DAFTAR PUSTAKA Anthony, D.B., and Howard, J.B., 1976, Coal Devolatilization and Hydrogasification, AIChE J., 22, 625-653 ASTM : WK8153 Revision D388-99(2004), Standard Classification of Coals by Rank. Atwood, R.W., and Schulman, B.I., 1977, The Toscol Process Pyrolysis of Western Coals and Lignite for Char and Oil Production, Am. Chem. Soc., Division of Fuel Chemistry, 22, 233-253 Blasi, C.D,, 2002, Modeling The Fast Pyrolysis of Cellulose and Pine Sawdust in an Air Athmosphere, AIChE J., 48 : 10 Chen, L.H., and Wen, C.Y., 1979, A Model For Coal Pyrolysis, Am. Chem. Soc., Division of Fuel Chemistry, 24, 141-152 Chernyavsky, N.V., 2003, The Main Natural Lows of High Rate Coal Pyrolysis, BIBLID 0354-9836 : 7, 77-87 Cortes, G.C., Tzimas, E., and Peteves, S.D., 2009, Technologies for Coal based Hydrogen and Electricity Co-production Power Plants with CO2 Capture, JRC Scientific and Technical Reports, Luxembourg Demirbas, Ayhan., 2009, Biorefineries: Current Activities and Future Developments, Energy Conversion and Management 50: 2782-2801 Franklin, H.D., Peters, W.A., and Howard, J.B., 1981, Mineral Matter Effects on The Rapid Pyrolysis and Hydropyrolysis of A Bituminous Coal, Am. Chem. Soc., National Meeting, Fuel Chemistry Division Preprints, 26, 35-42 Gale, T.K, Bartholomew, C.H, and Fletcher, T.H., 1994, Decreases in The Swelling and Porosity of Bituminous Coals during Devolatilization at High Heating Rates, Chemical Engineering and Mechanical Engineering Department, Advanced Combustion Engineering Research Center, Birmingham Young University, Utah Gavalas, G.R., 1982, Coal Pyrolysis, Elsevier, 111-137 Guan, R., Li, W., and Li, B., 2003, Effects of Ca-based Additives on Desulfurization During Coal Pyrolysis, Fuel, 82, 1961-1966
Hu, H., Wu, X., and Zhu, S., 2003, Desulfurization of Coal with Pyrolysis in Different Atmosphereβ Fuel, 49, 409-410 Ismail, S., 1995, Batubara Indonesia: Potensi dan Harapan, Pidato Pengukuhan sebagai Guru Besar Tetap dalam Ilmu Teknik Kimia pada Fakultas Teknik Universitas Sriwijaya, Disampaikan pada Rapat senat Khusus Terbuka Universitas Sriwijaya, 6 April 1995, Palembang Jamil, K., and Li, C.Z., 2006, Volatilisation and Catalytic Effects of AAEM Species on Reactivity of Char from Pyrolysis and Gasification of Victorian Brown Coal, Energy and Environment, 5, 31-44 Jiang, J.F., Wang, Q.Y., Wang, Y.G., Tong, W.C., and Xiao, B., 2007, GC/MS Analysis of Coal Tar Composition Produced from Coal Pyrolysis, Bull. Chem. Soc. Ethiop, 21, 229-240 Kabe, T., Ishihara, A., Qian, E.W., Sutrisna, I.P., and Kabe. Y., 2004, Coal and CoalRelated Compouns: Structures, Reactivity, Catalytic Reactions, Elsevier Science and Technology Books Liu, L.J., Liu, H.J., Cui, M.Q., Hu, Y.F., Zheng, L., Zhao, Y., Ma, C.Y., Xi, S., Yang, D., Guo, Z.Y and Wang, J., 2012, Determination of The Calcium Species in Coal Chars by Ca K-edge XANES Analysis, Fuel, Revised Liu, Q., Hu, H., Zhou, Q., Zhu, S., and Chen, G., 2003, Effect Of Inorganic Matter On Reactivity And Kinetics Of Coal Pyrolysis, Fuel, 48, 368 McKee, D.W., Spiro, C.L., Kosky, P.G., and Lamby, E.J., 1984, Catalytic Effects of Alkali Metal Salts in Gasification of Coal Char, Carbon, 22, 285 Mill, J.C., 2000, Pyrolysis of Fine Coal Particles at High Heating Rate and Pressure, Thesis, School of Chemical Engineering and Industrial Chemistry, University of New Seouth Wales, Sidney Montgomery, D.C. and Runger, G.C., 1994, Applied Statistics and Probability for Engineers, John Wiley and Sons, New York Prakash N. and Karunanithi, T., 2008, Kinetic Modeling in Biomass Pyrolysis, Appl. Sci. Res., 4, 1627-1636 Radovic, L.R., 1997, Energy and Fuels in Society, Mc Graw-Hill, New York
