika dalam segitiga ABC, α, β, dan γ menyatakan besar sudut-sudutnya, dan sin 2 α + sin 2 β = sin 2 γ, maka γ adalah … A. 450 B. 600 C. 900 D. 1200 E. 1350 44. MA-80-18 A dan B titik-titik ujung sebuah terowongan yang dilihat dari C dengan sudut lihat ACB = 450. B
p
450 C 2p√2 A Jika jarak CB = p dan CA = 2p√2, panjang terowongan itu ... A. p B. p√17 C. 3p√2 D. 4p E. 5p 45. MD-04-09
E
40. EBT-SMA-88-02 Sisi sisi segitiga ABC : a = 2√61 , b = 10 dan c = 8 Nilai cos A adalah …
A. – B.
D A B Jika ∆ ABC siku-siku sama kaki, AC = BC = 5, dan AD = CE, maka luas minimum dari segiempat ABED adalah … A. 7,500 B. 8,375 C. 9,750 D. 10,375 E. 12,500
5 8
1 2 1
C. – 2 D.
4 5
E.
5 8
41. EBT-SMA-88-03 Layang-layang garis singgung OAPB, sudut APB = 600 dan panjang OP = 20 cm. Luas OAPB = … A. 100 cm2 B B. 100√2 cm2 C. 100√3 cm2 O P D. 200 cm2 A E. 100√5 cm2
C
46. ITB-76-24 Jika sudut-sudut segitiga ABC memenuhi persamaan 3 tan γ = tan α + tan β, maka … A. segitiga ABC lancip B. segitiga ABC siku-siku C. segitiga ABC tumpul D. tidak/belum dapat disimpulkan apa-apa
287
47. MA-90-01 A, B, C terletak pada busur sebuah lingkaran π ∠ABC = dan AB : BC = 1 : √3. Jika busur AB
Persamaan Kuadrat Trigonometri
2
adalah π, maka keliling segitiga itu … A. 1 + √3 B. 3 + √3 C. 7 + √3 D. (3 + √3) √3 E. 3 (3 + √3)
01. EBT-SMA-01-19 Hasil penjumlahan dari semua anggota himpunan penyelesaian persamaan 3 tan x + cot x – 2√3 = 0 dengan 0 ≤ x ≤ 2π adalah … A. 5 π
B.
48. MD-02-23 A
C. D.
120o B C Jika panjang lintasan langsung dari A ke C adalah a√7 dan dari A ke B adalah a, maka panjang jalan dari A ke C melalui B adalah … A. 2 1 a 2
B.
E.
A.
3a 1
B.
1 2
D. 2 a
C.
4a
49. MA-78-44 Segi empat ABCD siku-siku di A dan di C, ∠ ABD = α ∠ DBC = β. Jika AD = p, maka BC = … D A. p cos α cos β B. p sin α cos β cos β C C. p sin α sin β D. p p β sin α α sin β E. p A B cos α
π π π π
02. EBT-SMA-99-21 Diketahui persamaan tan xo – 6 cot xo – 5 = 0 untuk 90 < x < 180. Nilai sin xo yang memenuhi adalah …
C. 3 4 a E.
3 4 3 7 6 5 6 2 3
D. E.
6 37 37 1 2 2 1 37 37 1 − 2 2 6 − 37 37
03. EBT-SMA-95-18 Nilai x yang memenuhi persamaan 2 cos 2x0 – 4 cos x0 = 1 untuk 0 ≤ x ≤ 360 adalah … A. 60 dan 300 B. 30 dan 330 C. 150 dan 210 D. 120 dan 210 E. 120 dan 240 04. EBT-SMA-92-34 Himpunan penyelesaian dari persamaan cos 2x0 + sin x0 – 1 = 0 pada interval 0 ≤ x ≤ 360 adalah A. {0 , 30 , 180 , 330} B. {0 , 30 , 210 , 330} C. {0 , 150 , 180 , 210} D. {0 , 30 , 150 , 180} E. {0 , 30 , 180 , 210} 05. MA-84-11 Dalam selang 0 ≤ x <
1 2
π , 2 sin 2 x + 3 sin x ≥ 2
berlaku untuk semua x yang memenuhi … 1 6 1 6
π≤x≤
5 6
π
π≤x<
1 2
π
C.
1 6
π≤x≤
1 2
π
D.
1 3
π≤x≤
1 2
π
E.
1 3
π≤x<
1 2
π
A. B.
288
06. MD-01-12 Jika x memenuhi 2 sin2 x – 7sin x + 3 = 0 dan π π − 2 < x < 2 , maka cos x = ...
10. MD-88-22 Bila x memenuhi 2(sin x)2 + 3 sin x – 2 = 0 dan π π – 2 < x < 2 , maka cos x adalah … 1 2
A. – 1 √3
A.
B. –
B. – 1
C. D. E.
1 2 1 2 1 2
2 1 2
2
C.
−
B.
−
C.
1 2 1 2 1 3
D. E.
√3
√2
D. – 1 √3
√3
E.
2
07. UN-SMA-05-07 Diketahui persamaan 2 sin2x + 5 sin x – 3 = 0 dan π π − 2 < x < 2 . Nilai cos x = …
A.
1 2
1 2 1 2
1 2
√2
11. MA-78-25 Akar-akar dari persamaan 4 sin2 x + 4 cos x – 1 = 0 di dalam selang (interval) –π ≤ x ≤ π adalah …
A.
3
B. C. D.
3
E.
3
3 2
1
dan – 2 3
1 2 2 dan – 3 π 1 dan – 2 π 1 dan – 3 π
– 2 dan 2 3 3 2 1 3
π π π
12. MA-01-04 ⎛π ⎞ Jika 3cos2 x + 4 sin ⎜ 2 − 2 x ⎟ – 4 = 0, maka cos x = … ⎝ ⎠ 2 A.
08. MD-95-13 Jika 0 < x < π dan x memenuhi persamaan tan2 x – tan x – 6 = 0 maka himpunan nilai sin x adalah
A. B. C. D. E.
( ( (− ( (
3 10 3 10
1 10 1 10
2
10 , 5 5 2
)
3
) 5) 5) 5)
10 ,− 5 5 3 10
2
10 , 5 1
10 , 5 2
10 , 5
09. MD-89-29 Persamaan 2 sin2 x + sin x – 1 = 0 dipenuhi oleh x = ... π (1) 6 7π − (2) 6 3π (3) 2 π (4) − 2
B.
–2
C.
1 3 1 6 2 3
D. E.
3
6 dan – 1 6 3
1
30 dan – 6 30 2
2 dan – 3 2
13. MD-94-14 π π Jika – < x < dan x memenuhi persamaan 2 2 2 6 sin x – sin x – 1 = 0 , maka cos x = …
A.
1 2
√3 dan
2 3
1 2
B. – √3 dan C.
1 2
√2 2 3 2 3
√2
√3 dan – √2 1
2
D. – 3 √2 dan – 3 √3 E.
1 3
√2 dan
2 3
√3
14. MD-91-13 Jika 2 sin2 x + 3 cos x = 0 dan 00 ≤ x ≤ 1800 maka x =… A. 600 B. 300 C. 1200 D. 1500 E. 1700
289
15. MA-91-08 Nilai maksimum dari : f(x) = 2 cos 2x + 4 sin x untuk 0 < x < π, adalah … A. 2 B. 3 4 C. D. –6 E. –12 16. MA-86-01
Jika 0 ≤ x ≤
π 2
, maka nilai x yang memenuhi
persamaan : cos 4x – 3 sin 2x + 4 = 0 adalah … π A. 8 B. C. D. E.
03. MD-87-20 Jika α , β dan γ sudut-sudut segitiga ABC dan ⎛ sin α cos α ⎞ ⎛ cos β - sin β ⎞ ⎛ sin γ cos 1γ 2 ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ = ⎜ 0 ⎝ cos β sin β ⎠ ⎝ sin β cos β ⎠ ⎜⎝ 1 maka γ = … A. 300 B. 450 C. 600 D. 900 E. 1200 04. MD-87-22
Persamaan
π 4
A.
3π 8
B.
π 3
C.
π 2
D.
17. EBT-SMA-00-19 Himpunan penyelesaian 3 cos (360 – x)o > 2 sin2 xo untuk 0 ≤ x ≤ 360 adalah … A. {60 < x < 180} B. {x ≤ 60 atau x ≥ 180} C. {0 < x < 60 atau 300 < x < 360} D. {0 < x < 60 atau 300 < x ≤ 360} E. {60 ≤ x ≤ 180}
Penjumlahan sudut
E.
2
π 3
π 6
π 9
π 18
05. MA-85-14 sin (a − b ) =… tan a − tan b A. cos a cos b B. sin a sin b C. – cos a cos b D. – sin a sin b E. cos (a – b)
C. D. E.
−
A.
