Technische Universiteit Delft Faculteit der Civiele Techniek en Geowetenschappen Afdeling Watermanagement Sectie Gezondheidstechniek Leerstoel Drinkwater
Verstopping Biologische Actieve koolfilters Weesperkarspel
Student: Studienummer: Afstudeerdatum:
Petra Ross 9710048 1 september 2006
Afstudeerhoogleraar: Afstudeercommissie:
Prof. ir. J.C. van Dijk (TU Delft) Dr. ir. L.C. Rietveld (TU Delft) Ir. L.T.J. van der Aa (Waternet) Prof. dr. ir. M.C.M. van Loosdrecht (TU Delft)
Voorwoord Voor u ligt het afstudeerrapport “Verstopping Biologische Actieve Koolfilters Weesperkarspel” als resultaat van een 9 maanden durend afstudeeronderzoek aan de Technische Universiteit Delft in opdracht van Waternet. Dit afstudeeronderzoek is een combinatie van data-analyse van de procesvoering van de afgelopen jaren, uitvoeren van experimenten en computermodellering. Aan de totstandkoming van dit afstudeerwerk hebben vele mensen bijgedragen. Speciale dank gaat uit naar mijn afstudeercommissie. Prof. Hans van Dijk met deskundige adviezen tijdens de besprekingen en drinkwatercolloquia. René van der Aa en Luuk Rietveld voor de goede adviezen en begeleiding. Prof. Mark van Loosdrecht voor het reviewen van mijn verslag. Ook wil ik de medewerkers van vestiging Weesperkarspel van Waternet bedanken met in bijzonder Mike Gillebaard, Peter Huis en Hennie van Soest voor de snelle reacties indien er weer aanpassingen gemaakt moesten worden in de proefinstallatie en het vullen van de koolfilters in de proefinstallatie. Ik wil de mannen van de Regelwacht bedanken voor het helpen van het meten van de debieten. Sean Willemse en Onno Kramer voor hun hulp met de PI-database en het maken van mooie draaitabellen. Eric Baas voor zijn grondige achtergrond informatie en het praktisch meedenken en Yolanda Dullemont voor het biologische aspect van de zuivering. Kim van Schagen en Alex van der Helm voor de gezelligheid in de proefinstallatie, hulp met Matlab® en de proefinstallatie. Tot slot wil ik mijn ouders bedanken voor de eindeloze steun gedurende mijn studie en mijn vriend Gijs voor de steun en het stellen van kritische vragen en mijn auto die mij gedurende de afgelopen maanden trouw van Groningen naar Amsterdam gebracht heeft. Petra Ross, Amsterdam, 28 augustus 2006
Samenvatting In 1987 ontdekte Gemeentewaterleidingen Amsterdam, thans Waternet, de aanwezigheid van pesticiden in het drinkwater. Als gevolg hiervan is in 1992 het productieproces op vestiging Weesperkarspel ingrijpend veranderd. De coagulatie en snelfiltratie zijn vervangen door aktieve koolfiltratie. Op vestiging Weesperkarspel worden de aktieve koolfilters vooraf gegaan door een preoxidate door middel van ozon met als gevolg dat de biologische activiteit wordt gestimuleerd (biologische filters). Sinds de biologische koolfilters op Weesperkarspel in gebruik zijn genomen, zijn er problemen geweest met de verstopping van de koolfilters. Er wordt gesteld dat in de zomer, als gevolg van de hogere watertemperaturen, de biologische activiteit hoog is en de drukopbouw in de filters zo snel verloopt dat er frequent gespoeld moet worden. Als gevolg van deze beperking is in 1993 besloten de bruto ozondosering bij een watertemperatuur van 12 °C en hoger te verlagen. Uit het oogpunt van de biologische omzetting van natuurlijk organisch materiaal (NOM) en desinfectie is het gewenst dat de ozondosering juist verhoogd wordt. Het doel van dit onderzoek is te achterhalen wat de oorzaak is van de verstopping van de biologische koolfilters. Naar aanleiding van een analyse van de bedrijfsvoering van Weepserkarspel en een literatuuronderzoek zijn een aantal hypothesen opgesteld. Door middel van experimenten uitgevoerd in de proefinstallatie van Weesperkarspel zijn de invloed van assimileerbaar organisch koolstof (AOC), oververzadiging en zwevende stof getest. Hiervoor zijn vier parallelle filters op verschillende wijze bedreven:
ruw water → ozon ruw water → ozon ruw water → ozon ruw water → ozon (referentiefilter)
→ ontharding (oververzadigd) → zuurdosering → → ontharding (oververzadigd) → → (bedrijf) → ontharding (bedrijf) →
BAKF BAKF BAKF BAKF
1 2 3 4
In totaal zijn er 3 instellingen getest waarbij de ozondosering varieerde van geen ozon tot een bruto dosering van 2.4 mg/l. Uit het onderzoek blijkt dat de verstopping een combinatie is van verschillende factoren. Hierbij treedt in het geval van Weesperkarspel de verstopping in de bovenste laag van het filterbed op. AOC metingen laten zien dat de omzetting van AOC in de ontharders resulteert in een afname van de AOC concentratie van bijna 50%. De grootste drukopbouw is aanwezig in het koolfilter, waar de AOC concentratie het hoogst is. Uit de literatuur blijkt dat het volume dat de levende biomassa inneemt per volume filtermateriaal maar een fractie is in vergelijking tot andere stoffen zoals gesuspendeerde stoffen, algen, etc. Daarentegen toont onderzoek in langzame zandfilters naar de aanwezigheid van extracellulair polymerische substanties (EPS), essentieel voor de overleving van bacteriën in het filterbed, aan dat deze voor een afname in de porieruimte van tenminste 7% kunnen zorgen, waarbij de meeste verstopping plaatsvindt in de top 5-10 cm van de filters. De EPS is sterk gehydrateerd doordat het door hydro-bindingen veel water vasthoudt in de structuur. Ondanks dat het volume van de levende biomassa klein is, kan doordat de biomassa omgeven is door EPS en veel water het totaal een dusdanig volume innemen dat het tot verstopping van het koolfilter leidt. Hoe positiever de saturatie-index des te hoger de troebelheid. De troebelheid wordt veroorzaakt door de aanwezigheid van, mogelijk sterk gehydrateerde, calciumcarbonaat deeltjes. Een optimalisatie van de zuurdosering resulteert in minder drukopbouw.
Met behulp van de resultaten van de experimenten is het model gecalibreerd, waarbij het model een goede voorspelling geeft van het verloop van de drukopbouw bij temperaturen boven de 15 °C. Als gevolg van de verschillen in drukopbouw in het koolfilter bedreven met water uit het bedrijf ten opzichte van de drukopbouw in de bedrijfskoolfilters moet er nog wel een koppeling van het model naar de bedrijfssituatie gemaakt worden. Het doel van het model is dat het uiteindelijk gebruikt kan worden voor een voorspelling van de drukopbouw aan de hand van de kwaliteitsgegevens van het influent, waardoor een optimalisatie van het spoelregime kan worden bewerkstelligd.
