10
BAB 2 LANDASAN TEORI
2.1 Pengertian Regresi
Dalam ilmu statistika teknik yang umum digunakan untuk menganalisa hubungan antara dua variabel atau lebih adalah analisa regresi linier. Regresi pertama digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Dia telah melakukan studi tentang kecendrungan tinggi badan anak. Hasil studi tersebut merupakan suatu kesimpulan bahwa kecendrungan tinggi badan anak yang lahir terhadap orang tuanya adalah menurun mengarah pada tinggi badan rata-rata penduduk. Istilah regresi pada mulanya bertujuan untuk membuat perkiraan nilai satu variabel terhadap variabel yang lain. Pada perkembangan selanjutnya, analisis regresi dapat digunakan sebagai alat untuk membuat perkiraan nilai suatu variabel dengan menggunakan beberapa variabel lain yang berhubungan dengan variabel tersebut. (Alfigari, 2000. Analisis Regresi Teori, kasus dan solusi, Edisi Kedua, Yogyakarta : BPFE halaman 1 dan 2).
Pada dasarnya dalam suatu persamaan regresi terdapat dua macam variabel, yaitu variabel bebas (independent variable) yang dinyatakan dengan simbol
dan variabel terikat (dependent variable) yang biasanya dinyatakan
dengan simbol . Variabel terikat adalah variabel yang dipengaruhi atau yang nilainya bergantung dari nilai variabel lain. Variabel bebas adalah variabel yang
Universitas Sumatera Utara
11
memberikan pengaruh. Bila variabel bebas diketahui maka variabel terikatnya dapat diprediksi besarnya. Prinsip dasar yang harus dipenuhi dalam membangun suatu persamaan regresi adalah bahwa antara variabel terikat dengan variabel bebas mempunyai sifat hubbungan sebab-akibat.
2.2 Analisis Regresi Linier
Analisis regresi merupakan teknik yang digunakan dalam persamaan matematik yang menyatakan hubungan fugsional antara variabel-variabel. Analisis regresi linier atau regresi garis lurus digunakan untuk: 1. Menentukan hubungan fungsional antar variabel dependen dengan independen. Hubungan fungsional ini dapat disebut sebagai persamaan garis regresi yang berbentuk linier. 2. Meramalkan atau menduga nilai dari satu variabel dengan hubungannya dengan variabel yang lain yang diketahui melalui persamaan garis regresi.
Variabel yang lain diketahui melalui persamaan garis regresinya. Analisis regresi terdiri dari dua bentuk, yaitu 1. Analisis Regresi Linier Sederhana 2. Analisis Regresi Linier Berganda
Analisis Regresi Linier Sederhana adalah bentuk regresi dengan model yang bertujuan untuk mempelajari hubungan antara dua variabel, yakni variabel
Universitas Sumatera Utara
12
terikat dan variabel bebas. Sedangkan analisis regresi berganda adalah bentuk regresi dengan model yang memiliki hubungan antara satu variabel terikat dengan dua atau lebih variabel bebas. Variabel bebas adalah variabel yang nilainya tergantung dengan variabel lainya, sedangkan variabel terikat adalah variabel yang nilainya tergantung ddari variabel lainya.
Analisi regresi digunakan untuk mengetahui hubungan antara dua variabel atau lebih, terutama untuk menelusuri pola hubungan yang modelnya beluum diketahui dengan baik, atau untuk mengetahui bagaimana variasi dari beberapa variabel bebas mempengaruhi variabel dependen dalam suatu fenomena yang komplek. Jika
adalah variabel-variabel bebas dan
terikat, maka terdapat hubungan antara fungsional antara dari
akan diiringi pula oleh variasi dari
adalah variabel
dan , dimana variasi
. Jika dibuat secara matematis
hubungan ini dapat dijabarkan sebagai berikut :
Keterangan : Y
= Variabel terikat (Dependen)
X
= Variabel bebas (Independen)
e
= Variabel residu (disturbace term)
Berkaitan dengan analisis regresi ini, setidaknya ada empat kegiatan yang lazim dilaksanakan yakni : 1. Mengadakan estimasi terhadap parameter berdasarkan data empiris.