2 3 6 1 2
1 4
π , maka tan x sama dengan …
2 tan y 1 + tan y 1 − tan y B. 1 + tan y 1 + tan y C. 1 − tan y 1 + tan y D. 2 tan y 2 tan y E. 1 - tan y
01. UAN-SMA-04-04 Nilai sin 45o cos 15o + cos 45o sin 15o sama dengan … A. 1 2 1 2 1 2 1 2
cos x - cos 2 x 1 = , dipenuhi oleh x = 2 sin x sin 2 x
π
06. MD-87-31 Bila x + y =
B.
⎞ ⎟ ⎟ ⎠
3
02. EBT-SMA-87-08 tan 750 = … A. 3 – √2 B. 3 + √2 C. 1 D. 2 – √3 E. 2 + √3
290
07. MA-75-12 Jika tan 3o = p, maka tan 228o adalah …
11. EBT-SMA-92-17
Diketahui cos A =
(1 − p )
2
A.
(1 − p )
C.
A.
2 15
(3 – 2√5)
2
B.
2 15
(3 – √5)
2
C.
2 15
(5 – √3)v
D.
2 15
(3 + √5)
E.
2 15
(5 + √3)
(1 − p )
(p − 1) (p − 1)
(1 − p )
2
(1 − p ) 2
D.
(1 − p )2
08. EBT-SMA-96-17
Diketahui tan A =
12 5
dan sin B =
4 5
; A dan B sudut
12. EBTANAS-00-20 Diketahui sin A =
B. C. D. E.
63 65 56 65 16 65 16 – 65 33 – 65
B. C.
09. EBT-SMA-98-15 Diketahui cos (A – B) =
3 5
dan cos A cos B =
7 25
B. C. D. E.
.
C. D. E.
, A sudut tumpul dan
− 65
E.
dengan α dan β lancip,
56
12 13
(A sudut lancip
dan B sudut tumpul). Nilai sin (A + B) adalah … A. – 33 65 16 – 65 16 65 56 65 63 65
14. EBTANAS-IPS-98-26 Diketahui sin A = 3 dan cos B = 5
12 13
, A dan B
keduanya sudut lancip. Nilai tan (A + B) adalah … A. 16
maka nilai dari tan (α + β) adalah … B.
E.
D.
10. EBT-SMA-86-16
A.
12 13
16
− 65
C.
4 5
, cos B =
65 16 65 14 65
D.
B.
Bila sin α = 13 , cos β =
3 5
5
8 25 8 7 7 8 −8 25 −8 7
5
. A dan B lancip.
13. EBTANAS-IPS-99-24 Diketahui cos A = 3 dan sin B =
Nilai tan A tan B = … A.
2 5
B sudut lancip. Nilai sin (A – B) = … A. 56
lancip. Nilai cos (A – B) = … A.
, cos B =
Nilai dari cos (A + B) adalah ……
2
2
B.
2 3
61 45 45 61 56 63 56 33 33 56
B. C. D. E.
291
63 11 15 33 56 56 45 63 45
15. MA–99–02
π
Jika α + β =
20. MA–99–02
dan cos α cos β =
6
3 4
A. B.
+
√3
A.
1 9
+
1 2
√3
3 2
+
1 2
√3
B.
3 2
+
1 2
√3
C.
3 4
–
1 2
√3
C.
3 4
–
1 2
√3
D.
3 2
–
1 2
D.
3 2
–
1 2
√3
E.
1 2
E.
1 2
√3
√3
√3
16. MD-98-11 Diberikan segitiga ABC siku-siku di C. Jika cos (A+C) = k maka sin A + cos B = … A. – 12 k
21. MA-81-21
A. tan x = B. sin x = C. cos x =
E. 2k
E. sin x =
4
) = cos (x –
π 4
) maka …
1 3 1 √2 2 1 √3 2
√3
cos A cos B =
2
E. √6 18. MA-85-14 sin (a − b ) =… tan a − tan b A. cos a cos b B. sin a sin b C. – cos a cos b D. – sin a sin b E. cos (a – b) 19. MA-00-07 Jika α dan β sudut lancip, cos (α– β ) =
cos α cos β = A. 2 – √3 B. 1 – 1 √3
1 2
22. MA-79-37 Pada suatu segitiga siku-siku ABC berlaku
C. √3 D. 1 √6
1 2
, maka
cos(α + β ) =… cos(α − β )
1 2
√3 dan
A.
1
B.
1 2
C.
0
D.
–2
E.
–1
1 2
, maka cos (A – B) sama dengan …
1
23. MA-03-01 Jika untuk segi tiga ABC diketahui : cos A cos B = sin A sin B sin A cos B = cos A sin B maka segi tiga ABC adalah segi tiga … A. tumpul B. sama sisi C. siku-siku tak sama kaki D. sama kaki tak siku-siku E. siku-siku dan sama kaki
dan
24. MA-87-05
Jika 2 cos (x +
3
A.
C. 3 – 2√3 D. 1 – 1 √3
B.
2
E.
maka
D. tan x = 3
17. UN-SMA-06-10 Nilai dari cos 465o – cos 165o adalah … A. 1 √2
2 3
π
Bila 2 cos (x +
B. –k C. –2k D. 12 k
B.
3 4
cos (α – β) = …
1 2
2 1 2
dan cos α cos β =
6
cos (α – β) = … 1 9
π
Jika α + β =
maka
√3 – 1
C. D. E.
292
1 3 2 3 1 2 3 4
1
1 4
1
π) = cos (x – 4 π) maka tan 2x = …
25. EBT-SMA-89-04 Dari gambar di samping ini, sin (x + y)0 = …… 117 A. 125
B. C. D. E.
7 R
44 125 13 125 8 25 4 5
Sudut rangkap
S
y
P
x
25
15
01. EBT-SMA-95-17
Ditentukan sin A = 7 , maka cos 2A = … 25
Q A. B. C.
26. EBT-SMA-93-21 Diketahui a0, b0 dan c0 menyatakan besar sudut-sudut segitiga ABC dengan tan a0 = 3 dan tan b0 = 1. Nilai tan c0 = … A. 2 B. 1
C. – D. 2 E. 3
D. E.
1 2
576 675 572 675 563 625 527 625 513 576
02. EBT-SMA-00-17 Diketahui sin x = 8 , 0o < x < 90o . 10
Nilai cos 3x + cos x = … 18
A.
− 25
B.
− 125
C.
− 125
D.
6 25 12 25
E.
84
42
03. EBT-SMA-90-23 Nilai di bawah ini yang bukan merupakan nilai cos x da-ri persamaan cos 4x – cos 2x = 0 adalah … A. –1 B. – 1 2
C. 0 D. 1
2
E. 1 04. EBT-SMA-98-16 Nilai tan x yang memenuhi persamaan cos 2x + 7 cos x – 3 = 0 adalah … A. √3 B. 1 √3
C. D. E.
293
2 1 3 1 2 1 5
√3
√5
05. EBT-SMA-99-19 3 5
2
Ditentukan sin A =
. Untuk
π 2
< x < π, nilai tan 2A
=… A. 2√6 B. 2 √6 5
C.
2 5 6
D. – 2 √6 5
E. –2√6 06. EBT-SMA-03-04 Diketahui sudut lancip A dengan cos 2A =
E. 1 3
B. C. D. E.
1 3 1 2 1 3 2 3 2 3
2 6
B.
5
C.
6
D.
07. EBT-SMA-90-22
Diketahui sin p =
2 5
p2 + 1
11. MA-78-30 Jika tan x = a, maka sin 2x sama dengan … 2a A. 1+ a 2
3
0
2 p2 + 1
.
Nilai sin A = … A.
10. EBT-SMA-94-19 Ditetahui tan A = p , maka cos 2A = … A. 1 – p2 1− p 2 B. p 2 +1 2p C. p2 + 1 2 D. p2 + 1
0
, 0 < p < 90. Nilai dari tan 2p =
E.
A. –2
1+ a 2 2a 1− a 2 1+ a 2
1+ a 2 1− a 2 a a + a2
4
B. – 3 C. – D.
4 5
4 3
E. 2 08. EBT-SMA-91-19
Diketahui sin A =
7 25
dan sudut A lancip.
Nilai daeri sin 2A adalah … A.
17 25
B.
14 25
C.
26 625
D.
168 625
E.
