PENGARUH FAKTOR DESAIN, OPERASI DAN PIHAK KETIGA TERHADAP KATEGORI RESIKO PIPELINE
Diajukan sebagai salah satu syarat dalam memperoleh gelar Magister Teknik Mesin
Oleh:
Dodi Novianus Kurniawan 231 06 022
PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI BANDUNG 2007
LEMBAR PENGESAHAN
Tugas Pasca Sarjana
PENGARUH FAKTOR DESAIN, OPERASI DAN PIHAK KETIGA TERHADAP KATEGORY RESIKO PIPELINE Telah diperiksa dan dinyatakan sah sebagai salah satu syarat kelulusan program strata dua di Departemen Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Bandung
Oleh : Dosen Pembimbing
Dr. Ir. IGN Wiratmaja Puja N I P. 131 835 240
ABSTRAK Pipeline merupakan fasilitas yang penting dalam dunia perminyakan. Fasilitas ini perlu sekali untuk diperhatikan karena banyak sekali kegagalan yang terjadi. Kegagalan yang terjadi dapat mengakibatkan resiko kerugian yang cukup besar. Kategori resiko dipengaruhi oleh beberapa faktor antara lain faktor desain, operasi dan pihak ketiga. Perlu mengetahui bagaimana pengaruh masing – masing faktor terhadap kategori resikonya. Kategori resiko ditunjukkan dalam penilaian Probability of Failure (PoF) dan Consequence of Failure (CoF). Pada tugas akhir ini dilakukan analisis pengaruh parameter desain, operasi dan pihak ketiga terhadap kategori resiko sebuah pipeline. Perhitungan kategori resiko dilakukan berdasarkan metodologi Muhlbauer dan API 581. Studi kasus yang diambil adalah sambungan pipeline milik Vico Indonesia. Dengan melakukan segmentasi sepanjang pipeline tersebut, diambil sebuah segmen pada bagian pipa yang melewati jalan raya pada titik zona PK 30+350. Kemudian untuk mempermudah melakukan perhitungan, maka dilakukan pembuatan alat bantu perangkat lunak perhitungan kategori resiko pipeline. Consequence area dan economic berbanding lurus dengan diameter pipa dan kepadatan penduduk. Terhadap temperatur operasi tidak akan berubah, namun akan terjadi discontinuity ketika fluida menjadi auto ignition. Consequence area memilki hubungan fungsi parabolik terhadap panjang pipa dan tekanan operasi. Economic consequence cenderung tetap meskipun panjang pipa bertambah. Demikian juga ketika tekanan operasi bertambah, namun akan terjadi discontinuity ketika mencapai tekanan tertentu. PoF berbanding terbalik terhadap diameter pipa dan kedalaman penguburan yang mendekati fungsi parabolik dan berbading lurus terhadap jumlah sambungan dalam pipa dan waktu (umur) operasi. PoF akan tetap nilainya sampai panjang sebuah pipa tertentu, kemudian meningkat secara hiperbolik. PoF cenderung tetap dengan bertambahnya tekanan operasi, namun akan akan terjadi discontinuity ketika melewati 0,9 dari design pressure dan semakin meningkat ketika melewati desain pressure. Demikian juga terhadap temperatur operasi, discontinuity terjadi ketika melewati angka 0,82 dan 0,9 dari batasan temperatur material. Road crossing pada pipeline milik VICO Indonesia pada PK+350 adalah Medium - high
ABSTRACT Pipeline is important facility in oil and gas industry. There are several failures on this facility, so special maintenance is required. The failure on this facility can make another risk, especially on product lost. Risk category of pipeline is effected by several factor especially are design, operation and third-party factor. The effects from each factor to this risk category need to be cleared. Risk category is shown in Probability of Failure (PoF) and Consequence of Failure (CoF). The effect of design, operation and third-party factor to pipeline risk category is conducted on this thesis. Pipeline risk category is conducted based on Muhlbauer and API 581 methodology. Vico Indonesia has a pipeline that has been chosen to conduct special case study. Segmentation has been conducted to divide this pipeline, where zone PK 30+350 is chosen to calculate risk category. Software has been developed to conduct this calculation. Based on this study, consequence area and economic are equivalent with pipe diameter and number of population. Operating temperature does not make several changes to this, but the discontinuity is happen when fluid type change to be auto ignition. The corelation of consequence area to pipe length and opreting pressure is parabolic fungtion. Economic consequence will not change when change is occure on pipe length and operating pressure, but the discontinuity is occure when operating pressure state on one value. PoF is equivalent with number of connection on pipeline and it age. PoF will not change until one value of pipe length, then will higher with parabolic function. PoF will not change when operating pressure change, but there will be discontinuity when it pressure higher than 0.9 of design pressure then the acceleration will be higher when it is higher then design pressure. PoF will be higher when operating temperature change to be higher, discontinuity will be happen when this value more than 0.82 and 0.9 from allowable tempertature. Risk category of VICO road crossing pipeline on PK+#%) is medium – high.