Summary In 1987 Amsterdam Water Supply, Waternet, discovered the presence of pesticides in the drinking water. Because of this the production process at Weesperkarspel has changed in 1992. The coagulation and rapid sand filtration are replaced by activated carbon filtration. At Weesperkarspel the activated carbon filters are pre-oxidised by the use of ozone resulting in an enhanced biological activity in the filters (BAC). Since the implementation of the BAC problems of rapid clogging have occurred. It is stated that during the summer the biological activity is high due to high water temperatures and the pressure builds up so fast that the filters need to be backwashed frequently. Due to this constraint it was decided in 1993 to lower the ozone dosage for water temperatures above 12 °C. However in respect to the biological conversion of natural organic matter (NOM) and the disinfection capacity an increase in ozone dosage is desired. The objective of this research is to determine what causes the clogging of the BAC. Several hypothesis were derived from an analysis of the process of Weesperkarspel and a literature study. By conducting experiments at the pilot plant of Weesperkarspel the influence of assimilable organic carbon (AOC), supersaturation and suspended matter are tested. Four parallel filters were operated in different ways;
raw water → ozone raw water → ozone raw water → ozone raw water → ozone (reference filter)
→ softening (supersaturated) → acid dosing → BAC 1 → softening (supersaturated) → BAC 2 → BAC 3 (company) → softening (company) → BAC 4
During 3 settings the ozone dosage varied from no ozone to a ozone dosage of 2.4 mg/l. Results of the research show that clogging is a combination of several factors. At Weesperkarspel clogging occurs in the top layer of the filter. The conversion of AOC in the pellet reactors results in a drop in AOC concentration of 50%. The highest pressure drop is achieved in BAC 3 where the AOC concentration is the highest. Literature study shows that the volume in the filter material occupied by living biomass is negligible if compared to other substances like suspended matter, alqae, etc. But research to the presence of extra cellular polymeric substances (EPS), which are essential for the survival of bacteria in the filter, in slow sand filtration shows that EPS can contribute to a decrease in pore space of 7% and the most severe clogging occurs in the top 5-10 cm of the filter. EPS is also highly hydrated because it can incorporate large amounts of water into its structure by hydrogen bonding. So despite the volume of biomass is low, the presence of EPS surrounding the biomass in combination with hydrogen bonding can result in a large volume which can encounter for the clogging of the filter. The influence of supersaturated water on the pressure build up in the filter can be derived from the differences in pressure between BAC 1 and 2. A high saturation index seems to result in a turbidity because of the presence of, possibly strongly hydrated, calcium carbonate particles. The results of the pilot plant experiments are used to calibrate a model. The model gives good predictions of the pressure build up for water temperatures higher than 15 °C. But due to the differences in pressure build up in BAC 4 (reference filter) and the filters in the treatment plant a conversion needs to be made to the water treatment plant. The objective of the model is that it can be used to make predictions of the filter run times according to the water quality parameters. As a result an optimization of the backwash frequency can be accomplished.
Inhoudsopgave Voorwoord .......................................................................................................... 3 Samenvatting ...................................................................................................... 5 Summary ............................................................................................................ 7 1. Inleiding ................................................................................................. 13 1.1. Productielocatie Weesperkarspel.............................................................. 13 2. Filtratie ................................................................................................... 17 2.1. Introductie ........................................................................................... 17 2.2. Filtratiemechanismen............................................................................. 18 2.3. Mathematische beschrijving filtratie en verstopping.................................... 22 2.3.1. Schoonbedweerstand (Huisman, 1993) ................................................. 22 2.3.2. Drukopbouw (Huisman, 1993) ............................................................. 22 2.3.3. Model............................................................................................... 25 3. Analyse bestaande productieproces Weesperkarspel ...................................... 27 3.1. Bedrijfsvoering koolfilters ....................................................................... 27 3.2. Analyse verschildrukken......................................................................... 28 3.2.1. Vergelijking koolfilters onderling op hetzelfde tijdstip .............................. 29 3.2.2. Invloed veranderingen door de jaren heen op de drukken in de koolfilters.. 35 3.3. Conclusies............................................................................................ 38 4. Onderzoek hypothesen.............................................................................. 39 4.1. Introductie ........................................................................................... 39 4.2. Algen .................................................................................................. 39 4.3. Bacteriegroei ........................................................................................ 41 4.3.1. Invloed verschillende ozondoseringen op drukval.................................... 41 4.4. Gevolgen ontharding ............................................................................. 43 4.5. Ongelijke debietverdeling ....................................................................... 44 4.6. Aanwezigheid luchtbellen (Van der Aa, 2003) ............................................ 46 5. Experimenten .......................................................................................... 49 5.1. Introductie ........................................................................................... 49 5.2. Experimenten procestechnische variabelen ............................................... 49 5.2.1. Opstelling ......................................................................................... 49 5.2.2. Gebruikte metingen ........................................................................... 51 5.3. Experimenten ontwerptechnische variabelen ............................................. 52 5.3.1. Opstelling ......................................................................................... 52 5.3.2. Gebruikte metingen ........................................................................... 53 5.4. Resultaten en discussie .......................................................................... 54 5.4.1. Procestechnische variabelen ................................................................ 54 5.4.2. Ontwerptechnische variabelen ............................................................. 65 6. Model ..................................................................................................... 69 6.1. Introductie ........................................................................................... 69 6.2. Modelopzet .......................................................................................... 69 6.3. Calibratie ............................................................................................. 71 6.3.1. Schoonbedweerstand ......................................................................... 71 6.3.2. Biologisch ......................................................................................... 72 6.3.3. Chemisch ......................................................................................... 78 6.4. Validatie .............................................................................................. 78 6.5. Case ................................................................................................... 81 7. Conclusies en aanbevelingen...................................................................... 85 7.1. Oorzaak verstopping.............................................................................. 85 7.2. Ontwerp .............................................................................................. 86 7.3. Spoelregime ......................................................................................... 86 7.4. Aanbevelingen ...................................................................................... 86 Literatuurlijst..................................................................................................... 89 Bijlagen ............................................................................................................ 91
Lijst van afkortingen ATP AOC BAKF BDOC DOC EPS K-S toets KF NOM OH PI-database RW SCE SI TACC TILVS
Adenosine TriPhosphate Assimilable Organic Carbon Biologische Actieve KoolFilter Biological Dissolved Organic Carbon Dissolved Organic Carbon Extracellulair Polymerische Substanties Kolmogorov Smirnov toets KoolFilter Natural Organic Matter Ontharding Process Information database Ruwwater Single Collector Efficiency Saturatie Index Totaal Afzetbaar CalciumCarbonaat Time Integrated Large Volume Sampling
12
1.