14 625
12. MA-80-41 Bila sin x – cos x = p , maka harga dari sin 2x adalah A. 2p2 B. p2 + 1 C. p2 – 1 D. 1 – p2 1-p2 E. 2 13. EBT-SMA-87-34 Jika tan α = t ( t∈ R) , maka … t (1) sin 2A = 1+ t2 2t tan 2A = (t ≠ 1) (2) 1− t2
09. MA-82-33 Identitas mana saja yang benar ? (1) cos 2x = cos4 x – sin4 x (2) cos 2x = (cos x + sin x) ( cos x – sin x )
(3) cos 2x = sin
1 2
π cos 2x – cos
(4) cos 2x = 2 cos2 x + 1
1 2
π sin 2x
294
(3)
1 1+ t2 = (t ≠ 1) cos 2 A 1 − t 2
(4)
1 1+ t2 = (t ≠ 0) t2 sin 2 A
14. EBT-SMA-88-05
Ditentukan tan
1 2
A = t, maka sin A = …
t 1+ t2 2t B. 1+ t2 3t C. 1+ t2 4t D. 1+ t2 5t E. 1+ t2
A.
B. C. D. E.
15. EBTANAS-IPS-97-21 Diketahui sin a = 12 . Nilai cos 2a adalah … 13
119
A.
− 169
B.
− 169
C.
119 169 120 169 130 169
D. E.
13
D. E.
13 12 26 24 26 60 169 120 169
D. E.
1
2 pq p2 + q2 2 pq p2 + q2
1 3
dan α = 2φ. Maka
2t (θ sudut lancip), maka cos 1− t2 sama dengan … 1 A. 1+ t2 1 B. 1− t 2 1 C. 1+ t 2 1 D. 1− t Jika tan θ =
2
C.
p2 + q2
21. ITB-76-22
Nilai dari cos 2A = … A. 1 B.
q
2q
20. EBT-SMA-00-18 2 tan x Bentuk ekuivalen dengan … 1 + tan 2 x A. 2 sin x B. sin 2x C. 2 cos x D. cos 2x E. tan 2x
17. EBTANAS-IPS-99-25 Diketahui tan A = 1 (A sudut lancip).
5 2 5 3 5 4 5
p
kesimpulannya adalah … A. α adalah dalam kuadran I atau II B. α adalah dalam kuadran I atau IV C. α adalah dalam kuadran II atau III D. α adalah dalam kuadran II atau IV
adalah … A. 5
C.
θ
pq 2 p + q2
19. ITB-76-21 Diketahui bahwa sin φ =
91
16. EBTANAS-IPS-98-27 Diketahui cos A = 12 dan sudut A lancip. Nilai sin 2A
B.
18. MA-84-05 sin 2θ sama dengan … pq A. 2 p + q2
1 2
θ
22. MA-75-41 Jika sin α = 0,6 maka harga sin 3α adalah (perhitungan tanpa daftar) … A. 1,836 B. 0,696 C. 0,200 D. 0,936
295
23. MA-80-05 1 2
Bila tan x = t , maka sin x adalah … A. B. C. D. E.
t (1+t2) 2t (1+t2) 3t (1+t2) 4t (1+t2) 5t (1+t2)
Penjumlahan Fungsi Trigonometri
05. EBT-SMA-89-05 Bentuk cos 6x – cos 2x dapat diubah menjadi bentuk perkalian …… A. 6 sin2 2x cos 2x B. 4 sin2 2x cos 2x C. 2 sin2 2x cos 2x D. 2 cos2 2x sin 2x E. 4 cos2 2x sin 2x 06. MA-79-12 sin 3p + sin p = … A. 4 sin p cos2 p B. 4 sin2 p cos p C. sin p cos2 p D. sin2 p cos p E. sin 4p 07. EBTANAS-IPS-00-19 Nilai dari cos 105o + cos 15o adalah … A. 1 √2
B. 01. EBT-SMA-97-15 Nilai dari sin 105o – sin 15o adalah … A. 1 √2
B. C.
4 1 4 1 2
√2
1 2
02. EBT-SMA-86-15 2 cos 750 sin 50 = … A. sin 800 – sin 700 B. sin 800 + sin 700 C. cos 800 + cos 700 D. cos 800 – cos 700 E. sin 700 – sin 800 03. EBT-SMA-02-13 sin 5 x + sin 3x Bentuk senilai dengan … cos 5c + cos 3 x A. tan 2x B. tan 4x C. tan 8x D. cot 4x E. cot 8x 04. EBT-SMA-03-05 sin 810 + sin 210 Nilai =… sin 69 0 − sin 17 0 A. √3
B. C. D.
D. E.
√6
D. 1 E.
C.
1 2 1 3
2
2 1 2 1 4 1 2 1 2
√3 √3 √2
08. EBTANAS-SMK-TEK-01-33 sin 750 + sin 15o = ... A. –1 B. 0 C. 1 √2
D.
2 1 2
E.
1
√6
09. EBT-SMA-01-17 Himpunan penyelesaian dari sin (x – 20o) + sin (x + 70o) – 1 ≥ 0 untuk 0o ≤ x ≤ 360o adalah … A. ( x | 20o ≤ x ≤ 110o) B. ( x | 35o ≤ x ≤ 100o) C. ( x | x ≤ 50o atau x ≥ 130) D. ( x | x ≤ 35o atau x ≥ 145) E. ( x | x ≤ 50o atau x ≥ 310) 10. EBT-SMA-91-34 Himpunan penyelesaian dari sin 3x0 + sin x0 – sin 2x0 = 0 untuk 0 ≤ x ≤ 360 adalah … A. { 0 , 30 , 120 , 180 , 240 , 300 } B. { 0 , 60 , 90 , 180 , 270 , 300 } C. { 0 , 60 , 150 , 180 , 210 , 330 } D. { 0 , 60 , 120 , 180 , 270 , 330 } E. { 0 , 30 , 180 , 210 , 270 , 330 }
3 1
−2 3
E. –√3
296
11. MA-96-06 y = 4 sin x sin (x – 600) mencapai nilai minimum pada … A. x = 600 + k . 3600 , k = 0, 1, 2, ……….. B. x = 600 + k . 1800 , k = 0, 1, 2, ……….. C. x = 300 + k . 3600 , k = 0, 1, 2, ……….. D. x = 300 + k . 1800 , k = 0, 1, 2, ……….. , k = 0, 1, 2, ……….. E. x = k . 3600
01. MA-77-44 Bila sin z = sin α, maka z = … (1) (1800 – α) + k . 360 (2) – α + k . 360 (3) α + k . 360 (4) α + k . 180 02. MD-86-18 Untuk 0 < x < 360 , grafik y = sin x0 dan y = cos x0 berpotongan pada x = … A. 30 B. 60 C. 45 dan 225 D. 120 dan 240 E. 150 dan 330 03. EBT-SMA-95-15
Himpunan penyelesaian persamaan 2 cos (2x +
5 6
π) =
√3 dengan 0 ≤ x ≤ π adalah … 1
1 6 2 3
π}
1 3
1 6
π}
5 6
1 3
π}
1 3
1 4
π}
C. { π , D. { π , E. { π ,
08. EBT-SMA-01-16 Persamaan fungsi trigonometri pada gambar grafik adalah … 3 A. y = sin x B. y = 2 sin 3x C. y = 3 sin 4x D. y = 3 sin 2x O π/2 π x –3 E. y = 3 sin 2 09. EBT-SMA-02-14 Jika grafik di bawah berbentuk y = A sin kx, maka nilai A dan k adalah … Y 2
0
π}
1
B. { 2 π ,
2
untuk 0 ≤ x < 180 adalah … A. {x | 30 < x < 150} B. {x | 0 < x < 60} C. {x | 150 < x < 180} D. {x | 0 < x < 15 atau 165 < x < 180} E. {x | 0 < x < 30 atau 150 < x < 180} 07. MA-02-01 Untuk 0 < x < π f(x) = sin x + sin 3x A. merupakan fungsi naik B. merupakan fungsi turun C. mempunyai maksimum saja D. mempunyai minimum saja E. mempunyai maksimum dan minimum
Grafik Trigonometri
A. { 4 π,
06. EBT-SMA-99-22 Himpunan penyelesaian pertidaksamaan cos 2xo > 1 ,
2
3
4
X
–2 A. B. C. D. E.