KATA PENGANTAR Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas anugrah dan penyertaannya, sehingga laporan thesis ini dapat penulis selesaikan dengan baik. Thesis dengan judul “Pengaruh Faktor Desain, Operasi dan Pihak Ketiga Terhadap Kategory Resiko Pipeline” ini membahas tentang pengaruh beberapa parameter desain, operasi dan pihak ketiga terhadap kategori resiko sebuah pipeline. Dimana perhitungan tersebut dilakukan berdasarkan API 581 dan metode Muhlbauer. Dalam menyelesaikan tugas akhir ini penulis banyak dibantu oleh beberapa pihak. Oleh karena itu, penulis ingin menyampaikan rasa terima kasih yang sedalam-dalamnya kepada: 1.
Tuhan Yang Maha Esa atas anugrah dan penyertaannya hingga laporan tugas pasca sarjana ini dapat diselesaikan.
2.
Bapak, Ibu, Mas Eko, Mas Wawik, Kak Ana dan seluruh keluarga yang selalu memberikan perhatian, dukungan dan doa.
3.
Dr. Ir. IGN Wiratmaja Puja yang telah memberikan arahan dan bimbingan dalam proses pembuatan dan penyelesaian tugas ini.
4.
Dr. Ir. I Wayan Suweca, Dr. Rachman Setiawan, ST sebagai staf pengajar Laboratorium Perancangan Mesin ITB.
5.
Ridho, Suka, Kariem, Sigit, Alvian, Fernanda, Risky, Id, Davis, Arnold dan rekan-rekan di Laboratorium Perancangan Mesin ITB yang telah memberikan kerjasamanya selama penulis melaksanakan tugas pasca sarjana ini.
6.
Bang Tongam, Bang Jeriko, Bang Meang, Anton, Jhon, Felis, Made, Edu, Haga, Indra dan rekan-rekan Wisma Sejahtera lainnya atas dukungan dan doanya.
7.
Mas Nova, Bang Toni, Nickal, David, Erick, Jimmy, Dianta, Hizkia, Roland, Herbert dan teman – temanku di LPMI yang selalu memberikan dorongan dan dukungannya dalam doa.
8.
Okto, Jaja, Seto, Nova dan Iman sebagai teman sekerja di Dago Engineering yang memberikan bantuan kepada penulis.
9.
Teh Rini, Mas Dadang, Mas Jajang, dan Iin sebagai staf Laboratorium yang memberikan bantuan kepada penulis.
v
10. Pihak-pihak lain yang tidak dapat disebutkan satu per satu, yang telah membantu penyelesaian tugas sarjana ini. Semoga banyak manfaat yang bisa diperoleh dari tugas pasca sarjana ini terutama bagi penulis pribadi.