Rajvanshi, A.K., 1986, Alternative Energy in Agriculture, Part I, Biomass Gassification, CRC Press, 82-102 Riegel, E.R. and Kent, J.A., 2003, Riegelβs Handbook of Industrial Chemistry, Kluwer Academic/Plenum Publishers, New York Roberts, A. F., 1970, The Kinetic Behavior of Intermediate Compounds During The Pyrolysis of Cellulose, Appl. Polm. Sci., 14, 244-247 Schoennagel, H.J., and Zahner, J.C., 1981, Coal Conversion, U.S. Pat. No. 4,298,453 Shafizadeh, F., and Chin., P.P.S., 1977, Thermal Deterioration of Wood, ACS Symp. Ser., 57-81 Shen, D.K., Fang, M.X., Luo, Z.Y., and Cen,K.F., 2007, Modeling Pyrolysis of Wet Wood Under External Heat Flux, Fire Safety Journal, 42, 210-217 Serio, M.A., Peters, W.A., Sawada, K., and Howard, J.B., 1984, Global Kinetics of Primary and Secondary Reactions in Hydrocarbon Gas Evolution from Coal Pyrolysis, Am. Chem. Soc., Division of Fuel Chemistry, Preprints, 29, 65-76 Serio, M.A., Hamblen, D.G., Markham, J.R., and Solomon, P.R., 1987, Kinetics of Volatile Product Evolution in Coal Pyrolysis: Experiment and Theory, Energy and Fuels, 1, 138-152 Serio, M.A., Kroo, E., Charpenay, S., and Solomon, P.R., 1992, Hydrous Pyrolysis of Four Argonne Premium Coals (Hydrothermal Treatment), Am. Chem. Soc., National Meeting, Washington D.C., 23-28 Aug 1992 Smoot, L.D., and Smith, P.J., 1985, Coal Combustion and Gasification, Plenum Press, New York Solomon, P.R., 1981, Coal Structure and Thermal Decomposition, In New Approaches in Coal Chemistry Chapter 4, ACS Symp. Ser. 169; 61-71 Solomon, P.R., Hamblen, D.G., Deshpande, G.V. and Serio, M.A., 1987a, A General Model of Coal Devolatilization, International Coal Science Conference, The Netherlands Solomon, P.R., Beer, J.M., and Longwell., J.P., 1987b, Fundamentals of Coal Conversion and Relation to Coal Properties, Energy, 12, 837-862
Solomon, P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A., and Deshpande, G.V., 1988, A General Model of Coal Devolatilization, Energy and Fuels, 2, 83-98 Thurner, F., and Mann, U., 1981, Kinetic Investigation of Wood Pyrolysis, Ind. Eng. Chem. Process Des. Dev. 20, 482-488 Tsai, S.C., 1982, Coal Science and Technology 2: Fundamentals of Coal Benefication and Utilization, Elsevier, Amsterdam Wang, J., Yao, Y., Cao., J., and Jiang, M., 2010, Enhance Catalysisof K2CO3 for Steam Gasification of Coal Char by Using Ca(OH)2 in Char Preparation, Fuel, 89, 310-317 Warnijati, S., 1995, Pirolisis Getah Beberapa Jenis tanaman Untuk Membuat Bahan Bakar Cair Pengganti BBM, Disertasi, Teknik Kimia, Universitas Gadjah Mada, Yogyakarta Zhang, D., 2009, Coal, Oil Shale, Natural Bitumen, Heavy Oil, and Peat, Vol I, Thermal Decomposition of Coal, EOLSS Publisher Co. Ltd. www.esdm.go.id/Publikasi/Statistik/Statistik%20Batubara.pdf (5 Pebruari 2012) www.worldcoal.org./coal/where-is-coal-found/ (1 Desember 2013) www.worldenergy.org./news-and-media/press-releases/world-energy/(1Desember 2013)
LAMPIRAN
LAMPIRAN A Analisis Bahan Baku dan Residu dengan Metode Proksimat dan Ultimat
Hasil analisis proksimat dan ultimat bahan baku batubara bituminus terlampir pada Tabel 3. Tabel 16 dan Tabel 17 berikut adalah hasil analisis untuk produk padat hasil pirolisis. Tabel 16. Hasil Analisis Proksimat, Ultimat dan Nilai Kalor Batubara Bituminus Hasil Pirolisis (T=700 oC, t=90 menit dengan penambahan Ca(OH)2) Analisis Proksimat Kadar air, % 3,3426 Volatile matter, % 5,6163 Kadar abu, % 36,3051 Kadar karbon terikat, % 54,7361 Nilai kalor, cal/g 5009,9033