Inleiding
In 1987 ontdekte Gemeentewaterleidingen Amsterdam, thans Waternet, de aanwezigheid van pesticiden in het drinkwater. Als gevolg hiervan is in 1992 het drinkwaterproductieproces op vestiging Weesperkarspel ingrijpend veranderd. De coagulatie en snelfiltratie zijn vervangen door actieve koolfiltratie. Actieve koolfilters zijn uitermate geschikt voor het adsorberen van organische koolstofverbindingen (met als gevolg een verbetering van de kleur, smaak en geur) en verwijdering van organische microverontreinigingen (bijv. pesticiden). Op Weesperkarspel worden de actieve koolfilters voorafgegaan door een preoxidatie door middel van ozon met als gevolg dat de biologische activiteit wordt gestimuleerd (biologische koolfilters). Biodegradatie in de biologische actieve koolfilters (BAKF’s) verwijdert een deel van het biodegradeerbaar opgelost organisch materiaal (BDOC) met als gevolg dat de hoeveelheid opgelost organisch materiaal (DOC) gereduceerd wordt en er minder DOC geadsorbeerd wordt op het actieve kool, waardoor er meer ruimte overblijft voor microverontreinigingen en langere looptijden van de actieve kool bewerkstelligd worden. Sinds de BAKF’s op productielocatie Weesperkarspel in gebruik zijn genomen, zijn er problemen geweest met de verstopping van de koolfilters. Er wordt gesteld dat in de zomer, als gevolg van de hogere watertemperaturen, de biologische activiteit hoog is en de drukopbouw in de filters zo snel verloopt dat er frequent gespoeld moet worden. Als gevolg van deze beperking is in 1993 besloten de bruto ozondosering, bij een watertemperatuur van 12°C en hoger, van 2.2 mg O3/l naar 1.7 mg O3/l, te verlagen. Uit het oogpunt van de biologische omzetting van natuurlijk organisch materiaal (NOM) en desinfectie is het gewenst dat de ozondosering juist verhoogd wordt. Het doel van dit onderzoek is uit te zoeken wat de oorzaak is van de verstopping van de BAKF’s en oplossingen aan te dragen waarmee de looptijden verlengd kunnen worden of de looptijden gelijk blijven bij een verhoogde ozondosering. Allereerst volgt er een korte inleiding in het drinkwaterbereidingproces van productielocatie Weesperkarspel, waarna in hoofdstuk 2 de theorie van filtratie aan bod komt. In hoofdstuk 3 wordt een analyse van het bestaande productieproces op Weesperkarspel uitgevoerd. Op de conclusies van hoofdstuk 3 zal dieper ingegaan worden in hoofdstuk 4, waar de mogelijke oorzaken van verstopping verder omschreven worden. Naar aanleiding van de resultaten in hoofdstuk 4 worden in hoofdstuk 5 de hypothesen verder uitgewerkt door het uitvoeren van experimenten. In hoofdstuk 6 wordt de toepasbaarheid van een model getest voor het voorspellen van de looptijden ten behoeve van een betere sturing. Tot slot staan de conclusies en aanbevelingen in hoofdstuk 7.
1.1.
Productielocatie Weesperkarspel
Productielocatie Weesperkarspel is één van de twee drinkwaterzuiveringstations van het bedrijf Waternet. Waternet is het eerste watercyclusbedrijf van Nederland, ontstaan uit een fusie tussen Waterleidingbedrijf Amsterdam en Dienst Waterbeheer en Riolering op 1 januari 2006. Het werk- en verzorgingsgebied van Waternet omvat de gemeente Amsterdam en een deel van het gebied in de provincie Utrecht en Noord-Holland, zie figuur 1-1.
13
Figuur 1-1 Voorzieningsgebied Waternet
De drinkwatertak van Waternet heeft een productiecapaciteit van 101 miljoen m3 drinkwater per jaar. Momenteel wordt er circa 90-95 miljoen m3 drinkwater per jaar geproduceerd, verdeeld over de vestiging Leiduin (duinwater), 70% van de productie en de vestiging Weesperkarspel (plassenwater), 30% van de productie.
Voorzuivering Loenen
Zuivering Weesperkarspel
Bron = kwelwater uit de Bethunepolder, eventueel aangevuld met water uit Amsterdam-Rijnkanaal
Ozonisatie
Ontharding Coagulatie/ sedimentatie Waterleiding plas
BAKF
LZF
Snelfiltratie Reinwater kelder
Figuur 1-1 Zuiveringsschema Plassenwater
14
Plassenwater wordt geproduceerd uit water dat omhoog kwelt uit de Bethunepolder en, indien nodig, gemengd wordt met water afkomstig uit het Amsterdam-Rijnkanaal. Aan het einde van het waterleidingkanaal (vestiging Loenen) wordt ijzerchloride gedoseerd (coagulatie en sedimentatie) waarna het water terecht komt in de Waterleidingplas. Na een verblijftijd van ongeveer 100 dagen in de Waterleidingplas, waar biologische “zelfreiniging” (desinfectie en nitrificatie) plaatsvindt en waterkwaliteitsverschillen uitgevlakt worden, wordt het water over de snelfilters geleid. Via een transportleiding wordt het water getransporteerd van Loenen naar vestiging Weesperkarspel. In Weesperkarspel ondergaat het water de volgende zuiveringsstappen: ozonisatie, ontharding, biologische actieve koolfiltratie en tot slot langzame zandfiltratie.
15
16
2.
Filtratie
2.1.
Introductie
Filtratie is een zuiveringsproces waarbij water door een filterbed, gevuld met een poreus filtermateriaal, stroomt. Gedurende deze passage verbetert de waterkwaliteit doordat gesuspendeerde en colloïdale stoffen afgevangen worden in het filterbed, stoffen biochemisch worden omgezet en pathogene micro-organismen worden geadsorbeerd en afgedood. Een overzicht van de indeling op grootte van de stoffen is weergegeven in figuur 2-1.
Figuur 2-1 Overzicht indeling stoffen (Bron: De Moel et al., 2004, pagina 176)
De, in het filterbed achtergebleven, gesuspendeerde stoffen vullen de poriën, wat tot gevolg heeft dat de weerstand in het filterbed toe neemt. De aanwezigheid van bacteriën en de daarmee gepaard gaande biologische groei door de aanwezigheid van natuurlijk organisch materiaal (NOM) en/of ammonium kunnen ook tot een toename van de weerstand in het filterbed leiden. Accumulatie van gesuspendeerde en colloïde stoffen en biologische groei in het filter leiden uiteindelijk tot verstopping en/of doorslag. Afhankelijk van de waterkwaliteit, de grootte van het filtermateriaal, de watertemperatuur en de snelheid zal de verstopping bovenin of verspreid over het filterbed plaatsvinden. Om te bepalen waar de verstopping zit kan een Lindquist diagram (figuur 2-2) geconstrueerd worden, dat de verschildruk over de hoogte van het filterbed weergeeft. 200 bovenwater [cm]
180 160 140 120
bedhoogte [cm]
100
hydrostatische druk koekfiltratie
80 60 40
diepbed filtratie
20
schoonbed weerstand
0 0
20
40
60
80
100
120
140
160
180
200
waterkolom [cm]
Figuur 2-2 Opbouw verschildruk aangegeven in Lindquist diagram
17
Bij diepbedfiltratie vindt de verstopping van het filter over de gehele diepte van het filterbed plaats, met als gevolg dat de looptijden langer zullen zijn omdat de hele diepte van het filterbed gebruikt wordt. Gevaar bij diepbedfiltratie is, dat er doorslag plaats kan vinden als er teveel ophoping in de onderkant van het filterbed plaatsvindt en de gesuspendeerde stoffen door de hoge snelheden loslaten en opnieuw in het water getransporteerd worden. Koekfiltratie treedt op wanneer de verstopping ten gevolge van zeefwerking voornamelijk plaatsvindt in de toplaag van het filterbed. De looptijden zullen als gevolg van deze verstopping korter zijn dan bij een verstopping in het hele filterbed. Koeklagen geven ook problemen bij het terugspoelen van de filters doordat de koek in stukken kan breken en de grotere delen (mudballs) onderin het filterbed terecht kunnen komen. Deze mudballs kunnen een verstoppende werking op de filterkoppen hebben, waardoor de filtratie eigenschappen van het filterbed achteruitgaan Als de filters verstopt zijn of doorslaan, zullen ze gespoeld moeten worden. Het spoelcriterium hangt af van twee parameters; Tq; de filterlooptijd waarbij de effluentkwaliteit nog net voldoet aan de gestelde eisen. Tr; de filterlooptijd waarbij de weerstand in het filterbed gelijk is aan de maximaal toelaatbare weerstand. Daar het continu monitoren van de effluentkwaliteit niet mogelijk is, is in de praktijk de Tq meestal groter dan Tr. Om de laagste kosten te verkrijgen is het gewenst dat Tq en Tr niet veel van elkaar verschillen. Voor de maximale filterlooptijd afhankelijk van de weerstand geldt dat het filter teruggespoeld moet worden wanneer het maximale beschikbare energieverlies bereikt is. Het maximale beschikbare energieverlies is gelijk aan de hoogte van het filterbed plus de hoogte van de bovenwaterstand min de hoogte van het effluent min het energieverlies als gevolg van de filterbodems, pijpen en kleppen.