Bandung, Juni 2007
Penulis
vi
DAFTAR ISI
Lembar Pengesahan Abstrak Kata Pengantar Daftar Isi
vii
Daftar Gambar Daftar Tabel
v
ix xii
Bab I Pendahuluan..................................................................................................... 1 1.1. Latar Belakang .......................................................................................... 1 1.2. Tujuan ....................................................................................................... 3 1.3. Ruang Lingkup Pembahasan..................................................................... 3 1.4. Sistematika Pembahasan ........................................................................... 3 Bab II Teori Dasar ..................................................................................................... 5 2.1 Sistem Pipeline .......................................................................................... 5 2.1 Sistem Pipeline .......................................................................................... 5 2.2 Risk Based Inspection ................................................................................ 7 2.3 Pengkategorian Resiko Berdasarkan Metode Muhlbauer ........................ 11 2.3.1 Probability of Failure (PoF) ..................................................... 11 2.3.2 Consequence of Failure (CoF).................................................. 12 2.3.3 Third-party Damage Factor...................................................... 13 2.3.4 Corrosion Factor ...................................................................... 19 2.3.5 Design Factor ........................................................................... 25 2.3.6 Incorrect Operation Factor....................................................... 29 2.3.7 Leak Impact Factor (CoF) ........................................................ 33 2.4 Pengkategorian Resiko Berdasarkan API 581 ......................................... 40 2.4.1 Perhitungan secaral kuantitatif.................................................. 41 2.4.2 Probability of Failure (PoF) ..................................................... 42 2.4.3 Consequence of Failure (CoF).................................................. 53 2.4.4 Metode Penampilan Hasil Analisis Resiko ............................... 60
vii
Bab III Pengembangan Perangkat Lunak............................................................. 62 3.1 Pengembangan Perangkat Lunak Metode Muhlbauer ............................. 62 3.1.1 Diagram Alir Perancangan Perangkat Lunak Metode Muhlbauer ............................................................................................................ 63 3.1.2 Tampilan Perangkat Lunak Metode Muhlbauer ....................... 69 3.2 Pengembangan Perangkat Lunak Metode API 581 ................................. 86 3.2.1 Diagram Alir Perancangan Perangkat Lunak Metode API 581 86 3.2.2 Tampilan Perangkat Lunak Metode API 581 ......................... 110 Bab IV Pengaruh Parameter Desain, Kondisi Operasi dan Pihak Ketiga ....... 116 4.1 Parameter Desain ................................................................................... 116 4.2 Parameter Operasi .................................................................................. 122 4.3 Pihak Ketiga ........................................................................................... 130 Bab V Studi Kasus ................................................................................................. 133 4. 1 Data Perhitungan................................................................................... 135 4. 2 Metode Muhlbaeur ................................................................................ 137 4. 3 Metode API 581 .................................................................................... 145 Bab V Kesimpulan dan Saran............................................................................... 150 5. 1 Kesimpulan ........................................................................................... 150 5. 2 Saran...................................................................................................... 151
Daftar Pusataka...................................................................................................... 152
viii
DAFTAR GAMBAR