04. EBT-SMA-97-21
Himpunan penyelesaian dari sin (3x + 75)o <
1
1 2
√3
untuk 0 ≤ x ≤ 180 adalah … A. {x | 15 < x < 115, 135 < x ≤ 180} B. {x | 0 ≤ x < 15, 115 < x ≤ 135} C. {x | 0 ≤ x < 115, 135 < x ≤ 180} D. {x | 0 ≤ x < 15, 135 < x ≤ 180} E. {x | 25 < x < 105, 145 < x ≤ 180} 05. MA-95-09 Untuk 00 ≤ x ≤ 360, himpunan penyelesaian 2 sin 2x ≥ 1 adalah … A. { x | 300 ≤ x ≤ 150 } B. { x | x = 450 } ∪ { x | x = 225 } C. { x | 150 ≤ x ≤ 750 } ∪ { x | 1950 ≤ x ≤ 2250 } D. { x | 750 ≤ x ≤ 1950 } E. { x | 150 ≤ x ≤ 750 }
A = –2 dan k = π A = –2 dan k = 2 A = 2 dan k = π A = 2 dan k = 2π A = 2 dan k = 2
10. EBT-SMA-99-20 Persamaan grafik fungsi trigonometri pada gambar adalah … y 1
1 2
A. B. C. D. E.
297
0 30 70 √3
-1 y = –cos (2x – 30)o y = –cos (2x + 30)o y = cos (2x – 30)o y = –sin (2x – 30)o y = sin (2x + 30)o
180
x
11. EBT-SMA-97-16 Persamaan grafik fungsi trigonometri pada gambar di bawah adalah … Y 1
0
1
12π 1 6
π π 3
π
D. y = sin (2x +
C. y = 2 sin x dengan menggeser sejauh
)
D. y = sin 2x dengan menggeser sejauh
)
3
π
E. y = sin (2x –
1
B. y = sin 2x dengan menggeser sejauh - 6 π
)
6
C. y = cos (2x –
y = sin x
A. y = 2 sin x dengan menggeser sejauh - 6 π
)
6
B. y = cos (2x +
π
1
π
A. y = sin (2x +
2π
-2
π
/3
1 2
- π
X
π
–1
14. EBT-SMA-86-17 Kurva di bawah ini didapat dari kurva … 2
E. y = 2 sin 2x dengan menggeser sejauh
)
3
1 6 1 6
12. UAN-SMA-04-05 Persamaan grafik fungsi pada gambar adalah …
π π 1 6
π
15. EBT-SMA-92-16 Persamaan grafik di bawah ini adalah y = a cos kx0 , untuk 0 ≤ x ≤ 120. Nilai a dan k berturut-turut adalah … 1 6
A. –2 dan
2
2
B. 2 dan 3 1 2π
2π 3
π
C. 2 dan
2π
B. C. D. E.
( y = 2 cos(x − y = 2 cos(x + y = 2 cos(x − y = 2 cos(x +
1
C. 2 dan
1 4
D. –2 dan
0
π/4 π/2
3π/4
π
120
C. y = 4 cos 2x0
2
x
E. y = –3 cos 2x
298
90
–2
B. y = 4 sin 2x0
A. y = 3 cos 2x B. y = –3 cos 2x C. y = 3 cos 1 x D. y = –3 cos
45
17. EBT-SMA-88-04 Sketsa grafik di samping ini 4 adalah sebagian dari grafik fungsi trigonometri yang per samaannya … A. y = 2 cos 2x0 0
–3
1 2
90
1 4
E. 2 dan 2 13. EBT-SMA-96-16 Persamaan grafik fungsi di bawah adalah … 3
0
60
16. EBT-SMA-91-18 Perhatikan grafik y = a sin kx0 di samping. Nilai a dan k berturut-turut adalah … 2 A. 2 dan 4 B. –2 dan 4
y = 2 cos x + 6 π 1 6 1 3 1 3 2 3
30
-2
1 3
E. -2 dan
) π) π) π) π)
0
D. –2 dan 3
-2 A.
1 3
D. y = 4 sin
1 2
x0
E. y = 4 cos
1 2
x0
-4
45
90
135
180
18. EBTANAS-00-21 π 2
3π 2
π 3π 4
π 4
0
22. EBTANAS-IPS-97-22 Grafik fungsi y = 4 sin 2x untuk 0 ≤ x ≤ 2π adalah … y A. 4
5π 4
7π 4
0
Periode fungsi trigonometri yang grafiknya tampak pada gambar di atas adalah … π A. 4 B.
0
2
π
2π
π
2π
–4
3π
C.
2
y
4 0
19. EBT-SMA-86-18 Gambar di bawah ini menunjukkan dengan fungsi trigo-nometri, untuk 0 ≤ x ≤ 360. Fungsi tersebut persamaan-nya adalah …
–4 D.
y
4
2
0 60
0
150
0
240
0
330
0
–4
-2 E.
y = 2 cos x0 + sin x0 y = cos x0 + sin √3x0 y =√3 cos x0 + sin x0 y = sin x0 + 2 cos x0 y = cos x0 + √3 sin x0 1 2
3 untuk
23. MA-78-43 4
0 ≤ x ≤ 360 adalah … A. 75 < x < 105 B. 75 < x < 165 C. 105 < x < 165 D. 0 < x < 75 atau 165 < x < 360 E. 0 < x < 105 atau 165 < x < 360
0
π
3π 2
1800
3600
90
-4 Gambar ini adalah garafik fungsi … A. y = sin 4x B. y = 4 sin x
21. MD-85-15 Gambar di bawah ini adalah grafik fungsi ... y 1
2
π
–4
Penyelesaian persamaan sin (x – 45)o >
π
y
4 0
20. UAN-SMA-04-06
A. B. C. D. E.
2π
4
π
0
π
y
E. 2π
A. B. C. D. E.
2π
–4 B.
C. π D.
π
π
–1 y = sin x y = cos x y = 1 + sin x y = 1 – sin x y = – cos x
299
1 4
C.
y=
D. E.
y = sin x + 4 y = sin x – 4
sin x
2π
24. EBTANAS-00-21
27. MD-87-32 2 π 2
0
3π 4
π 4
3π 2
π 5π 4
1
7π 4
-π -1
Periode fungsi trigonometri yang grafiknya tampak pada gambar di atas adalah … π A. 4 B.
π/2
-2 1 2
A. y =
π
cos x
B. y = 2 cos x C. y = cos 2x D. y = 2 cos 2x
2
C. π D.
-π/2 0
Jika grafik dengan garis terputus-putus itu persamaannya y = cos x maka grafik garis penuh persaπ maannya adalah
3π
1 2
E. y =
2
cos 2x
E. 2π 25. MD-96-12 Persamaan grafik di samping ini adalah … 2 π 3
2π 3
28. MA-75-17 Grafik di sebelah dinyatakan oleh persamaan …
–π
3 2
A. B. C. D.
x
3 x 2 3 –2 cos 2 x 3 2 cos 2 x 3 –2 cos 2 x
B. y = –2 sin C. y = D. y = E. y =
X
y = cos 2x + 1 y = cos 2x – 1 y = cos (2x + 1) y = cos (2x – 1)
0
π
2π
π
2π
π
2π
π
2π
–4 B.
y
4 0
A. B. C. D. E.
π
29. EBTANAS-IPS-97-22 Grafik fungsi y = 4 sin 2x untuk 0 ≤ x ≤ 2π adalah … A. y 4
26. MD-90-10 Grafik di bawah menggambarkan fungsi 2
π 2
π/2
0
π
–2 A. y = 2 sin
–π/2
–4
π
C.
y
4
–2 y = cos x y = 2 cos x y = cos 2x y = 2 cos 2x y = cos 1 x
0 –4 D.
y
4
2
0 –4 E.
y
4 0 –4 300
π
2π
30. ITB-76-19
35. MA-89-09 Persamaan untuk kurva di bawah ialah … 2 1
y y=1
π
x
–1π
–π
1 2
0
2
π
–1 –2
π
A. y = 2 sin ( x +
Grafik di atas ini adalah grafik fungsi … A. B. C. D.