2.2.
Filtratiemechanismen
Er zijn fysische, biologische en chemische filtratiemechanismen. Fysisch De belangrijkste transportprocessen van gesuspendeerde stoffen in het water zijn advectie en dispersie. Het verwijderen van gesuspendeerde stoffen binnen een filter bestaat uit twee afzonderlijke stappen (Yao et al., 1971 en Lawler et al., 2005). Transport van gesuspendeerde stoffen tot in de nabijheid van het filtermateriaal (lange afstandskrachten). Hechting van de gesuspendeerde stoffen aan het filtermateriaal (korte afstandskrachten). Lange afstandskrachten (zie figuur 2-3) Sedimentatie: de dichtheid van de gesuspendeerde stoffen is groter dan water, met als gevolg dat het deeltje onder invloed van de zwaartekracht een andere stroombaan volgt. Interceptie: de omvang van het deeltje is dusdanig dat het deeltje in de stroombaan de korrel raakt. Diffusie: de gesuspendeerde stoffen verplaatsen zich door willekeurige beweging van de deeltjes veroorzaakt door botsing met omliggende moleculen (Brownse beweging) en worden zo naar het filtermateriaal getransporteerd.
18
Figuur 2-3 Transport mechanismen (Bron: Yao et al. 1971, pag. 1106)
De transport efficiëntie van een filterkorrel of collector (η), Single Collector Efficiency (SCE), is gelijk aan de snelheid waarmee deeltjes de collector raken gedeeld door de snelheid waarmee de deeltjes naar de collector toe stromen (Yao et al., 1971 en Darby et al., 1991).
η =
η v0 c0
snelheid _ van _ raken π ⋅ d2 v0 ⋅ c0 ⋅ 4
(1)
= Single collector transport efficientie [-] = watersnelheid [m/s] = concentratie gesuspendeerde stoffen [mg/l]
De SCE hangt af van de filtratiesnelheid, grootte van het filtermateriaal, de watertemperatuur en van de grootte van de deeltjes die gefilterd moeten worden. De SCE wordt opgebouwd uit een factor voor diffusie (ηD), sedimentatie (ηG) en interceptie (ηI). 2
ηD = 4.04 ⋅ Pe
−2
3
kT = 0.9 ⋅ µ ⋅d ⋅d ⋅v p 0
3
2
ηI = ηG =
3 dp ⋅ 2 d
(ρ
p
(2)
− ρ ) ⋅ g ⋅ dp2
18 ⋅ µ ⋅ v0
η = η D + η I + ηG
(3)
19
Pe k T µ dp d ρp ρ
= = = = = = = =
Peclet getal [-] Boltzmann constante =1.38.10-23 [J/K] temperatuur [K] dynamische viscositeit [N·s/m2] diameter deeltje [m] diameter filterkorrels [m] dichtheid deeltje [kg/m3] dichtheid water [kg/m3]
Korte afstandskrachten De korte afstandskrachten zorgen voor de hechting van de deeltjes aan het filtermateriaal zodat de deeltjes ook daadwerkelijk uit het water verwijderd worden. De hechting vindt plaats door adsorptie, waarbij de Van der Waalskrachten en elektrostatische aantrekking een rol spelen. Van der Waalskrachten: fysieke aantrekking tussen twee deeltjes. De grootte van deze kracht is omgekeerd evenredig met de afstand tussen de kernen tot de 6de macht, met als gevolg dat bij een afstand tot het filtermateriaal groter dan 0.01 µm de Van der Waals krachten verwaarloosbaar zijn. Elektrostatische krachten: er vindt aantrekking plaats wanneer het filtermateriaal een andere lading heeft dan de lading van het deeltje. De kracht heeft een bereik tot ongeveer 1 µm. De efficiëntie van de hechting (α) is gelijk aan het aantal succesvolle hechtingen gedeeld door het aantal botsingen die plaatsgevonden hebben tussen de gesuspendeerde stoffen en het filtermateriaal. De hechtingsefficiëntie reflecteert de chemie van het systeem. De prestatie van een filterbed is gerelateerd aan de efficiëntie van een enkele collector (Yao et al., 1971): dc 3 (1 − p) =− ⋅ ⋅ α ⋅ η ⋅ c = −λ0 ⋅ c dy 2 d
c p y α
= = = =
(4)
concentratie gesuspendeerde deeltjes porositeit filterbed diepte filterbed botsingsefficiëntie factor
Het is mogelijk dat om het deeltje zich een vlok vormt als gevolg van de binding van water. De structuur van de vlok kan beschreven worden met de fractal theorie van Mandelbrot. De belangrijkste numerieke parameter in de fractal theorie is de Hausdorff of fractal dimensie (Dfr), met 1
ρf − ρw ∝ dfD
fr
−3
(5)
Voor vlokken met een afmeting df bestaande uit primaire deeltjes met een grootte dp en een dichtheid ρp wordt de dichtheid van de vlokken als volgt bepaald:
20
d ρf = ρw + ( ρ p − ρw ) ⋅ f d p
Dfr −3
(6)
Indien de vlokken groot zijn speelt de dichtheid van het primaire deeltje een relatief kleine rol van betekenis, en is de dichtheid van de droge stof maar een fractie van de oorspronkelijke dichtheid, gelijk aan het percentage primaire stof aanwezig in de vlok maal de dichtheid van de primaire stof. Biologisch Er zijn van nature bacteriën aanwezig zijn in het ruwe water en deze worden geadsorbeerd aan het filtermateriaal. Eenmaal aanwezig op het filtermateriaal gebruiken bacteriën het anorganische en organische materiaal als voedsel en is er sprake van biologische activiteit. Een deel van het voedsel wordt gebruikt voor het verkrijgen van de energie die nodig is voor het onderhoud van het organisme en een deel wordt omgezet in celmateriaal ten behoeve van de groei van de bacteriën. Wanneer slechts een beperkte hoeveelheid voedsel aanwezig is in het water zal de groeisnelheid afnemen en zal er een verhoogde afsterving plaatsvinden. Het volume dat levende biomassa inneemt per volume filtermateriaal