Gambar 1. 1 Contoh Kerusakan Pada Pipeline[3] ......................................................... 2 Gambar 2. 1 Contoh Sistem Perpipaan ........................................................................ 7 Gambar 2. 2 Diagram RBI[4] ........................................................................................ 8 Gambar 2. 3 Risk Assessment Model .......................................................................... 8 Gambar 2. 4 Risk Matrix[1]........................................................................................... 9 Gambar 2. 5 Pembagian Pipeline Menjadi Beberapa Segmen[2]................................ 10 Gambar 2. 6 Flowchart Pengkategorian Resiko Metode Muhlbauer[2] ..................... 11 Gambar 2. 7 Leak Impact Factor (CoF) Flowchart[2]................................................ 12 Gambar 2. 8 Third-party Damage Factor Flowchart[2]............................................. 13 Gambar 2. 9 Corrosion Factor Flowchart[2] ............................................................... 21 Gambar 2. 10 Design Factor Flowchart[2] ................................................................. 27 Gambar 2. 11 Incorrect Operation Factor Flowchart[2] ............................................. 32 Gambar 2. 12 Leak Impact Factor (CoF) Flowchart[2].............................................. 37 Gambar 2. 13 Chronic Hazard Flowchart[2] .............................................................. 39 Gambar 2. 14 Metode Perhitungan Secara Kuantitatif[1] ........................................... 45 Gambar 2. 15 Metode Perhitungan Probability of Failure (PoF)[1]............................ 47 Gambar 2. 16 Management Evaluation Score vs PSM Modification Factor[1] .......... 48 Gambar 2. 17 Perhitungan Technical Module Subfactor (TMSF)[1].......................... 50 Gambar 2. 18 Perhitungan Thinning TMSF[1] ........................................................... 52 Gambar 2. 19 Faktor koreksi untuk pipa/pipeline[1] .................................................. 55 Gambar 2. 20 Perhitungan SCC TMSF...................................................................... 57 Gambar 2. 21 Perhitungan HTHA TMSF[1] ............................................................... 59 Gambar 2. 22 Penentuan Furnace Tube Technical Module[1] .................................... 60 Gambar 2. 23 Penentuan Long Term TMSF[1]........................................................... 61 Gambar 2. 24 Penentuan Short Term TMSF ............................................................. 61 Gambar 2. 25 Penentuan Piping Mechanical Fatigue TMSF[1] ................................. 63 Gambar 2. 26 Penentuan Low Temperature/Low Toughness Failure TMSF[1] ........ 64 Gambar 2. 27 Penentuan Temper Embritlement TMSF[1] ......................................... 65 Gambar 2. 28 Penentuan 8850F Embritlement TMSF[1] ........................................... 65
ix
Gambar 2. 29 Penentuan Sigma Phase Embritlement TMSF[1] ................................. 66 Gambar 2. 30 Penentuan Lining TMSF[1] .................................................................. 67 Gambar 2. 31 Flowchart untuk external damage[1] .................................................... 68 Gambar 2. 32 Flowchart external corrosion untuk Carbon & Low Alloy Steels[1].... 68 Gambar 2. 33 Flowchart CUI untuk Carbon & Low Alloy Steels[1].......................... 69 Gambar 2. 34 Flowchart External SCC untuk Austenitic Stainless Steels[1] ............. 69 Gambar 2. 35 Flowchart External CUI SCC untuk Austenitic Stainless Steels[1] ..... 70 Gambar 2. 36 Perhitungan Process Subfactor[1]......................................................... 71 Gambar 2. 37 Perhitungan Mechanical Sub Factor[1] ................................................ 72 Gambar 2. 38 Perhitungan PoF[1] ............................................................................... 73 Gambar 2. 39 Perhitungan release rate[1] ................................................................... 75 Gambar 2. 40 Penentuan Release Type[1] .................................................................. 78 Gambar 2. 41 Penentuan Fasa Final Liquid[1] ............................................................ 79 Gambar 2. 42 Flowchart Perhitungan Flammable Consequence[1] ............................ 80 Gambar 2. 43 Perhitungan Toxic Consequence[1] ...................................................... 81 Gambar 2. 44 Perhitungan Environmental Consequence[1] ....................................... 82 Gambar 2. 45 Perhitungan Bussiness interuption Consequence[1] ............................. 83 Gambar 2. 46 Perhitungan Kategori Consequence of Failure[1] ................................ 84 Gambar 2. 47 Risk Matriks[1] ..................................................................................... 85 Gambar 3. 1 Pengaruh Diameter Pipa Terhadap Consequence area.......................... 87 Gambar 3. 