y = sin 2 x y = sin2 2x y = sin |2x| y = |sin 2x|
B. y = sin ( 2x + C. y = 2 sin ( x –
31. MA-77-20 Grafik berikut dapat dinyatakan oleh persamaan
D. y = 2 cos ( x + E. y = cos ( 2x +
π
0
2
A. B. C. D. E.
π
π
2
3π
32. MD-92-23
2
0
2
1 2
π
π
3 2
π
–2 Fungsi yang sesuai dengan grafik di atas adalah … A. y = 2 sin (x – 1 π) B. y = C. y = D. y =
33. MD-83-28 Jika 00 < x < y < 450, maka … (1) sin x < sin y (2) cos x > sin y (3) tan x < tan y (4) cot x > cot y 34. MA-77-46
Jika 00 < x < (1) (2) (3) (4)
1 4
π, maka …
sin x < sin y cos x > cos y tan x < tan y ctg x > ctg y
π 6
)
π 6
π 6
π 6
) ) )
2π
37. MA-77-50 Bila sin A cos A < 0, maka A dikuadran … (1) pertama (2) kedua (3) ketiga (4) keempat 38. MA-81-23
Bila x terletak dalam interval
π 4
<x<
π 2
, maka
berlaku … A. cos x ≤ cos 2x B. cos x > cos 2x C. cos x ≥ cos 2x D. cos x < cos 2x E. cos x = cos 2x
2 sin (2x + 1 π) 2 2 sin (x + 1 π) 2 1 sin (2x – π) 2
E. y = 2 sin (2x + π)
)
6
36. MD-82-33 Dengan skala dan kertas gambar yang sama, pada interval 00 – 900 akan terlihat bahwa … (1) maksimum sin x = maksimum cos x (2) maksimum tan x > maksimum cos x (3) maksimum 3 sin x > maksimum sin 3x (4) maksimum 3 sin x > maksimum 3 cos x
2
y = sin (x + 1) y = sin x + 1 y = sin x – 1 y = sin (x – 1) y = sin (x + 1) – 1
–1π
π
2π
39. MD-81-46 Periode suatu fungsi trigonometri 360o, maka fungsi ini adalah … (1) sin x (2) cos x (3) sin (x + 180o) (4) tan x 40. MD-82-32 Ciri dari grafik y = tan x ialah … (1) memotong sumbu x di x = k π , k = 0, + 1, + 2, …. (2) mempunyai asimtot tegak di x = 1 π, + k π , k = 2
1, 2, 3, … (3) selalu berada di atas sumbu x dalam daerah 0<x< 1π 2
(4) terletak dalam daerah –1 ≤ y ≤ 1 301
41. MD-83-27 Grafik fungsi y = 2 + sin x akan : (1) selalu di atas sumbu x (2) memotong sumbu x di (–2 , 0) (3) memotong sumbu y di (0 , 2) (4) memotong sumbu x secara periodik 42. MA-78-26 Grafik fungsi y = 3 + sin x A. memotong sumbu x di banyak titik B. memotong sumbu x di tiga titik C. tidak memotong sumbu x D. memotong sumbu y dibanyak titik E. tidak memotong sumbu y 43. MA-83-12 Grafik fungsi y = sin2 2x – 2 berada di antara … A. sumbu x dan garis y = – 4 B. sumbu x dan garis y = – 2 C. garis y = – 2 dan garis y = 2 D. garis y = – 4 dan garis y = – 2 E. garis y = – 6 dan garis y = 2 44. MA-82-29 Nilai terkecil yang dapat dicapai oleh 3 – 2 sin x cos x ialah … A. 3 B. 2 C. 1 D. 0 E. –2 45. MD-92-30 Fungsi y = 1 cos 2x + 1 merupakan fungsi … 2
(1) (2)
periodik dengan periode π mempunyai nilai minimum –1 1
(3)
mempunyai nilai maksimum 1 1
(4)
2 2
memotong sumbu x di x =
π 4
46. MA-02-10 Diketahui F(x) = √2 cos 3x + 1. Jika nilai maksimum F(x) adalah a dan nilai minimum F(x) adalah b, maka a2 + b 2 = … A. 3 B. 6 C. 12 D. 18 E. 36
a sin x + b cos x
01. EBT-SMA-02-28 Jika a sin x + b cos x = sin (30o + x) untuk setiap x, maka a√3 + b = … A. –1 B. –2 C. 1 D. 2 E. 3 02. EBT-SMA-01-18 Himpunan penyelesaian persamaan √3 sin 2x + sin2x = 2 untuk 0o ≤ x ≤ 360o adalah … A. (60o, 120o, 240o, 300o) B. (120o, 180o, 300o) C. (30o, 60o, 90o, 210o) D. (0o, 60o, 180o, 240o) E. (30o, 90o, 210o, 270o) 03. EBT-SMA-00-20 Batas-batas nilai p agar persamaan p sin x + (p+1) cos x = p + 2 dapat diselesaikan adalah … A. p ≤ –1 atau p ≥ 3 B. p ≤ 1 atau p ≥ 3 C. p ≤ –3 atau p ≥ 1 D. –1 ≤ p ≤ 3 E. 1 ≤ p ≤ 3 04. EBT-SMA-98-17 Agar persamaan 3cos x – m sin x = 3√5 dapat diselesai-kan, maka nilai m adalah … A. –3√6 ≤ m ≤ 3√6 B. –6 ≤ m ≤ 6 C. 0 ≤ m ≤ 36 D. m ≤ –3√6 atau m ≥ 3√6 E. m ≤ –6 atau m ≥ 6 05. UAN-SMA-04-07 Himpunan penyelesaian persamaan √6 sin xo + √2 cos xo = 2 untuk 0 ≤ x ≤ 360 adalah … A. (15 , 105) B. (15 , 195) C. (75 , 105) D. (75 , 345) E. (105 , 345) 06. EBT-SMA-97-22 Himpunan penyelesaian cos xo – √3 sin xo = 2, untuk 0 ≤ x < 360 adalah … A. {75,285} B. {15,105} C. {75,165} D. {195,285} E. {255,345}
302
07. EBT-SMA-96-18 Himpunan penyelesaian dari persamaan √3 cos xo + sin xo = √2 untuk 0 < x ≤ 360, x ε R adalah … A. {75, 285} B. {15, 285} C. {75, 345} D. {15, 345} E. {15, 75}
13. EBT-SMA-92-36 Himpunan penyelesaian persamaan –3 cos x – √3 sin x = 2√3 untuk 0 ≤ x ≤ 2π adalah …… 1
A. { 6 π} 4
B. { 6 π} 5
C. { 6 π} 7
08. UN-SMA-05-08 Bentuk (√3 sin xo – cos xo) dapat diubah menjadi bentuk k cos (x – c)o adalah … F. 2 cos (x – 30)o G. 2 cos (x – 60)o H. 2 cos (x – 120)o I. 2 cos (x – 150)o J. 2 cos (x – 210)o
D. { 6 π} E. {
11 6
π}
14. EBT-SMA-93-24 Periode grafik fungsi yang dirumuskan dengan persamaan y = – cos x + sin x + 3 adalah …… A. 2 π 1
09. EBT-SMA-95-19 Bentuk √3 cos x0 + sin x0 k cos (x – A)0 dapat diubah menjadi bentuk dengan k > 0 dan 0 ≤ A ≤ 360 , yaitu … A. 2 cos (x – 30)0 B. 2 cos (x – 60)0 C. 2 cos (x – 45)0 D. 3 cos (x – 30)0 E. 4 cos (x – 30)0 10. EBT-SMA-93-23 Batas-batas nilai p , agar persamaan (p – 2) cos x0 + (p – 1) sin x0 = p, untuk X∈R dapat diselesaikan adalah : …… A. 2 ≤ p ≤ 3 B. 1 ≤ p ≤ 5 C. p ≤ 2 atau p ≥ 3 D. p ≤ 1 atau p ≥ 5 E. p ≤ – 5 atau p ≥ 1 11. EBT-SMA-92-35 Nilai maksimum dan minimum f(x) = 2 cos x + √5 sin x – 1 berturut-turut adalah … A. 3 dan 0 B. 3 dan –4 C. 0 dan –2 D. 2 dan –4 E. 1 dan –3 12. EBT-SMA-93-22 Bentuk sin x = √3 cos x dapat diubah menjadi k cos(x – θ) dengan 0 ≤ θ ≤ 2π yaitu …… 5
A. 4 cos (x – 6 π) 1
B. 2 cos (x – 6 π) 1
C. 2 cos (x – 3 π) 5
D. 2 cos (x – 6 π)
B. 1 2 π C. π D.
3 4
π
E.
1 2
π
15. EBT-SMA-91-35 Bentuk –3 cos x0 – √3 sin x0 dinyatakan dalam k cos (x – α)0 adalah … A. 2√3 cos (x – 150)0 B. 2√3 cos (x – 210)0 C. –2√3 cos (x – 210)0 D. –2√3 cos (x – 30)0 E. 2√3 cos (x – 30)0 16. EBT-SMA-91-36 Persamaan (p – 3) cos x0 + (p – 1) sin x0 = p + 1 dapat diselesaikan untuk p dalam batas … A. –9 ≤ p ≤ –1 B. –9 ≤ p ≤ 1 C. 1 ≤ p ≤ 9 D. p ≤ 1 atau p ≥ 9 E. p ≤ –9 atau p ≥ 1 17. EBT-SMA-86-44 Ditentukan nilai fungsi f(x) = √2 cos x° + √6 sin x°. Dari fungsi itu dapat diketahui bahwa nilai maksimumnya 2√2 (1) nilai minimumnya –2√2 (2) (3) pembuat nol fungsi adalah 150 pembuat nol fungsi adalah 330 (4) 18. EBT-SMA-90-24 Agar persamaan √3 cos x0 – sin x0 = p dapat diselesaikan maka batas-batas nilai p adalah … A. –2≤ p ≤ 2 B. –2 < p < 2 C. –1 ≤ p ≤ 1 D. –1 < p < 1 E. –√2 ≤ p ≤ √2
2
E. 2 cos (x – 3 π) 303
19. EBT-SMA-88-07 Bentuk cos x0 + sin x0 dapat diubah menjadi bentuk k cos (x – α). Nilai k dan α berturut-turut adalah … A. 1 dan 45 B. 1 dan 135 C. √2 dan 45 D. √2 dan 135 E. √2 dan 225 20. EBT-SMA-03-06 Untuk 0 ≤ x < 360,himpunan penyelesaian dari sin xo – √3 cos xo – √3 = 0 adalah … A. {120, 180} B. {90, 210} C. {30, 270} D. {0, 300} E. {0, 300, 360}
26. MA-79-13 Fungsi sin (x + 60) dapat juga ditulis dalam bentuk : a sin x + b cos x untuk setiap harga x, apabila …
25. MD-03-12 Nilai minimum dan maksimum dari fungsi y = sin x + cos x + 1 berturut-turut adalah … A. –3 dan 3 B. –2 dan 2 C. 1 – √2 dan 1 + √2 D. –1 – √2 dan 1 + √2 E. –1 + √2 dan 1 + √2
√3
B.