is maar een fractie in vergelijking tot andere stoffen zoals gesuspendeerde stoffen, algen, etc. (Van der Aa et al., 2006). Onderzoek naar langzame zandfilters toont aan dat de aanwezigheid van extracellulair polymerische substanties (EPS) wel voor een afname in de porieruimte zorgt van tenminste 7%, waarbij de meeste verstopping plaatsvindt in de top 5-10 cm van de filters (Mauclaire et al. 2004). EPS bestaat voornamelijk uit polysachariden en is sterk gehydrateerd doordat het door hydrobinding veel water vasthoudt in de structuur. De EPS lijkt essentieel voor de overleving van de bacteriën in het filterbed (Clements, 2004). Daarentegen is de korreldiameter in de langzame zandfilters kleiner waardoor er sneller verstopping kan optreden. Hijnen en van der Kooij (1991) hebben het effect van lage concentraties AOC in water op de biologische verstopping van een zandfilter (met korrelgrootten vergelijkbaar aan de korrelgrootte in langzame zandfilters) onderzocht en een empirisch model opgesteld voor het microbiologische proces, waarbij een relatie gevonden is voor de minimale tijd die benodigd is om een toename van de druk Pi te bewerkstelligen. Het verloop van de verstopping als gevolg van de aanwezigheid van AOC bestaat uit twee fasen, een instelperiode waarbij de druk in het filter niet toeneemt (rijpening van het filter) en een periode waarin de druk wel toeneemt. Tpi = Tlag + Tcl Tlag = 11.3 ( ±0.41) ⋅ L−ac1 + 5.0 ( ±0.46 )
(
Tpi = 11.3 + 9.65 ⋅ Pi
TPi Tlag Tcl Lac Pi
= = = = =
1
2
)⋅L
−1 ac
+5
(7) (8)
filterlooptijd die benodigd is om een bepaalde drukopbouw te bereiken [dagen] filterlooptijd voordat de verstopping begint [dagen] filterlooptijd gedurende de verstoppingsfase [dagen] acetaat belasting van een filter [g C/(m2·d)] toename van de druk (Ptot – P0) [kPa]
Chemisch Als gevolg van chemische activiteiten kunnen opgeloste stoffen afgebroken of omgezet worden in onoplosbare producten, zoals de precipitatie van calciumcarbonaat en de omzetting van Fe2+ naar Fe3+ met als gevolg de vorming van ijzerhydroxidevlokken, welke vervolgens door sedimentatie en adsorptie uit het water gehaald worden.
21
2.3.
Mathematische beschrijving filtratie en verstopping
2.3.1. Schoonbedweerstand (Huisman, 1993) Wanneer een filter opgestart wordt is er nog geen verstopping aanwezig in het filterbed. De weerstand die dan gemeten wordt, gelijk aan de wrijvingsverliezen die ontstaan wanneer water door de poriën stroomt, is de schoonbedweerstand. De schoonbed weerstand wordt beschreven door de Carman-Kozeney vergelijking en is afhankelijk van de initiële porositeit, de korrelgrootte, de snelheid en de temperatuur: H υ (1 − p0 ) v I0 = 0 = 180 ⋅ ⋅ ⋅ 2 3 L g p0 d0 2
I0 g υ v p0 d0 H0 L
= = = = = = = =
(9)
initiële weerstands gradiënt [-] zwaartekracht versnelling [m2/s] kinematische viscositeit [m2/s] filtratie snelheid [m/s] initiële porositeit [%] korrel grootte [m] schoonbed weerstand [m] hoogte filterbed [m]
Bovenstaande vergelijking (lineaire relatie tussen snelheid en weerstand) mag alleen toegepast worden indien er sprake is van laminaire stroming; Re =
Re
1 v ⋅ d0 ⋅ <5 p0 υ
(10)
= Reynolds getal [-]
De kinematische viscositeit gelijk is aan;
υ =
4.97 ⋅ 10−4 3
(T [°C ] + 42.5) 2
(11)
2.3.2. Drukopbouw (Huisman, 1993) Gedurende filtratie worden gesuspendeerde stoffen aanwezig in het ruwe water naar het filtermateriaal getransporteerd. Tijdens het filtratieproces is dus er sprake van een ∂c dt verandering in concentratie van de gesuspendeerde en colloïdale stoffen: c → c + ∂t ∂σ en zal er afzetting in de poriën van het filterbed plaatsvinden: σ → σ + dt . ∂t Door een massabalans op te stellen kunnen de vergelijking voor de effluentkwaliteit en de vaste stof die achterblijft in het filterbed afgeleid worden.
22
IN = UIT + BERGING + AFZETTING
v.c0
y L
v.c dy
dy
v.ce
Gesuspendeerde stoffen in water A ⋅ v ⋅ cin ⋅ dt = A ⋅ v ⋅ cuit ⋅ dt + λ ⋅ c ⋅ ∂y ⋅ A ⋅ p ⋅ dy + p ⋅ ∂c ⋅ dy ⋅ A ∂c v λ ⋅ c ⋅ ∂y =− ⋅ (cuit − cin ) − ∂t p ⋅ ∂y ∂t ∂c v ∂c v =− ⋅ − ⋅λ ⋅c ∂t p ∂y p
A cin cuit
(12)
= oppervlakte [m2] = concentratie gesuspendeerde stoffen begin [mg.l] = concentratie gesuspendeerde stoffen eind [mg/l]
Waarbij de filtratiecoëfficiënt (λ) afhangt van verschillende factoren zoals de filtratiesnelheid, de viscositeit, de korreldiameter, de kwaliteit van het influent, de en de verstopping in het filterbed. De filtratiecoëfficiënt wordt bepaald door middel van experimenten waarbij de afname van de concentratie over verschillende hoogten in het 1 ∂c filterbed bepaald wordt en lambda gelijk is aan: λ = − ⋅ [1/m] (13) c ∂y De filtratiecoëfficiënt is een maat voor het filtrerende vermogen. Het filtrerende vermogen is afhankelijk van de vervuilingsgraad (σ in g/m3) in het filterbed. De initiële waarde van de filtratiecoëfficiënt bij de schoonbedweerstand is niet optimaal. Indien de vervuiling in het bed toeneemt, zullen de poriën vernauwen en zal er een betere adhesieve werking van gesuspendeerde stoffen naar de eerder op de filterkorrels afgezette bacteriën en colloïdaal materiaal plaatsvinden (zie figuur 2-4).