Analisis Ultimat Kadar abu, % 17,89 Karbon, % 75,01 Hidrogen, % 1,54 Nitrogen, % 1,47 Total Sulfur, % 0,8 Oksigen, % 3,29
Tabel 17. Hasil Analisis Ultimat Batubara Bituminus Hasil Pirolisis (T=700 oC, t=90 menit tanpa penambahan Ca(OH)2) Analisis Ultimat Kadar abu, % 13,03 Karbon, % 80,93 Hidrogen, % 1,73 Nitrogen, % 1,70 Total Sulfur, % 1,16 Oksigen, % 1,45
SERTIFIKAT ANALISIS (CERTIFICATE OF ANALYSIS)
Nomor / Number
: 0916.A/LBB/VII/2012
Dibuat untuk /
:
Tanggal / Date : 17 Juli 2012
Saripah Sobah d/a Jurusan Teknik Kimia
Certified for
Fakultas Teknik, UGM Jenis contoh /
:
Batubara
:
Berbutir Kasar
:
-
:
5 (lima)
:
3699 s.d 3703 / 2012
:
6 Juli 2012
:
6 Juli 2012
Type of Sample Sifat / Kondisi Barang yang diuji / Description of sample Asal contoh Origin of sample Jumlah contoh / Amount of sample Nomor Laboratorium / Laboratory Number
Contoh diterima tanggal / Sample received on
Waktu pelaksanaan pengujian / Date of testing
1 dari 2
HASIL ANALISIS / ANALYSIS RESULTS : No.
No.
Nomor Lab Lab.
Belerang Total
Tanda Contoh
Abu
Karbon
Hidrogen
Nitrogen
Sample Marks
Ash
Carbon
Hydrogen
Nitrogen
Total Sulfur
Oxygen
%,adb
%, adb
%, adb
%, adb
%, adb
%, adb
Number
Oksigen
1
3699/12
BB. Bahan Baku
5,76
63,63
5,52
1,50
1,06
22,53
2
3700/12
HP 700-90 CA
17,89
75,01
1,54
1,47
0,80
3,29
3
3701/12
HP 700-90 TCA
13,03
80,93
1,73
1,70
1,16
1,45
4
3702/12
HG 700-TCA
12,59
77,28
1,38
1,62
1,20
5,93
5
3703/12
HG 700- CA
18,05
61,60
1,54
1,29
0,83
16,69
ASTM D.5373
ASTM D.5373
ASTM D.5373
ASTM D.5373
STANDARD METHODS :
ASTM D.4239
a.n. Manajer Teknis Lab. Batubara Penyelia,
Manik Widhi Astiti, S.Si. NIP 19740408 199403 2 005
2 dari 2
ASTM D. 3176
LAMPIRAN B Beberapa Data Penelitian dan Perhitungan Hasil A. Beberapa Data Perhitungan Tabel 18. Beberapa Data Penelitian untuk Proses Pirolisis dengan Katalisator T 723 K t (menit) vG (ml) vT (ml) mR (gram) 30 6.980 9 42,63 60 8.200 9,5 37,32 90 10.120 12,5 37,28 120 13.700 13 36,4 150 13.950 8 35,92 T 873 K t (menit) vG (ml) vT (ml) mR (gram) 30 10.080 9 37,22 60 13.820 11 36,21 90 14.291 12 35,3 120 15.730 10 34,81 150 15.120 9 34,74 T 973 K t (menit) vG (ml) vT (ml) mR (gram) 30 13.720 10 35,66 60 13.500 12 34,81 90 12.840 12,5 33,22 120 11.320 9 33,12 150 10.920 9 32,63
Tabel 19. Data Penelitian untuk Proses Pirolisis tanpa Katalisator t = 90 menit T (Kelvin) vG (ml) vT (ml) mR (gram) 773 6.850 8 34,36 823 7.800 10 33,65 873 6.250 11 30,69 923 10.900 9 30,77 973 12.440 12 28,52 B. Perhitungan Hasil 1. Hasil Gas Massa hasil gas dihitung dengan neraca massa overall seperti pada persamaan (18), selanjutnya dibagi dengan massa batubara awal, dapat diketahui massa gas setiap saat. π€π
(π‘) = 1 β π€πΊ (π‘) β π€π (π‘)
(18)
π€π
(π‘) π€πΊ (π‘) π€π (π‘) =1β β ππ΅0 ππ΅0 ππ΅0
(29)
ππΊ (π‘) = 1 β ππ
(π‘) β π π (π‘)
(30)
Dalam hal ini diasumsikan bahwa tidak ada kehilangan selama percobaan berlangsung. Kalau ada kebocoran, yang ditandai dengan munculnya asap atau bau, maka percobaan harus diulang. Rapat massa gas dihitung dengan persamaan berikut :
ππΊ =
ππΊ ππΊ
(31)
Hasil gas setiap saat besarnya :
π¦(π‘) =
ππΊ π‘ππ‘ ππΊ ππ΅0
(32)
dengan : y(t) : hasil gas per satuan massa batubara yang dipirolisis pada waktu t menit. VGtot : volume gas total pada waktu t, menit. Karena gas hasil pirolisis merupakan gas mix yang komposisinya terdiri dari CO, CO2, CH4 dan H2, maka dihitung untuk tiap-tiap senyawa, i.