2 Pengaruh Diameter Pipa Terhadap Economic consequence ................. 88 Gambar 3. 3 Pengaruh Diameter Pipa Terhadap Probability of failure ..................... 88 Gambar 3. 4 Pengaruh Panjang Pipa Terhadap Consequence area............................ 89 Gambar 3. 5 Pengaruh Panjang Pipa Terhadap Economic consequence ................... 90 Gambar 3. 6 Pengaruh Panjang Pipa Terhadap Asset Damage Consequence ........... 91 Gambar 3. 7 Pengaruh Panjang Pipa Terhadap Probability of failure ....................... 91 Gambar 3. 8 Pengaruh Jumlah Sambungan Terhadap Probability of failure............. 92 Gambar 3. 9 Pengaruh Tekanan Operasi Terhadap Consequence area ..................... 93 Gambar 3. 10 Pengaruh Panjang Pipa Terhadap Economic consequence ................. 94 Gambar 3. 11 Pengaruh Tekanan Operasi Terhadap Asset Damage Consequence dan Business Interuption................................................................................................... 94 Gambar 3. 12 Pengaruh Tekanan Operasi Terhadap Probability of failure............... 95
x
Gambar 3. 13 Pengaruh Temperatur Operasi Terhadap Consequence area............... 96 Gambar 3. 14 Pengaruh Temperatur Operasi Terhadap Economic consequence ...... 97 Gambar 3. 15 Pengaruh Temperatur Operasi Terhadap Probability of failure .......... 97 Gambar 3. 16 Pengaruh Debit Aliran Fluida Terhadap Consequence area ............... 98 Gambar 3. 17 Pengaruh Debit Aliran Fluida Terhadap Economic consequence....... 99 Gambar 3. 18 Pengaruh Debit Aliran Fluida Terhadap Probability of failure........... 99 Gambar 3. 19 Pengaruh Waktu (Umur) Operasi Terhadap Probability of failure ... 100 Gambar 3. 20 Pengaruh Kedalam Penguburan Pipa Terhadap Probability of failure .................................................................................................................................. 101 Gambar 3. 21 Pengaruh Kepadatan Penduduk Terhadap Consequence of Failure.. 102 Gambar 4. 1 Sistem Pipeline milik Vico Indonesia ................................................. 104 Gambar 4. 2 Pipeline yang melintasi jalan............................................................... 105
xi
DAFTAR GAMBAR
Gambar 1. 1 Contoh Kerusakan Pada Pipeline[3] ......................................................... 2 Gambar 2. 1 Contoh Sistem Perpipaan ........................................................................ 7 Gambar 2. 2 Diagram RBI[4] ........................................................................................ 8 Gambar 2. 3 Risk Assessment Model .......................................................................... 8 Gambar 2. 4 Risk Matrix[1]........................................................................................... 9 Gambar 2. 5 Pembagian Pipeline Menjadi Beberapa Segmen[2]................................ 10 Gambar 2. 6 Flowchart Pengkategorian Resiko Metode Muhlbauer[2] ..................... 11 Gambar 2. 7 Leak Impact Factor (CoF) Flowchart[2]................................................ 12 Gambar 2. 8 Third-party Damage Factor Flowchart[2]............................................. 13 Gambar 2. 9 Corrosion Factor Flowchart[2] ............................................................... 21 Gambar 2. 10 Design Factor Flowchart[2] ................................................................. 27 Gambar 2. 11 Incorrect Operation Factor Flowchart[2] ............................................. 32 Gambar 2. 12 Leak Impact Factor (CoF) Flowchart[2].............................................. 37 Gambar 2. 13 Chronic Hazard Flowchart[2] .............................................................. 39 Gambar 2. 14 Metode Perhitungan Secara Kuantitatif[1] ........................................... 45 Gambar 2. 15 Metode Perhitungan Probability of Failure (PoF)[1]............................ 47 Gambar 2. 16 Management Evaluation Score vs PSM Modification Factor[1] .......... 48 Gambar 2. 17 Perhitungan Technical Module Subfactor (TMSF)[1].......................... 50 Gambar 2. 18 Perhitungan Thinning TMSF[1] ........................................................... 52 Gambar 2. 19 Faktor koreksi untuk pipa/pipeline[1] .................................................. 55 Gambar 2. 20 Perhitungan SCC TMSF...................................................................... 57 Gambar 2. 21 Perhitungan HTHA TMSF[1] ............................................................... 59 Gambar 2. 22 Penentuan Furnace Tube Technical Module[1] .................................... 60 Gambar 2. 23 Penentuan Long Term TMSF[1]........................................................... 61 Gambar 2. 24 Penentuan Short Term TMSF ............................................................. 61 Gambar 2. 25 Penentuan Piping Mechanical Fatigue TMSF[1] ................................. 63 Gambar 2. 26 Penentuan Low Temperature/Low Toughness Failure TMSF[1] ........ 64 Gambar 2. 27 Penentuan Temper Embritlement TMSF[1] ......................................... 65 Gambar 2. 28 Penentuan 8850F Embritlement TMSF[1] ........................................... 65
