10. TEOREMA NILAI RATA-RATA
10.1 Maksimum dan Minimum Lokal Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c ∈ (a, b). Kita katakan bahwa f mencapai nilai maksimum lokal di c apabila f (x) ≤ f (c) untuk setiap x dalam suatu interval terbuka I yang memuat c. Titik c dalam hal ini disebut sebagai titik maksimum lokal. Nilai dan titik minimum lokal didefinisikan secara analog.
Gambar 10.1 f mencapai nilai maksimum lokal di c
Secara intuitif, f mencapai nilai maksimum lokal di c apabila grafiknya mempunyai sebuah ‘puncak’ di atas titik c. Serupa dengan itu, f mencapai nilai minimum lokal di c apabila grafiknya mempunyai sebuah ‘lembah’ di atas titik c. 76
Pengantar Analisis Real
77
Jika f (c) merupakan nilai maksimum f pada seluruh interval (a, b), maka tentunya f mencapai nilai maksimum lokal di c. Namun sebaliknya belum tentu benar, nilai maksimum lokal belum tentu merupakan nilai maksimum f . Contoh 1. Misalkan f : R → R adalah fungsi yang didefinsikan sebagai x + 2, x < −1, f (x) = |x|, x ≥ −1. Maka, f mencapai nilai maksimum lokal di −1, namun f (−1) = 1 bukan merupakan nilai maksimum f pada R. Demikian pula f mencapai nilai minimum lokal di 0, namun f (0) = 0 bukan merupakan nilai minimum f pada R. Teorema 2. Misalkan f mempunyai turunan pada (a, b) dan c ∈ (a, b). Jika f mencapai nilai maksimum atau minimum lokal di c, maka f 0 (c) = 0. Bukti. Menurut definisi turunan, f (x) − f (c) → f 0 (c) x−c untuk x → c. Misalkan f 0 (c) > 0. Menurut Soal Latihan 7.1 No. 4, terdapat suatu δ > 0 sedemikian sehingga f (x) − f (c) >0 (1) x−c untuk x ∈ (c − δ, c + δ), x 6= c. Sekarang misalkan x ∈ (c, c + δ) sembarang. Maka, x−c > 0 dan (1) memberikan f (x)−f (c) > 0 atau f (x) > f (c). Jadi f tidak mungkin mencapai nilai maksimum lokal di c. Selanjutnya misalkan x ∈ (c − δ, c) sembarang. Maka, x − c < 0 dan (1) memberikan f (x) − f (c) < 0 atau f (x) < f (c). Jadi f juga tidak mungkin mencapai nilai minimum lokal di c. Hal serupa terjadi ketika f 0 (c) < 0. Jadi, jika f 0 (c) 6= 0, maka f tidak akan mencapai nilai maksimum atau minimum lokal di c. Catatan. Kebalikan dari Teorema 2 tidak berlaku: jika f 0 (c) = 0, belum tentu f mencapai nilai maksimum atau minimum lokal di c. Soal Latihan 1. Berikan sebuah contoh fungsi f yang terdefinisi pada (−2, 2) dan mencapai nilai maksimum lokal di 1 tetapi f (1) bukan merupakan nilai maksimum f pada (−2, 2).
78
Hendra Gunawan
2. Berikan sebuah contoh fungsi f yang mempunyai turunan nol di suatu titik tetapi f tidak mencapai nilai maksimum atau minimum lokal di titik tersebut.
10.2 Titik Stasioner Titik c dengan f 0 (c) = 0 disebut titik stasioner f . Sebagaimana telah dicatat sebelumnya, tidak semua titik stasioner merupakan titik maksimum atau minimum lokal. Sebagai contoh, jika f (x) = x3 , maka f 0 (x) = 3x2 , sehingga 0 merupakan titik stasioner. Namun, 0 bukan merupakan titik maksimum maupun minimum f . (Titik 0 dalam hal ini merupakan titik infleksi f , yaitu titik terjadinya perubahan kecekungan grafik fungsi f .) Situasi yang lebih parah dapat terjadi. Sebagai contoh, fungsi f (x) = x2 sin x1 untuk x 6= 0 dan f (0) = 0 mempunyai turunan f 0 (0) = 0 tetapi 0 bukan merupakan titik maksimum atau minimum lokal, ataupun titik infleksi.
Gambar 10.2 Grafik fungsi f (x) = x3 Teorema 3 (Teorema Rolle). Misalkan f kontinu pada [a, b] dan mempunyai turunan pada (a, b). Jika f (a) = f (b), maka f 0 (c) = 0 untuk suatu c ∈ (a, b). Bukti. Karena f kontinu pada interval kompak [a, b], maka menurut sifat kekontinuan f mencapai nilai maksimum M di suatu titik c1 ∈ [a, b] dan juga mencapai nilai minimum m di suatu titik c2 ∈ [a, b].
Pengantar Analisis Real
79
Misalkan c1 dan c2 adalah titik-titik ujung [a, b]. Karena f (a) = f (b), maka m = M dan dengan demikian f konstan pada [a, b]. Akibatnya f 0 (c) = 0 untuk setiap c ∈ (a, b). Jika c1 bukan titik ujung [a, b], maka c1 ∈ (a, b) dan f mencapai nilai maksimum lokal di c1 . Menurut Teorema 2, f 0 (c1 ) = 0. Hal serupa terjadi bila c2 bukan titik ujung [a, b]. Soal Latihan 1. Diketahui f (x) = x|x|, x ∈ R. Tunjukkan bahwa 0 merupakan titik stasioner. Selidiki apakah f mencapai nilai maksimum atau minimum lokal di 0. 2. Beri contoh sebuah fungsi f yang terdefinisi pada [a, b], mempunyai turunan pada (a, b), dan f (a) = f (b), namun tidak ada c ∈ (a, b) dengan f 0 (c) = 0.