23
λ
λ0
σv Figuur 2-4 λ - σ relatie
Naarmate de vervuiling meer toeneemt zal de snelheid in de poriën toenemen van v/p0 naar v/(p0-σv) resulterend in vermindering in afzetting en tevens kan er erosie van de reeds afgezette stoffen plaatsvinden. De filtratiecoëfficiënt zal hierdoor afnemen. Er zijn al door veel onderzoekers lambda – sigma relaties bepaald, zie tabel 2-1. Tabel 2-1 Overzicht λ - σ functies
Gesuspendeerde stoffen die achterblijven in de poriën A ⋅ v ⋅ cin ⋅ dt = A ⋅ v ⋅ cuit ⋅ dt + ∂c ⋅ ∂y ⋅ A ⋅ p + ∂σ ⋅ ∂y ⋅ A (c − cin ) ∂σ ∂c = −v ⋅ uit − p⋅ ∂t ∂y ∂t
Doordat de concentratie sterk varieert met de diepte en weinig in de tijd resulteert dit in: ∂σ ∂c = −v ⋅ ∂t ∂y
24
(14)
Als gevolg van filtratie zal er vervuiling optreden in het filterbed en zal de druk in het filter toenemen. De bedweerstand wordt dan met onderstaande formule beschreven: 2
p0 H = H0 ⋅ p0 − σ v
(15)
σv = H σv ρ
σ ρ = bedweerstand [m] = volume geaccumuleerde stoffen [m3/m3] = dichtheid [kg/m3]
Waarbij de dichtheid gelijk is aan de dichtheid van de droge stof in een vlok. Stel dat in de vlok aanwezig in het water 2% zand zit en de rest van de vlok bestaat uit water is de dichtheid die gekoppeld moet worden aan gemeten concentratie gesuspendeerde stof gelijk aan het percentage van de gesuspendeerde stof maal de dichtheid van de gesuspendeerde stof. Dus zal de dichtheid gelijk zijn aan 0.02*2650 (ρzand) = 53 kg/m3. 2.3.3. Model De basis van het model bestaat uit de set vergelijkingen afgeleidt uit de massabalans voor gesuspendeerde stoffen in het water, vergelijking (12) en (14). De verstopping als gevolg van biologische groei wordt ook via deze vergelijkingen gemodelleerd, er wordt dus geen rekening gehouden met groei en afsterving van de biomassa. Voor de filtratiecoëfficiënt wordt de filtratiecoëfficiënt van Maroudas gebruikt, waarbij de k3 vervangen is door 1/n. Dit houdt in dat de zuivering stopt wanneer de poriën met afzetting gevuld zijn tot een fractie n van de initiële porositeit.
λ = λ0 ⋅ 1 −
σ p ⋅ ρ ⋅ nmax
(16)
Aangezien de poriën door zowel fysische, biologische als chemische filtratiemechanismen kunnen verstoppen worden vergelijking (12) en (14) als volgt toegepast: Fysisch ∂cSS v ∂c v 1 = − ⋅ SS − ⋅ λ0SS ⋅ 1 − ∂t p ∂y p p0 ⋅ nmax
σ σ CaCO3 σ ⋅ SS + AOC + ρSS ρ AOC ρCaCO3
⋅ cSS
(17) ∂σ SS ∂c = −v ⋅ SS ∂t ∂y
25
Biologisch ∂c AOC v ∂c v = − ⋅ AOC − ⋅ λ0AOC ∂t p ∂y p
1 ⋅ 1 − p0 ⋅ nmax
σ σ CaCO3 σ ⋅ SS + AOC + ρSS ρ AOC ρCaCO3
⋅ c AOC
(18) ∂σ AOC ∂c = −v ⋅ AOC ∂t ∂y
Chemisch ∂cCaCO3 ∂t
=−
v ∂cCaCO3 v 1 ⋅ − ⋅ λ0CaCO ⋅ 1 − 3 p ∂y p p0 ⋅ nmax
σ σ CaCO3 σ ⋅ SS + AOC + ρSS ρ AOC ρCaCO3
⋅ cCaCO3
(19) ∂σ CaCO3 ∂t
= −v ⋅
∂cCaCO3 ∂y
Waarin λ0SS, ρSS, λ0AOC, ρAOC, λ0CaCO3 en ρCaCO3 bepaald moeten worden. De primaire dichtheden van AOC en CaCO3 zijn bekend uit de literatuur en de primaire dichtheid gesuspendeerde stof hangt af van waaruit de gesuspendeerde stof bestaat. De AOC wordt geconsumeerd en omgezet in biomassa. Door het volume aan biomassa dat gevormd wordt per gram AOC te bepalen kan de afname in AOC concentratie vertaald worden naar een volume verstopping per kubieke meter kool. De primaire dichtheid van 1 gram AOC naar m3 biomassa is bepaald in tabel 2-2. De primaire dichtheid van CaCO3 is gelijk aan 2730 kg/m3. Tabel 2-2 Omrekening 1 gram AOC naar kubieke meter biomassa
1 gram AOC = 0.8.106 ng ATP op kool (YieldBDOC , Magic-Knezev, 2006) 2.5.10-8 ng ATP op kool =1 cel (Van der Aa et al., 2006) 1 cel = 0.315.10-18 m3 biomassa (Van der Aa et al., 2006) 2.5.10-8 ng ATP op kool = 0.315.10-18 m3 biomassa 1 ng ATP op kool = (0.315.10-18/2.5.10-8) = 1.26.10-11 m3 biomassa 1 gram AOC = (0.8.106·1.26.10-11) = 1.008.10-5 m3 biomassa ρAOC = 1/1.008.10-5 gr/m3 = 99.21 kg/m3
26
3.
Analyse bestaande productieproces Weesperkarspel
Een analyse van het bestaande productieproces kan inzicht verschaffen in parameters die invloed kunnen hebben op de looptijden van de koolfilters. Allereerst is er algemeen gekeken naar de bedrijfsvoering van de koolfilters sinds de opstart. Vervolgens is het verloop van de druk in de koolfilters in de periode 2000-2005 statistisch geanalyseerd.
3.1.
Bedrijfsvoering koolfilters
De koolfilters zijn opgedeeld in twee straten, straat Noord en straat Zuid (zie figuur 3-1). Straat Noord bestaat uit de oude snelfilters die zijn omgebouwd naar koolfilters (1993) en in straat Zuid zijn nieuwe koolfilters gebouwd (1992).
13
15
17
19
21
23
25
14
16
18
20
22
24
26
1
3
5
7
9
11
2
4
6
8
10
12
ZUID
NOORD
A
Figuur 3-1 Schematisatie koolfilters Weesperkarspel De verdeling over de straten wordt geregeld met een geknepen klep (zie punt A in figuur 3-1). Het uitgangspunt is dat alle koolfilters hetzelfde debiet krijgen, waarbij er altijd 25 van de 26 filters in bedrijf zijn. De verdeling over de filters gebeurt door middel van overstorten. Tabel 3-1 Afmetingen koolfilters
KF 1-12 KF 13-26
Opp. lxb [m2]
Hoogte bed [m]
48.00 30.87
2.08 3.24
Hoogte bovenwaterstand [m] 0.7-0.9 1.3-1.46
Lineaire snelheid [m/h] 1.86-2.90 3.46-5.40
Maximale drukval [kPa] 12 20
De maximale drukval waarop gespoeld wordt is per straat verschillend. Het criterium waarop de maximale druk gebaseerd is (Ter Veen, 1991): dPmax [m] = 0.3 ⋅ bedhoogte + 1
(20)
In 1993 is het spoelcriterium van koolfilters Noord verlaagd van 16 naar 12 kPa als gevolg van de opeenhoping van gassen in het koolfilterbed. Het spoelen van de koolfilters wordt aangestuurd door de Regelwacht, dit is de centrale wacht van de drinkwatertak van Waternet. Aan de hand van de bereikte drukval in de
27
koolfilters wordt een spoelinterval ingesteld. Indien de drukopbouw van meerdere koolfilters in de buurt komt van het spoelcriterium wordt het spoelinterval naar beneden bijgesteld. Tevens is er een factor 0.6 ingesteld tussen het spoelinterval van koolfilters Zuid en koolfilters Noord, dit houdt in dat wanneer het spoelinterval bijvoorbeeld gelijk is aan 3 uur, iedere 3 uur een koolfilter in straat Zuid gespoeld wordt en iedere 5 uur een koolfilter in straat Noord gespoeld wordt. De factor is afkomstig van het verschil in spoelcriterium tussen straat Noord en straat Zuid. Tot slot is de maximale looptijd waarop gespoeld wordt in de winter gelijk aan 300 uur en in de zomer is dit gelijk aan 150 uur. In de jaarverslagen “plassenwaterleiding” zijn de gebeurtenissen die plaatsgevonden hebben omtrent de bedrijfsvoering van de productielocatie Weesperkarspel gedocumenteerd. In onderstaande figuur is een tijdlijn weergegeven waarin de belangrijkste gebeurtenissen die invloed hebben op de koolfilters zijn opgenomen. De drukopbouw kan veroorzaakt worden door de accumulatie van gesuspendeerde stoffen, algen, biologische groei, carry-over afkomstig van de ontharding en ontgassing. 30/6/92
3 1993 - 1996 13/3/92
8/6/93
1
5
1993 1992
1998 - 2003
Looptijd zomer 100-150 uur Looptijd winter 250-300 uur
1994
May 93
4
1995
1996
Dec 96
Dec 97
6
8
1997
1998
Looptijd zomer 100-150 uur Looptijd winter 250-300 uur
1999
2000
2001
2002
2/4/03
9
2003
2004
Aug 97
2005 2005
7
1992 - 1992 verhoogde troebeling May-92
2
Figuur 3-2 Tijdlijn gebeurtenissen productielocatie Weesperkarpsel 1. 13/3/1992 2. mei 1992 3. 4. 5. 6. 7. 8.