Universitas Sumatera Utara
13
2. Menguji berapa besar variasi variabel dependen dapat diterangkan oleh variasi independen. 3. Menguji apakah estimasi parameter tersebut signifikan atau tidak. 4. Melihat apakah tanda menghitung dari estimasi parameter cocok dengan teori.
2.3 Analisis Regresi Linier Sederhana
Analisis regresi linier sederhana terdiri dari satu variabel bebas dan satu variabel terikat. Dengan kata lain variabel yang dianalisis terdiri dari satu variabel prediktor dan satu variabel kriterium. Model regresi linier sederhanaya adalah:
Keterangan : Ŷ
= Variabel terikat (dependent variable) = Variabel bebas (independent variable)
a
= Konstanta (intrcept)
b
= Kemiringan (slope)
Penggunaan regresi linier sederhana didasarkan pada asumsi, diantaranya sebagai berikut : 1. Model regresi harus linier dalam parameter 2. Variabel bebas tidak berkolerasi dengan disturbance term (eror)
Universitas Sumatera Utara
14
3. Nilai disturbance term sebesar 0 atau dengan symbol sebagai e 4. Varian untuk masing-masing error term (kesalahan) konstan 5. Tidak terjadi autokorelasi 6. Model regresi dispesifikasikan secara
benar. Tidak terdapat bias
spesifikasi dalam model yang digunakan dalam analisis empiris.
Koefisien-koefisien regresi a dan b dapat dihitung dengan rumus:
∑
∑ ∑
∑ ∑
∑
∑ ∑
∑
∑
∑
Jika koefisien b terlebih dahulu dihitung, maka koefisien a dapat dihitung dengan rumus:
̅
̅
Dengan ̅ dan ̅ masing-masing rata-rata untuk variabel-variabel
dan .
2.4 Analisis Regresi Linier Berganda
Regresi Linier ganda (Mulltiple Regression) berguna untuk mencari pengaruh atau untuk meramalkan dua variabel prediktor atau lebih terhadap variabel
Universitas Sumatera Utara
15
kriteriumnya. Suatu persamaan regresi linier yang memiliki lebih dari satu variabel bebas
dan satu variabel terikat
akan membentuk suatu persamaan
regresi yang baru, disebut persamaan regresi linier berganda (multiple regression). Model persamaan regresi linier berganda hampir sama dengan model regresi linier sederhana, letak perbedaanya hanya pada jumlah variabel bebasnya.
Secara umum model regresi linier berganda adalah sebagai berikut:
Keterangan : = Variabel terikat (dependent variable) = Variabel bebas (independent variable) = Konstanta regresi = Koefisien regresi variabel bebas ɛ
= Pengamatn variabel error
Dalam penelitian ini digunakan tiga variabel yang terdiri dari satu variabel terikat ( ) dan dua variabel bebas ( ). Maka persamaan regresi bergandanya adalah:
Universitas Sumatera Utara
16
Persamaan diatas dapat diselesaikan dengan empat bentuk, yaitu :
∑
∑
∑
∑
∑
∑ ∑
∑
∑
∑
∑
Sistem persamaan tersebut dapat disederhanakan, apabila diambil ̅
̅
̅
Maka persamaan sekarang menjadi :
Koefisien-koefisien
untuk persamaan tersebut dapat dihitung dengan rumus ∑ ∑ ∑ ∑ ∑
Sehingga
dan
∑ (∑
∑ )
∑
∑
∑
∑
(∑
)
dapat dihitung dengan rumus ∑
∑
∑
Universitas Sumatera Utara
17
Dengan penggunaan Harga
dan y yang baru, maka diperoleh harga
setiap
koefisien
penduga
yang
diperoleh
kemudian
disubsitusikan ke persamaan awal sehingga diperoleh model regresi linier berganda
atas
.