a=
C.
a=
D.
a = – 2 √3 dan b = – 2
E.
a=–2
dan b = √3 dan b =
1
dan b = – 2 √3 1 1
f(x) = 3 sin x +
A. B. C. D. E.
1
dan b =
1 2
√3
9 4 7 4 5 4 3 4 1 4
1 2
√3 cos 2x , (0 ≤ x ≤
π 2
) adalah …
√2 √3 √3 √3 √3
28. MA-90-03 Nilai-nilai yang memenuhi persamaan
cos x + sin x =
1 2
√6
dapat dihitung dengan mengubahnya ke persamaan yang berbentuk cos (x – α) = a Diantara nilai-nilai x tersebut adalah … π A.
23. EBT-SMA-94-33 Untuk interval 0 ≤ x ≤ 360, a. Tentukan himpunan penyelesaian persamaan √3 cos x0 – sin x0 = -1 b. Gambarlah grafik y = 3 cos x0 – sin x0 + 1 24. EBT-SMA-89-37 Diketahui : f(x) = cos x0 + sin x0 dimana 0 ≤ x ≤ 360 a. Nyatakan fungsi dengan bentuk k cos (x – α)0 b. Tentukan nilai-nilai maksimum dan minimum fungsi dan pengganti x yang sesuai c. Tentukan nilai pembuat nol fungsi d. Sketsa grafik fungsi
1 2 1 2
a=
27. MA-86-25 Nilai maksimum dari fungsi :
21. EBT-SMA-88-36 Lukis grafik y = √3 cos x0 + sin x0 dalam interval 0 ≤ x ≤ 360 , dengan langkah-langkah sebagai berikut : a. Mengubah menjadi bentuk k cos (x – a)0 b. Menentukan koordinat titik balik maksimum dan minimum c. Menentukan pembuat nol d. Melukis grafiknya. 22. EBT-SMA-86-50 Nyatakan f(x) = sin x0 – √3 cos x0 dengan bentuk k sin (x – α)0 , kemudian selesaikan persamaan f(x) = 1 untuk 0 ≤ x < 360
1 2 1 2 1 2
A.
24
B. C. D. E.
π 15
π 12
π 8
π 6
29. MA–98–09 Bentuk √3 cos x – sin x, untuk 0 ≤ x ≤ 2π dapat dinyatakan sebagai … π A. 2 cos (x + ) 6 7π B. 2 cos (x + ) 6 11π ) C. 2 cos (x + 6 7π ) D. 2 cos (x – 6 π E. 2 cos (x – ) 6
304
30. MA–98–09 Bentuk √3 cos x – sin x, untuk 0 ≤ x ≤ 2π dapat dinyatakan sebagai … π A. 2 cos (x + ) 6 7π ) B. 2 cos (x + 6 11π C. 2 cos (x + ) 6 7π ) D. 2 cos (x – 6 π E. 2 cos (x – ) 6
34. MA-88-10
Dalam selang 0 < x < 2π, grafik fungsi y = terletak di bawah sumbu x hanya untuk … A. B.
31. MA-92-08 Diketahui f (x)= 3 cos x + 4 sin x + c, c suatu konstanta. Jika nilai maksimum f (x) adalah 1, maka nilai minimumnya … A. 0 B. –1 C. –5 D. –9 E. –25 32. ITB-76-20 Fungsi sin (xo + 60o) dapat juga dituliskan dalam bentuk : a sin xo + b cos xo atau a sin xo – b cos xo untuk setiap x. maka … , b = – 1 √3 A. a = 1 2
2 1 2
1 2
B.
a = – √3, b = –
C.
a=
D.
a=
1 2 1 2
,b= √3 , b =
1 2 1 2
√3
33. MA-87-08
Untuk y = sin x, fungsi f(y) =
y2 − 3 y − 4 bernilai 2y −1
real bila : … (1) {y | –1≤ y < 0 atau (2) {y | –1 ≤ y < (3) {x | 2kπ +
π 3
1 2
1 2
< y ≤ 4}
atau y ≥ 4}
< x < 2(k + 1)π –
(4) {x | (2k + 1)π –
π 6
π 3
, k bilangan bulat}
< x < 2(k + 1)π +
π 6
,k
bilangan bulat}
305
1 2 1 2
π<x<π π<x<
C. D.
0<x<π semua x
E.
semua x ≠
3 2
π
1 2
π dan x ≠
3 2
π
sin x + 4 sin x - 1
Limit
05. ITB-75-33
Diketahui f (x) = x2 + 2hx + h2 , maka
f ( x + h) − f ( x ) h
adalah …
0 Limit menghasilkan 0 01. EBTANAS-IPS-95-14 Laju perubahan nilai fungsi f : x f(x) pada x = a adalah … f ( a + h) + f ( a ) A. f(a) = lim h→0 h f ( a − h) − f ( a ) B. f(a) = lim h→0 h f (a + h) − f ( a ) C. f(a) = lim a →0 h f ( a ) − f ( a + h) D. f(a) = lim h→0 h f ( a + h) − f ( a ) E. f(a) = lim h→0 h 02. MD-81-25 Jika y = f(x) maka rumusan turunan pertama dari y terhadap x didefinisikan sebagai ... f ( x + h) − f ( x ) A. lim h h→0 f ( x) + h B. lim h h→0 f ( x + h) − f ( h) C. lim x h→0 f ( x) − h D. lim x h→0 f ( x + h) − f ( x ) E. lim f ( h) h→0 03. MD-94-21 f (a − x) − f (a ) =… lim x →0 x A. f ′(a) B. –f ′(a) C. f ′(x) D. –f ′(x) E. f(a) 04. MA-81-24 xn =… lim x → 1 x -1 2 A. n – 1 B. n2 – n C. tak terhingga D. 1 E. n
x 2 + 4hx + 4h 2 h B. 2x C. 2x + h D. 2x + 3h
A.
06. MD-87-08
Jika f(x) = x2 – 1, maka lim p→0
f (x+p ) - f (x ) sama p
dengan … A. 0 B. 1 C. 2 D. 2x E. x3 07. MD-00-15
Jika f (x) =
x2 − 2x maka lim f (x) = … x→2 x2 − 4
A. 0 B. ∞ C. –2 D. 1 2
E. 2 08. MD-84-23 x 2 + 3 x - 18 adalah … lim x 2 - 3x x→3 A. 0 B. 1 C. 2 D. 3 E. 6 09. MA-79-23 t3 - 8 Lim =… 2 t→2 t +t-6 A. 0
B. C. D. E.
4 3 12 5 5 4
∞
10. MA-96-01 2 ⎛ x 2 − 2 x ⎞⎟ ⎜ 2x − 8 Lim + ⎜ ⎟ =… x→2 ⎜ x−2 2 x − 4 ⎟⎠ ⎝
A. B. C. D. E.
306
5 6 8 9 ∞
11. EBTANAS-SMK-BIS-02-28 3x 2 − 4 x = ... lim x→0 x A. -4 B. -1 C. 0 D. 4 3
E.