ix
Gambar 2. 29 Penentuan Sigma Phase Embritlement TMSF[1] ................................. 66 Gambar 2. 30 Penentuan Lining TMSF[1] .................................................................. 67 Gambar 2. 31 Flowchart untuk external damage[1] .................................................... 68 Gambar 2. 32 Flowchart external corrosion untuk Carbon & Low Alloy Steels[1].... 68 Gambar 2. 33 Flowchart CUI untuk Carbon & Low Alloy Steels[1].......................... 69 Gambar 2. 34 Flowchart External SCC untuk Austenitic Stainless Steels[1] ............. 69 Gambar 2. 35 Flowchart External CUI SCC untuk Austenitic Stainless Steels[1] ..... 70 Gambar 2. 36 Perhitungan Process Subfactor[1]......................................................... 71 Gambar 2. 37 Perhitungan Mechanical Sub Factor[1] ................................................ 72 Gambar 2. 38 Perhitungan PoF[1] ............................................................................... 73 Gambar 2. 39 Perhitungan release rate[1] ................................................................... 75 Gambar 2. 40 Penentuan Release Type[1] .................................................................. 78 Gambar 2. 41 Penentuan Fasa Final Liquid[1] ............................................................ 79 Gambar 2. 42 Flowchart Perhitungan Flammable Consequence[1] ............................ 80 Gambar 2. 43 Perhitungan Toxic Consequence[1] ...................................................... 81 Gambar 2. 44 Perhitungan Environmental Consequence[1] ....................................... 82 Gambar 2. 45 Perhitungan Bussiness interuption Consequence[1] ............................. 83 Gambar 2. 46 Perhitungan Kategori Consequence of Failure[1] ................................ 84 Gambar 2. 47 Risk Matriks[1] ..................................................................................... 85 Gambar 3. 1 Pengaruh Diameter Pipa Terhadap Consequence area.......................... 87 Gambar 3. 2 Pengaruh Diameter Pipa Terhadap Economic consequence ................. 88 Gambar 3. 3 Pengaruh Diameter Pipa Terhadap Probability of failure ..................... 88 Gambar 3. 4 Pengaruh Panjang Pipa Terhadap Consequence area............................ 89 Gambar 3. 5 Pengaruh Panjang Pipa Terhadap Economic consequence ................... 90 Gambar 3. 6 Pengaruh Panjang Pipa Terhadap Asset Damage Consequence ........... 91 Gambar 3. 7 Pengaruh Panjang Pipa Terhadap Probability of failure ....................... 91 Gambar 3. 8 Pengaruh Jumlah Sambungan Terhadap Probability of failure............. 92 Gambar 3. 9 Pengaruh Tekanan Operasi Terhadap Consequence area ..................... 93 Gambar 3. 10 Pengaruh Panjang Pipa Terhadap Economic consequence ................. 94 Gambar 3. 11 Pengaruh Tekanan Operasi Terhadap Asset Damage Consequence dan Business Interuption................................................................................................... 94 Gambar 3. 12 Pengaruh Tekanan Operasi Terhadap Probability of failure............... 95
x
Gambar 3. 13 Pengaruh Temperatur Operasi Terhadap Consequence area............... 96 Gambar 3. 14 Pengaruh Temperatur Operasi Terhadap Economic consequence ...... 97 Gambar 3. 15 Pengaruh Temperatur Operasi Terhadap Probability of failure .......... 97 Gambar 3. 16 Pengaruh Debit Aliran Fluida Terhadap Consequence area ............... 98 Gambar 3. 17 Pengaruh Debit Aliran Fluida Terhadap Economic consequence....... 99 Gambar 3. 18 Pengaruh Debit Aliran Fluida Terhadap Probability of failure........... 99 Gambar 3. 19 Pengaruh Waktu (Umur) Operasi Terhadap Probability of failure ... 100 Gambar 3. 20 Pengaruh Kedalam Penguburan Pipa Terhadap Probability of failure .................................................................................................................................. 101 Gambar 3. 21 Pengaruh Kepadatan Penduduk Terhadap Consequence of Failure.. 102 Gambar 4. 1 Sistem Pipeline milik Vico Indonesia ................................................. 104 Gambar 4. 2 Pipeline yang melintasi jalan............................................................... 105
xi