2.5 Uji Keberartian Regresi
Sebelum persamaan regresi yang diperoleh digunakan untuk membuat kesimpulan, terlebih dahulu diperiksa setidak-setidaknya mengenai kelinieran dan keberartiannya. Pemeriksaan ini
ditempuh melalui pengujian hipotesis. Uji
keberartian dilakukan untuk meyakinkan diri apakah regresi yang didapat berdasarkan penelitian ada artinya bila dipakai untuk membuat kesimpulan mengenai
hubungan sejumlah peubah yang sedang dipelajari. Untuk itu
diperlukan dua macam jumlah kuadrat (JK) yaitu jumlah kuadrat untuk regresi yang ditulis . Jika
dan jumlah kuadrat untuk sisa (residu) yang ditulis dengan ̅
̅
̅
̅
maka secara umum jimlah kuadrat-kuadrat tersebut dapat dihitung dengan rumus :
∑
∑
∑
Dengan derajat kebebasan dk = k ∑
̂
Universitas Sumatera Utara
18
Dengan derajat kebebasan dk = (n – k – 1) untuk sampel berukuran n. Dengan demikian uji keberartian regresi berganda dapat dihitung dengan :
Dimana statistik F yang menyebar mengikuti distribusi F dengan derajat kebebasan pembilang
2.6 Koefisien Determinasi
Koefisien determinasi yang dinyatakan dengan
untuk pengujian regresi linier
berganda yang mencakup lebih dari dua variabel adalah untuk mengetahui proporsi keragaman total dalam variabel tak bebas ( ) yang dapat dijelaskan atau diterangkan oleh variabel-variabel bebas ( ) yang ada di dalam model persamaan regresi linier berganda secara bersama-sama. Maka
akan ditentukan dengan
rumus, yaitu :
∑ Keterangan : = Jumlah kuadrat regresi
Universitas Sumatera Utara
19
Harga
yang diperoleh sesuai dengan variansi yang dijelaskan masing-
masing variabel yang tinggal dalam regresi tersebut. Hal ini mengakibatkan variansi yang dijelaskan penduga yang disebabkan oleh variabel yang berpengaruh saja atau pun dengan kata lain hanya
yang bersifat nyata.
2.7 Uji Koefisien Korelasi
Analisis korelasi dilakukan untuk mengetahui hubungan antara dua variabel (bivariate correlation) atau lebih dari 2 variabel (multivariate correlation) dalam suatu penelitian. Untuk menentukan seberapa besar hubungan antar variabel tersebut dapat dihitung dengan menggunakan rumus koefisien korelasi. Rumus untuk koefisien regresi adalah:
∑ √{ ∑
∑ ∑
∑
}{ ∑
∑
}
Adapun untuk menghitung koefisien korelasi antara variabel terikat bebas
dan variabel
yaitu :
1. Koefisien antara
dan
∑ √{ ∑
∑ ∑
}{ ∑
∑ ∑
}
Universitas Sumatera Utara
20
2. Koefisien korelasi antara
dengan
∑ √{ ∑
3. Koefisien korelasi antara
∑ ∑
}{ ∑
∑
}
∑
}
dan
∑ √{ ∑
∑
∑ ∑
}{ ∑
∑
Koefisien korelasi memiliki nilai antara -1 hingga +1. Sifat nilai koefisien korelasi adalah (+) ataupun minus (-) yang menunjukan arah korelasi. Makna dari sifat korelasi adalah : 1. Tanda positif (+) pada koefisien korelasi menunjukan hubungan searah atau koefisien positif. Artinya jika nilai suatu variabel mengalami kenaikan mmaka nilai variabel yang lain juga mengalami kenaikan dan demikian juga sebaliknya. 2. Tanda negatif (-) pada koefisien korelasi menunjukan hubungan yang berlawanan arah atau korelasi negatif. Artinya jika nilai suatu variabel mengalami kenaikan maka nilai variabel yang lain akan mengalami penurunan dan demikian juga sebaliknya.
Universitas Sumatera Utara
21
Sifat korelasi akan menentukan arah korelasi. Keeratan korelasi dapat dikelompokan sebagai berikut. 1. 0,00-0,20 berarti korelasi memiliki keeratan sangat lemah. 2. 0,21-0,40 berarti korelasi memiliki keeratan lemah. 3. 0,41-0,70 berarti korelasi memiliki keeratan kuat. 4. 0,71-0,90 berarti korelasi memiliki keeratan sangat kuat. 5. 0,91-0,99 berarti korelasi memiliki keeratan sangat kuat sekali. 6. 1 berarti korelasi sempurna.