~
12. EBTANAS-IPS-95-11 6x5 − 4x Nilai dari lim adalah … x→0 2x4 + x A. –4 B. –2 C. 0 D. 2 E. 4 13. UN-SMK-BIS-04-22 x 2 + 3 x − 10 Nilai dari lim adalah … x+5 x→0 A. –2 B. – 7 5
C. 0 D. 7
5
E. 2 14. UN-SMK-TEK-03-38 x2 −9 lim x → −3 x + 3 A. 9 B. 6 C. 3 D. –3 E. –6 15. UN-SMK-BIS-03-22 x 2 + 3 x − 10 Nilai dari lim adalah ... x→2 x−2 A. –7 B. –2 C. 0 D. 2 E. 7 16. UN-SMK-TEK-05-23 3x 2 − 6 x adalah ... lim x→2 x−2 A. 12 B. 6 C. 3 D. 2 E. 0
17. UN-SMK-PERT-03-27 2x2 − x − 3 = ... lim x−3 x→3 A. 0 B. 4 6 C. D. 7 E. 12 18. UN-SMK-TEK-04-29 2 x 2 − 11x + 15 Nilai dari : lim x→3 x2 −9 A. 0 B. 1
C. D. E.
6 1 3 5 6 11 6
19. UN-SMK-PERT-05-23 x 2 − 9 x + 20 = ... lim x→5 x−5 A. –2 B. –1 C. 0 D. 1 E. 2 20. UN-SMK-BIS-05-18
Nilai dari lim x→5 A. B. C. D. E.
2x + 3 2x 2 + x − 3
1 10 1 9 1 6 1 5 1 4
21. EBTANAS-IPS-96-10 x 2 − x − 20 Nilai lim =… x →5 x−5 A. 9 B. 5 C. 4 D. –4 E. –9
307
=…
22. EBT-SMA-02-16 x 2 − 5x + 6 Nilai lim =… x →2 x2 − 4 A. – 1 4
B. – 1 8
C.
1 8
27. EBTANAS-IPS-98-28 x2 + 2x − 8 Nilai lim =… x→2 x2 − x − 2 A. 3 B. 2 C. 0 D. – 2 E. – 3
D. 1 E.
28. MD-02-11
5 4
lim x→a A. a B. a + 1 C. a +2 D. a + 3 E. a + 4
23. EBTANAS-IPS-00-26
Nilai lim
x→2
x2 + 2x − 8 =… x 2 + 4 x − 12
A. ∞ B. 1 C. 1 D.
2 1 4
29. MD-97-14
lim t→ 4 A. 1
E. 0 24. EBTANAS-IPS-97-25 x−3 Nilai lim =… x→3 x 2 + x − 12 A. 4 B. 3 C. 3 7 1 7
D. E.
0
25. EBT-SMA-02-16 x 2 − 5x + 6 Nilai lim =… x →2 x2 − 4 A. – 1
B. – C.
B. C. D. E.
1 8 5 4
26. EBTANAS-IPS-99-28 (x − 2)2 − 1 = … Nilai dari lim x→3 x−3 A. 0 B. 1 C. 2 D. 4 E. 6
t −2 =… t-4
1 4 1 3 1 2 3 4
30. MD-99-15 1− x lim =… 1 x→ 1 − x2 1
A. – 2 B. 0 C.
4 1 8
D. 1 E.
x 2 + (3 − a ) x − 3a = … x−a
1 4
D. 1 E. 4 31. MD-98-15 x−x =… lim x →0 x+x A. 0 B. 12
C. 1 D. 2 E. ∞ 32. MA-80-15 x-8 =… lim 3 x-2 x →8 A. 8 B. 12 C. 16 D. 20 E. 24
308
33. MA-91-03 Lim
39. UN-SMA-06-14
x−2
=…
3 − x2 + 5
x→2 3
A.
–2
B.
0
C.
2 3 3 2
D. E.
3x − 2 − 2 x + 4 =… x−6
Nilai lim x→6 1
A. – 4 1
B. – 8 C. 0 1 8 1 4
D.
3
E.
34. MD-01-14 9 − x2
lim
x→3
A. B. C. D. E.
4 − x2 + 7
40. MA-93-03
= ...
Jika lim
x→4
0 5 6,5 8 ∞
dengan … 3 A. 2 B. C. 1 –1 D. –2 E.
35. MD-85-18 9 − x2
lim x→3 A. 8 B. 4 C. 9
4 − x 2+7
41. MA–98–04
adalah …
3
A. B.
D. 1 E. 0
x→3
2 x2 + 3 − 4 3 –4√3 –2√3 0 2√3 4√3
E.
=…
3
Lim
A. B.
E.
1
B. – 14 7 C. 0 D. E.
1 7 1 14
=…
43. MA-97-07 7
1 + x -1
Lim
x→0
7
38. MD-04-11 lim x→2 A. 0 B. 2 C. 4 D. 8 E. 10
x +1
1 3 1 5 1 7 1 9
D.
1
3
0
C.
A. – 7 7
x2 − 2
(x − 1)2
x →1
x + 4 − 2x + 1 adalah … x−3
x→3
=…
42. MA–98–04
37. MD-00-16 lim
x +1
(x − 1)2
1 3 1 5 1 7 1 9
D. 9 − x2
3
0
C.
36. MD-05-11
A. B. C. D. E.
x2 − 2
lim x →1
4
lim
ax + b − x 3 = , maka a + b sama x-4 4
x x −2 x −2 2 + x 2 x− 2
A.
0
B.
1 3 2 3 3 2
C.
=…
D. E.
309
2
3
1 + x -1
sama dengan …
44. UN-SMK-PERT-04-29 x − 6x − 5 = ... Nilai lim x→5 x 2 − 25 A. 0 B. 1 C. D. E.
49. EBT-SMA-03-18 Nilai dari lim x→2
A. B. C. D. E.
25 2 25 5 25
∞
45. UAN-SMA-04-18 3 ⎛ 2 ⎞ − 2 Nilai lim ⎜ ⎟ =… x → 2 ⎝ x2 − 4 x + 2x − 8 ⎠ − 12
B.
−
C.
−
D.
−
A.
B.
Nilai lim x→2 A. –2
C. x−7 −3
−
4
5x 3 2 2
5x 3 2 2 15 x 3
2
D.
E.
C. 0 D. 6 E. 12
2
15 x 3 2 4
15 x 3
47. EBT-SMA-95-25 Nilai lim
x → 2
x + 2 - 3x - 2 = … x- 2
51. UAN-SMA-04-18 3 ⎞ ⎛ 2 Nilai lim − 2 ⎟ =… ⎜ x → 2 ⎝ x2 − 4 x + 2x − 8 ⎠
A. 2 B. 1 C.
−
=…
2 3
−
2
−
E. 0
B.
5x 3 f ( x + p ) − f ( x) =… p
lim
1 4 1 12 1 24
x−2
1 2
D. 0 1
E. – 2
7
A.
− 12
B.
−
C.
−
D.
−
E.
0
1 4 1 12 1 24
48. EBT-SMA-00-21 Nilai lim
x→0
A. B. C. D. E.
=…
–12 –6 0 6 12
p→0
46. EBT-SMA-99-10
3− x2 + 5
50. EBT-SMA-98-28 2 Diketahui f(x) = 1 , maka
7
A.
4 − x2
x2 1− 1+ x 2
52. EBT-SMA-99-10 =…
Nilai lim x→2 A. –2
2 0 –1 –2 -3
B.
−
C. 0 D. 6 E. 12
310
2 3
x−2 x−7 −3
=…
Limit menghasilkan 01. MA-77-12
ax m + b =… Lim t → ∞ cx n + d a A. bila m = n c b B. bila m = n d a untuk m dan n mana saja C. c b D. untuk m dan n mana saja d E. 0 untuk m = 1 dan n = 0
∞ ∞
06. UN-SMK-BIS-03-23 x2 − x + 1 = ... Nilai lim x→∞ 2x2 A. 0
B. C. – D. E. –
1 2
C. D. E.
1 2 ~
07. UN-SMK-PERT-03-36
Nilai dari lim x→∞ A. B.
(3 x - 2)3 sama dengan … (4 x + 3)3
27 64 27 64 8 27 8 27
x +1 2x + x 2 + x
= ...
-~ 1 3 1 2 2 3
C.
02. MA-78-27 Lim x→∞ A. 1
B.
D. E.
~
Limit menghasilkan ~ - ~
01. MA-89-04
03. UN-SMK-PERT-04-30 4 x 2 + 5 x − 10 Nilai lim = ... x→∞ x 2 + 7x = 2 A. 4 B. 3 C. 2 D. 1 E. ~
Lim
x→∞
A.
x2 + x + 5 − x2 − 2x + 3 = …
0
B.
3 2
C. D. E.
√2 2 ∞
02. EBTANAS-00-25 04. EBTANAS-SMK-TEK-01-35 4x2 + 7x + 5 = ... lim x → ∞ 3 − x + 2x2 A. ~ B. 0
C.