π¦(π‘)π =
ππΊ π‘ππ‘ ππΊπ ππ΅0
(33)
2. Hasil Cair Volume total hasil cair kemudian diukur dengan labu ukur. Dengan asumsi bahwa rapat massa cairan tetap, maka massa hasil cair dihitung berdasarkan persamaan : π π = ππ ππ 3. Hasil Padat Hasil padatan dihitung pada saat proses telah dihentikan (mR)
(34)
C. Data Hasil Perhitungan Tabel 19. Beberapa Data Penelitian dan Perhitungan untuk Proses Pirolisis dengan Katalisator T 723 K t (menit) vG (ml) vT (ml) mR (gram) mG (gram) mT (gram) 30 6.980 9 42,63 8,958 9,109 60 8.200 9,5 37,32 8,401 9,615 90 10.120 12,5 37,28 10,170 12,651 120 13.700 13 36,4 21,369 13,152 150 13.950 8 35,92 20,668 8,097 T 873 K t (menit) vG (ml) vT (ml) mR (gram) mG (gram) mT (gram) 30 10.080 9 37,22 8,699 9,109 60 13.820 11 36,21 8,728 11,133 90 14.291 12 35,3 17,645 12,145 120 15.730 10 34,81 15,280 10,121 150 15.120 9 34,74 13,713 9,108 T 973 K t (menit) vG (ml) vT (ml) mR (gram) mG (gram) mT (gram) 30 13.720 10 35,66 14,265 10,121 60 13.500 12 34,81 18,949 12,145 90 12.840 12,5 33,22 14,294 12,651 120 11.320 9 33,12 13,402 9,109 150 10.920 9 32,63 11,318 9,109 Tabel 20. Data Penelitian dan Perhitungan untuk Proses Pirolisis tanpa Katalisator t = 90 menit T (Kelvin) vG (ml) vT (ml) mR (gram) mG (gram) mT (gram) 773 6.850 8 34,36 5,3448 8,097 823 7.800 10 33,65 6,8857 10,121 873 6.250 11 30,69 6,4199 11,230 923 10.900 9 30,77 12,3956 9,109 973 12.440 12 28,52 6,9591 12,145
LAMPIRAN C Analisis Gas dengan Gas Chromatography A. Pirolisis Dengan Penambahan Katalisator Ca(OH)2 Tabel 21. Hasil Analisis Gas untuk Beberapa Kondisi Proses Pirolisis dengan Katalisator T 723 K t (menit) % vol CO CO2 H2 30 11,804 5,172 3,994 60 12, 014 3,046 9,019 90 13,686 5,92 1,958 120 16,641 3,586 5,945 150 19,247 3,701 2,425 T 873 K t (menit) % vol CO CO2 H2 30 17,892 0,713 5,906 60 19,088 0,54 90 17,49 3,936 8,766 120 16,006 3,07 6,897 150 14,569 4,003 6,053 T 973 K t (menit) % vol CO CO2 H2 30 18,178 3,015 1,574 60 19,056 2,015 7,815 90 16,046 4,465 8,317 120 15,692 3,842 7,375 150 15,389 5,888 6,705
CH4 7,661 4,226 1,451 6,339 4,101 CH4 1,697 0,747 1,303 1,047 CH4 4,983 7,175 2,101 5,373 0,311
B. Pirolisis Tanpa Penambahan Katalisator Ca(OH)2 Tabel 22. Hasil Analisis Gas untuk Beberapa Kondisi Proses Pirolisis tanpa Katalisator T (Kelvin) 773 823 873 923 973
t = 90 menit % vol CO CO2 H2 CH4 11,642 4,995 2,081 1,924 14,015 3,45 4,101 1,78 14,82 3,148 6,759 1,776 12,614 4,53 9,955 1,891 19,056 2,843 -
Berikut adalah hasil analisis gas untuk pirolisis dengan penambahan katalisator pada suhu 973 K selama 90 menit:
Gambar Hasil Analisis Gas untuk Komponen Karbon Monoksida
Gambar Hasil Analisis Gas untuk Komponen Karbon Monoksida
Gambar Hasil Analisis Gas untuk Komponen Hidrogen