2.8 Kesalahan Standar Estimasi
Untuk mengetahui ketetapan persamaan estimasi dapat digunakan kesalahan standar estimasi (standard error of estimate). Besarnya kesalahan standar estimasi menunjukan ketetapan persamaan estimasi untuk menjelaskan nilai variabel tidak bebas yang sesungguhnya. Semakin kecil nilai kesalahan standar estimasi tersebut, makin tinggi ketetapan persamaan estimasi yang dihasilkan untuk menjelaskan nilai variabel tidak bebas sesungguhnya. Sebaliknya, semakin besar nilai kesalahan standar estimasi, maka semakin rendah persamaan estimasi yang dihasilkan untuk menjelaskan nilai variabel tidak sesungguhnya.(Algifari. 2000. Analisa regreesi Teor,, Kasus dan Solusi, Edisi 2. Yogyakarta : BPFE. Hal 17). Kesalahn standar estimasi (kekeliruan baku taksiran) dapat ditentukan dengan rumus :
Universitas Sumatera Utara
22
∑ √
Dimana
̂
adalah nilai data sebenarnya dan ̂ adalah nilai taksiran.
2.9 Pengujian Hipotesis
Pengujian hipotesis merupakan salah satu tujuan yang akan dibuktikan dalam penelitian. Jika terdapat deviasi antara sampel yang ditentukan dengan jumlah populasi maka tidak tertutup kemungkinan untuk terjadinya kesalahan dalam mengambil keputusan antara menolak atau menerima suatu hipotesis.
Pengujian hipotesis dapat didasarkan dengan menggunakan dua hal, yaitu : tingkat signifikansi atau probabilitas
dan tingkat kepercayaan atau
confidence interval. Didasarkan tingkat signifikansi pada umumnya orang menggunakan 0,05. Kisaran tingkat signifikansi mulai dari 0,01 sampai dengan 0,1. Yang dimaksud dengan tingkat signifikansi adalah probabilitas melakukan kesalahan tipe 1, yaitu kesalahan menolak hipotesis ketika hipotesis tersebut benar. Tingkat kepercayaan pada umumnya ialah sebesar 95%, yang dimaksud dengan tingkat kepercayaan ialah tingkat dimana sebesar 95% nilai sampel akan mewakili nilai populasi dimana sampel berasal. Dalam melakukan uji hipotesis terdapat dua hipotesis, yaitu:
(hipotesis 0) dan
(hipotesis alternatif).
bertujuan untuk memberikan usulan dugaan kemungkinan tidak adanya perbedaan
Universitas Sumatera Utara
23
antara perkiraan penelitian dengan keadaan yang sesungguhnya yang akan diteliti. bertujuan memberikan usulan dugaan adanya perbedaan perkiraan dengan keadaan sesungguhnya yang akan diteliti.
Pembentukan suatu hipotesis memerlukan toeri-teori maupun hasil penelitian terlebih dahulu sebagai pendukung pernyataan hipotesis yang diusulkan. Dalam membentuk hipotesis ada beberapa hal yang dipertimbangkan, yaitu: 1. Hipotesis nol dan hipotesis alternatif yang diusulkan. 2. Daerah penerimaan dan penolakan serta teknik arah pengujian (one tailed atau two tailed). 3. Penentuan nilai hitung statistik. 4. Menarik kesimpulan apakah menerima atau menolak hipotesis yang diusulkan dalam uji keberartian regresi.
Langkah-langkah yang dibutuhkan untuk pengujian hipotesis ini antara lain. 1. Tidak terdapat hubungan fungsional yang signifikan antara variabel bebas dengan variabel terikat. Minimal satu parameter koefisien regresi
yang
0
Terdapat hubungan fungsional yang signifikan antara variabel bebas dengan variabel terikat. 2. Pilih taraf nyata 3. Hitung statistik
yang diinginkan. dengan menggunakan persamaan.
Universitas Sumatera Utara
24
4. Nilai
menggunakan daftar table F dengan taraf signifikansi
:
.
5. Kriteria pengujian : jika diterima. Sebaliknya jika
yaitu
, maka , maka
ditolak dan diterima dan
ditolak.
Universitas Sumatera Utara