4 3
D. E.
2 4
Nilai lim
x→∞
A. –2 B. 0 C. 1 D. 2 E. ∞ 03. MA-94-03 Lim ( (x + a)(x + b) − x) = … x→∞ (a − b ) A. 2
05. UN-SMK-TEK-04-30 2x 2 − 7x + 3 = ... lim x → ∞ 5x 3 + 2 x 2 A. 0
B. C. D. E.
x 2 − 2 x + 5 − x 2 + 2 x + 11 adalah …
B. ~ C. 0 (a + b ) D. 2
3 5 3 2 7 5
E. a + b
∞
311
04. EBTANAS-IPS-98-29 2
4 x + 3x + 4 − 4 x − 5 x + 4 = …
Nilai lim
x→∞
A. B. C. D. E.
2
0 1 2 4 8
10. MD-03-11 ⎛ x + 2x − x ⎞ = … lim ⎜ ⎟ ⎠ x→∞ ⎝
A. 2 2 B. 2 C. √2 D. 1 √2 2
E. 0
05. EBT-SMA-92-25 4 x 2 + 3 x − 4 x 2 − 5 x adalah …
Nilai dari lim
x→∞
A. B. C. D. E.
0 1 2 4 8
Limit fungsi trigonometri
06. UN-SMA-05-15 ⎡(3 x − 1) − 9 x 2 − 11x + 9 ⎤ = … Nilai lim ⎥⎦ x → ∞ ⎢⎣ A. –1 B. 0
C. D. E.
1 6 3 6 5 6
lim (3x – 2) – x→∞ A. 0
9 x2 − 2 x + 5 = …
–3
C.
–1
D.
–3
E.
5 3
D.
1 2
π
b b a
E. ∞
4
–
1
π
02. MD-00-14 sin ax lim adalah … sin bx x→0 A. 0 B. 1 C. a
1
B.
08. EBT-SMA-01-20
Nilai dari lim
x→∞
(
)
x +1 − x + 2 = …
03. MA-78-06 sin 5 x Lim =… x→0 sin 3 x A. 1 0 B. C. –1
D.
–2 –1 ∞ 0 1
E.
3 5 5 3
04. MA-77-10
09. EBT-SMA-97-26
Nilai lim
x→∞
A. B. C. D. E.
D. E.
07. MA-92-03
A. B. C. D. E.
01. MA-88-06 sin (πx − π) sin x Jika lim = 1 , maka lim =… x -1 x→0 x x →1 A. 0 B. 1 C. π
( 5x + 1 −
Lim t→0 A. 0 B. 1 C. 3
)
3x + 7 = …
∞ 8 6 2 0
D. E.
312
2 3 3 2
tan 3t adalah … 2t
05. UN-SMK-TEK-05-24 sin x = ... lim x → 0 tan 3x
A. B. C. D. E.
10. UN-SMK-PERT-05-24 sin 2 x tan 3x = ... lim x→0 x sin x A. 0 B. 1
3 4 1 2 1 3
6
C. D. E.
0 –1
11. MD-01-13
06. UN-SMK-PERT-03-37 sin 4 x = ... Nilai dari lim x → 0 sin 2 x
A. B. C. D. E.
2 4 6
x→0
D. E.
sin b x tan cx
adalah …
ac b ab c bc a a bc b ac
08. EBTANAS-00-27 tan 6 x Nilai lim =… 2x x→0 A. 0 B. 1 C. 2 D. 3 E. ∞
D.
2 3 4 3 2
= ...
A. 0 B. 1
12. MD-98-14 sin( x − 2) lim =… x2 − 4 x→2 A. – 14
B. – 12 C. 0 D. 12 E.
1 4
13. MD-97-13
tan x =… x2 + 2 x
lim x→0 A. 2 B. 1 C. 0 D. 1 E.
2 1 4
14. MD-03-10 lim x→0 A. 4 B. 2 C. 1 1 D.
09. EBTANAS-IPS-00-28 2 sin 3x Nilai lim =… x→0 tan 4 x A. 0 B. 1
C.
2
x sin x
x→0
2
a
C.
x
C. 1 D. 2 E. 4
Nilai dari lim
B.
2 sin 2
lim
1 4 1 2
07. EBT-SMA-92-26
A.
5 6 ~
E. –
x tan x =… 1 − cos x
2 1 2
15. MD-04-10 lim x→0 A. 2 B. 1 C. 0 D. –1 E. –2
E. ∞
313
sin x 1− x −1
=…
16. MD-02-13 sin x + sin 3x lim = … x→0 x cos x A. 0 B. 1 C. 2 D. 3 E. 4 17. MD-05-10 − x + tan x lim =… x→0 x A. –2 B. –1 C. 0 D. 1 E. 2 18. MA-90-06 Lim
x→0
A. B. C. D. E. –
x sin 3x =… 1 − cos 4 x
3 8 3 4 3 2 1 4 3 8
19. MA-95-07 Lim t→2
A. B. C.
(t
2
)
− 5t + 6 sin (t − 2) =… t2 − t − 2
21. MA-02-13 x 2 + sin x tan x lim =… x→0 1 − cos 2 x A. 0 B. 1 2
C. 1 D. 2 E. 4 22. MA-89-03 ⎛ 2 sin x sin 2 x ⎞⎟ Jika lim = 1 , maka lim ⎜⎜⎜ 2 − 2 ⎟ =… x x→0 ⎝x x tan x ⎟⎠ x→0 A. –2 B. –1 C. 0 D. 1 E. 2 23. UN-SMA-05-16
Nilai dari lim x→0 A. – 4 B. – 6 C. – 8 D. – 16 E. – 32
tan 2 x cos 8 x − tan 2 x 16 x 2
24. MA-03-09 1 − cos 2 x − cos x sin 2 x lim =… x→0 x4 A. 0 B. 1
1 3 1 9
C.
4 1 2
D. 1 E. –1
0 1
D. – 9 E.
25. MA-04-04
1
–3
lim x→0
20. MA-05-06 x 2 + x − 1 sin (x − 1) =… lim x →1 x 2 − 2x + 1 A. 4 B. 3 C. 0
(
)
A. B.
1 2
2
E. –2
1 1
2
C. 0 D. – 1
D. – 4 E. – 2
x 1 − x tan 2 x =… ⎞ 2⎛ π cos ⎜ 2 − x ⎟ ⎝ ⎠
26. EBT-SMA-02-17 1 lim sin = … x→∞ x A. ∞ B. 0 C. 1 D. 2 E. 3
314
27. EBT-SMA-03-19
Nilai dari lim x→
π 4
cos 2 x =… cos x − sin x
33. EBT-SMA-96-25 sin 4 x + sin 2 x =… lim x→0 3 x cos x
A.
A. –√2 B. – 1 √2 C.
1 2
2
B.
√2
C. 1 D.
D. √2 E. 2√2
Nilai dari lim
x→∞
Nilai dari lim
2x 2 sin x + sin 2 x
x→0
D.
1
2 1 4
B. 0 C.
1 4 1 2
29. EBT-SMA-00-22 sin 2 x Nilai lim =… x→0 3 − 2x + 9 A. 3 B. 1 C. 0 D. –3 E. –6
Nilai lim x→0 A. –6 B. –3 C. 0 D. 6 E. 12
sin 2 x 3 − 2x − 9
32. UAN-SMA-04-19 (x + 6)sin (x + 2) = … Nilai lim x→2 x 2 − 3x − 10
−
C.
−
1
C. 1 2 D. 2 E. 3
x tan 2 x
x → 0
=…
31. EBT-SMA-98-27 (4 x − 10) sin( x − 5) = … Nilai lim x→3 x 2 − 25 A. –3 B. -1 C. 1 D. 2 E. 4
B.
35. EBT-SMA-93-35 cos x - cos 3x Nilai dari lim =… x → 0 1 - cos 2 x A. 2 B. 0
36. EBT-SMA-90-32 cos 4 x - 1 adalah … limit
30. EBT-SMA-99-11
−
1 2
D. 1 E. 2
E. 1
A.
x tan x adalah … 1 − cos 2 x
A. – 2
A. – 1
C.
3 2
E. 2 34. EBT-SMA-94-20
28. EBT-SMA-01-21
B. –
1 4 1 2
A. B. C. D. E.
4 2 –1 –2 –4
37. EBT-SMA-89-28 1 − cos x Nilai lim = … tan 2 2 x x→0
A.
1 8
B.
1 4
C.
1 2
D. 1 E. 2 38. MD-99-14 lim
4 3 4 7 2 5
x→k
A. –1 B. 0 C.
D. 0 E. 1
D. E. 315
1 3 1 2
1
x−k =… sin (x − k ) + 2k − 2 x
39. MA–99–04
(2 y + 1) − 4 y 2 − 4 y + 3 maka untuk
Jika a = lim
y →∞
1
0 < x < 2 π, deret 1 + alog sin x + alog2 sin x + a
log3 sin x + … konvergen hanya pada selang … 1 6 1 6 1 4
π<x<
D.
1 4
π<x<
E.
1 3
π<x<
A. B. C.
π<x< π<x<
1 2 1 4 1 3 1 2
π
1 2
π
π π π
316