23/7/1992 mei 1993 8/6/1993 eind 1996 zomer 1997 eind 1997
9. 2/4/2003
3.2.
eerste koolfilter is in bedrijf genomen looptijden koolfilters zijn verkort tot 24 uur als gevolg van verhoogde troebeling door slecht werkende ontharders. alle 14 koolfilters straat zuid zijn gevuld bruto ozondosering gaat bij T>12 °C terug van 2.2 naar 1.7 mg O3/l alle 12 koolfilters straat noord zijn gevuld er is een geleidelijke stijging DOC (± 1mg/l) waargenomen zuurstofconcentratie effluent bereikt dieptepunt (1-2 mg/l) de ijzer dosering is verhoogd waardoor de DOC concentratie weer terug naar het normale niveau is. de bufferbak op vestiging Weesperkarspel is uit bedrijf genomen
Analyse verschildrukken
Vanaf het jaar 2000 zijn voor de koolfilters de drukgegevens per koolfilter, de debieten per straat en de temperatuur van het water opgeslagen in de Process Informationdatabase (PI-database). Vanwege de beperkingen in de grootte van de database zijn de daggemiddelden opgeslagen. Statistische analyses zijn uitgevoerd om aan te tonen of er significante verschillen in het verloop van de drukken zit en zo de werking van de koolfilters te analyseren. Er wordt een vergelijking van de drukopbouw van de verschillende koolfilters onderling en een vergelijking van het verloop van de druk over de periode 2000-2005 gemaakt.
28
De drukopbouw in een koolfilter is afhankelijk van de waterkwaliteit (gesuspendeerde stoffen, CaCO3, algen), de biologische activiteit, de temperatuur, korrelgrootte, bedhoogte, oppervlaktebelasting en ontgassing. Indien de koolfilters aan dezelfde kant (even of oneven kant) van een straat liggen, gevuld zijn met hetzelfde type kool en een gelijke standtijd hebben, kunnen ze in dezelfde periode met elkaar vergeleken worden aangezien ook het spoelinterval hetzelfde is voor de koolfilters. In tabel 3-2 is aangegeven welk filter gevuld is met welk type kool en hoe vaak het filterbed geregenereerd is. Tabel 3-2 Type kool en aantal reactivaties per koolfilter op 31 december 2005 Straat oneven Type kool – Aantal reactivaties Norit – 3x Norit – 1x Norit – 0x Chemviron – 8x Chemviron – 6x Chemviron – 7x
KF nr 1 3 5 7 9 11
noord KF nr 2 4 6 8 10 12
even Type kool – Aantal reactivaties Chemviron – 9x Chemviron – 7x Norit – 2x Chemviron – 8x Chemviron – 8x Chemviron – 8x
KF nr 13 15 17 19 21 23 25
Straat oneven Type kool – Aantal reactivaties Chemviron – 8x Chemviron – 3x Norit – 3x Norit – 3x Chemviron – 9x Chemviron – 8x Chemviron – 7x
zuid KF nr 14 16 18 20 22 24 26
even Type kool – Aantal reactivaties Norit – 3x Chemviron – 7x Chemviron – 7x Norit – 0x Chemviron – 8x Chemviron – 8x Chemviron – 7x
3.2.1. Vergelijking koolfilters onderling op hetzelfde tijdstip Om de koolfilters op hetzelfde tijdstip met elkaar te kunnen vergelijken moeten allereerst de geschikte perioden geselecteerd worden. Aangezien het na regeneratie tot 8 maanden duurt voordat de biomassa volledig ontwikkeld is (Van der Aa et al., 2006), zijn de perioden geselecteerd waarvoor geldt dat het laatst geregenereerde koolfilter minimaal 8 maanden in bedrijf is tot aan dat het eerst volgende koolfilter weer geregenereerd wordt, zie figuur 3-3. In bijlage A is per straat, even of oneven koolfilternummer en type kool de drukopbouw uitgezet tegen de tijd. geselecteerde perioden KF7
14
KF9
KF11
12
druk [kPa]
10 8 6 4 2 0 1-1-2000
31-12-2000
regeneratie KF’s
31-12-2001
31-12-2002 datum [dd-mm-jjjj]
31-12-2003
30-12-2004
Figuur 3-3 Drukverloop KF 7, KF 9 en KF 11 over de periode 2000-2004
In figuur 3-4 is ingezoomd op verloop van de druk gedurende de eerste geselecteerde periode uitgezet tegen de tijd.
29
12 10
druk [kPa]
8 6 4 2 0 11-01-01
11-02-01
14-03-01
14-04-01
15-05-01
15-06-01
datum [dd-mm-jj] KF7
KF9
KF11
Figuur 3-4 Drukverloop KF 7, 9 en 11 gevuld met Chemviron F300 kool van 11/1-7/7 2001 (periode 1)
Ondanks het uitgangspunt dat de condities van de koolfilters gelijk zijn, zijn er toch verschillen in de drukopbouw zichtbaar. Of deze verschillen ook daadwerkelijk significant zijn is bepaald door de datasets te analyseren met behulp van het statistische software programma SPSS. Alvorens de statistische analyse uitgevoerd kan worden, moet eerst bepaald worden welke statistische toets het beste toepasbaar is voor de type dataset. Statistische toetsen zijn onder te verdelen in parametrische en non-parametrische toetsen, waarbij de vorm bepalend is. Indien er sprake is van een normale verdeling van de dataset, kan een parametrische toets toegepast worden, in alle andere gevallen dienen de nonparametrische toetsen toegepast te worden. Een normale verdeling is een kansverdeling met een asymptotisch gedrag, waarbij de kansdichtheid in het midden hoog is en naar de lage en hoge waarden steeds kleiner wordt zonder ooit echt nul te worden, zie figuur 3-5.