10.3 Teorema Nilai Rata-rata dan Teorema Taylor Sebagai perumuman dari Teorema Rolle, kita mempunyai teorema berikut. Teorema 4 (Teorema Nilai Rata-rata). Misalkan f kontinu pada [a, b] dan mempunyai turunan pada (a, b). Maka f 0 (c) =
f (b) − f (a) b−a
untuk suatu c ∈ (a, b). (a) Catatan. Nilai f (b)−f disebut nilai rata-rata f pada [a, b]. Nilai ini sama dengan b−a gradien ruas garis singgung yang menghubungkan titik (a, f (a)) dan (b, f (b)). Teorema Nilai Rata-rata menyatakan bahwa pada kurva y = f (x) terdapat suatu titik (c, f (c)) dengan gradien garis singgung sama dengan nilai rata-rata f pada [a, b].
Bukti Teorema 4. Misalkan F didefinisikan pada [a, b] sebagai F (x) = f (x) − hx dengan h konstanta. Maka F kontinu pada [a, b] dan mempunyai turunan pada (a, b). Kita pilih konstanta h sedemikian sehingga F (a) = F (b), yakni h=
f (b) − f (a) . b−a
80
Hendra Gunawan
Karena F memenuhi hipotesis Teorema Rolle, maka F 0 (c) = 0 untuk suatu c ∈ (a, b). Namun F 0 (c) = f 0 (c) − h = 0, sehingga teorema pun terbukti. Jika f mempunyai turunan di c, maka persamaan garis singgung pada kurva y = f (x) di titik (c, f (c)) adalah y = f (c) + (x − c)f 0 (c). Untuk x dekat c, nilai f (c) + (x − c)f 0 (c) merupakan hampiran yang ’baik’ untuk f (x). Namun seberapa besar kesalahan dalam penghampiran ini? Lebih jauh, misalkan f mempunyai turunan ke-(n − 1) di c. Maka polinom P (x) = f (c) + (x − c)f 0 (c) +
(x − c)2 00 (x − c)n−1 (n−1) f (c) + · · · + f (c) 2! (n − 1)!
mempunyai turunan ke-k, k = 0, 1, . . . , n − 1, yang sama dengan turunan ke-k dari f . Karena itu masuk akal untuk menghampiri f (x) dengan P (x) untuk x di sekitar c. Namun, sekali lagi, seberapa besar kesalahan dalam penghampiran ini. Teorema Taylor di bawah ini menjawab pertanyaan tersebut. Teorema 5 (Teorema Taylor). Misalkan f mempunyai turunan ke-n pada interval terbuka I yang memuat titik c. Maka, untuk setiap x ∈ I, berlaku f (x) = f (c) + (x − c)f 0 (c) + dengan En =
1 n! (x
(x − c)n−1 (n−1) (x − c)2 00 f (c) + · · · + f (c) + En 2! (n − 1)!
− c)n f (n) (ξ) untuk suatu ξ di antara x dan c.
Proof. Untuk t di antara x dan c, definisikan F (t) = f (x) − f (t) − (x − t)f 0 (t) − · · · − Perhatikan bahwa F 0 (t) = −
(x − t)n−1 (n−1) f (t). (n − 1)!
(x − t)n−1 (n) f (t). (n − 1)!
Sekarang definisikan G(t) = F (t) −
x − t n x−c
F (c).
81
Pengantar Analisis Real
Maka, G(x) = G(c) = 0, sehingga menurut Teorema Rolle, terdapat ξ di antara x dan c sedemikian sehingga 0 = G0 (ξ) = F 0 (ξ) +
(x − ξ)n−1 (n) n(x − ξ)n−1 n(x − ξ)n−1 F (c) = − F (c). f (ξ) + (x − c)n (n − 1)! (x − c)n
Dari sini kita peroleh F (c) =
(x − c)n (n) f (ξ) n!
dan teorema pun terbukti. Soal Latihan √ 1. Diketahui f (x) = x. Tentukan nilai rata-rata f pada [0, 4]. Tentukan c ∈ (0, 4) sedemikian sehingga f 0 (c) sama dengan nilai rata-rata tersebut. 2. Misalkan f kontinu pada [a, b] dan mempunyai turunan pada (a, b). Buktikan jika f 0 (x) = 0 untuk setiap x ∈ (a, b), maka f konstan pada [a, b]. 3. Misalkan f : R → R mempunyai turunan di setiap titik dan f 0 (x) = x2 untuk setiap x ∈ R. Buktikan bahwa f (x) = 13 x3 + C, dengan C suatu konstanta. 4. Diketahui f : R → R memenuhi ketaksamaan |f (x) − f (y)| ≤ C|x − y|p ,
x, y ∈ R,
untuk suatu C > 0 dan p > 1. Buktikan bahwa f konstan. 5. Buktikan jika f mempunyai turunan kedua di c, maka f 00 (c) = lim
h→0
f (c + h) − 2f (c) + f (c − h) . h2
Berikan sebuah contoh fungsi yang tidak mempunyai turunan kedua di suatu titik namun limit di atas ada. 6. Misalkan c ∈ R dan n ∈ N. Buktikan dengan menggunakan Teorema Taylor bahwa n(n − 1) 2 (1 + c)n = 1 + nc + c + · · · + cn . 2! (Petunjuk. Tinjau f (x) = xn .)