Figuur 3-5 Standaard normale verdeling Of een dataset normaal verdeeld is kan bepaald worden met de Kolmogorov-Smirnov toets (K-S toets). De K-S toets vergelijkt de empirische distributiefunctie van een normale verdeling met de cumulatieve distributiefunctie van de dataset. Indien de asymptotische significantie (tweezijdig), die volgt uit de toets, groter is dan 0.05 kan met een betrouwbaarheid van 95% gesteld worden dat de verdeling van de steekproef niet
30
significant verschilt van de mathematische normale verdeling. Er is dus sprake van een normale verdeling. In figuur 3-6 staan de resultaten van de K-S toets uitgevoerd voor KF 7 in de vier geselecteerde perioden. Voor de resultaten van de toest van een normale verdeling van de koolfilters 9 en 11 wordt verwezen naar bijlage A. One-Sample Kolmogorov-Smirnov Test
Koolfilter nr N Normal Parameters a,b Most Extreme Differences
Mean Std. Deviation Absolute Positive Negative
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF71 178 3,0940 1,91626 ,249 ,249 -,198 3,327 ,000
KF72 181 2,5760 1,64240 ,213 ,213 -,196 2,861 ,000
Periode nr KF73 126 2,2088 ,32842 ,093 ,093 -,061 1,047 ,223
KF74 87 2,1166 1,53880 ,322 ,322 -,219 3,007 ,000
a. Test distribution is Normal. b. Calculated from data.
Figuur 3-6 Resultaten K-S toets controle normale verdeling KF 7 In de eerste kolom staan de gemeten parameters, waarbij N staat voor de grootte van de dataset. In de tweede kolom staan de resultaten van KF 7 voor de eerste periode. Deze periode bevat 178 meting, het gemiddelde van de dataset is gelijk aan 3.09 kPa met een standaard deviatie van 1.92. De asymptotische significantie is gelijk aan 0.000 dit is kleiner dan 0.05, er is dus geen sprake van een normale verdeling. In kolom 3 staan de resultaten van de 2de periode en zo verder tot kolom 5 waar de resultaten van de 4de perioden staan. De asymptotische significantie is alleen in periode 3 groter dan 0.05. Voor de overige perioden geldt dat er dus een non-parametrische toets toegepast moet worden. De volgende non-parametrische toetsen zijn beschikbaar voor het vergelijken van twee datasets: Binomiaal-toest. Een toetsingsmethode voor één variabele waarvan de scores dichotoom (in tweeën gesplitst zijn), bijvoorbeeld ja – nee, man – vrouw. Het doel van de test is om te bepalen in hoeverre de verdeling tussen de 2 categorieën overeenkomt met een bepaalde verwachte verhouding tussen de categorieën. Teken toets en Wilcoxon Signed Rank toets. Zijn alleen te gebruiken indien er twee variabelen zijn die gemeten zijn op dezelfde meetschaal en in dezelfde meeteenheid, tenminste ordinaal zijn en waarvan de scores gematcht, gepaard of gekoppeld zijn (afhankelijke steekproeven). Mann-Whitney U toets. Bepaalt of het verschil in de mediaan tussen twee distributies significant is én of er een verschil zit in de scoreverdeling tussen de twee onafhankelijke groepen. De Mann-Whitney U toets gaat uit van onafhankelijke steekproeven gemeten op minstens ordinale schaal zodat een verschilgrootte aangegeven kan worden. De test is te gebruiken bij steekproeven vanaf een omvang van n>= 6 (http://www.euronet.nl/users/warnar/demosttistiek/stat/mwutwo.htm). De drukmetingen in de koolfilters zijn onafhankelijk van elkaar, daarom wordt de MannWhitney U toets wordt gebruikt voor verdere analyse van de drukmetingen. De Mann-Whitney U toets berekent uit de waarde van elke drukmeting een rangwaarde. Allereerst worden de waarden van de drukmetingen gerangschikt van klein naar groot, waarna per groep gekeken wordt naar de plek in de rangschikking de waarden uit de
31
groep staan. Indien er gelijke waarden aanwezig zijn wordt de plek in het midden gekozen van de twee, dus stel dat de waarden op de 3de en 4de plek zijn dan wordt 3.5 toegekend. Als voorbeeld worden de eerste 5 drukmetingen van KF 7 in periode 1 en de eerste 5 drukmetingen van KF 9 in periode 2 genomen. Tabel 3-3 Voorbeeld dataset
KF 71 8.06 9.90 8.94 2.37 2.83
KF 91 2.66 2.73 2.83 3.40 5.05
Gerangschikt van klein naar groot en daaraan toegekend de plaatsnummer wordt de rang van de sommen gelijk aan: Tabel 3-4 Voorbeeld rangschikking dataset
Waarden ↓ 2.37 2.66 2.73 2.83 2.83 3.40 5.05 8.06 8.94 9.90
KF nr. KF 71 KF 91 KF 91 KF 71 KF 91 KF 91 KF 91 KF 71 KF 71 KF 71 Totaal
KF 71 1
KF 91 2 3
4.5 4.5 6 7 8 9 10 32.5
22.5
Voor KF 7 in de eerste periode is de som van de rangen gelijk aan 32.5, de som van de rangen voor KF 9 in de eerste periode is gelijk aan 22.5. Bovenstaande output is op dezelfde manier in SPSS berekend en wordt in figuur 3-7 weergegeven. De gemiddelde rang is gelijk aan de som van de rang gedeeld het aantal metingen in de dataset. Ranks VAR00001
VAR00002 71,00 91,00 Total
N 5 5 10
Mean Rank 6,50 4,50
Sum of Ranks 32,50 22,50
Figuur 3-7 Output SPSS voorbeeld berekening
De kleinste som van de rangen wordt vervolgens gebruikt om de U-statistiek van de Mann Whitney U test uit te rekenen met formule (20).
32
U =R−
R n
n ( n + 1)
(21)
2
= kleinste som van de rangen = grootte van de dataset
Test Statisticsb Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed) Exact Sig. [2*(1-tailed Sig.)]
VAR00001 7,500 22,500 -1,048 ,295 a
,310
a. Not corrected for ties. b. Grouping Variable: VAR00002
Figuur 3-8 Resultaten voorbeeld SPSS
De resultaten van een vergelijking van de drukken in KF 7, 9 en 11 met behulp van de Mann-Whitney U toets gedurende de eerste geselecteerde periode staan in figuur 3-9 tot en met figuur 3-11. Test Statistics a
Ranks KF7911
groep 71 91 Total
N 178 178 356
Mean Rank 197,60 159,40
Sum of Ranks 35172,00 28374,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 12443,000 28374,000 -3,501 ,000
a. Grouping Variable: groep e
Figuur 3-9 Vergelijking KF 7 & 9 (1 periode) met de Mann-Whitney U toets Koolfilter nr.
Periode nr. Ranks
KF7911
groep 91 111 Total
N 178 178 356
Mean Rank 226,25 130,75
Test Statistics a
Sum of Ranks 40273,00 23273,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 7342,000 23273,000 -8,755 ,000
a. Grouping Variable: groep
Figuur 3-10 Vergelijking KF 9 & 11 (1e periode) met de Mann-Whitney U toets
Test Statistics a
Ranks KF7911
groep 71 111 Total
N 178 178 356
Mean Rank 240,39 116,61
Sum of Ranks 42789,00 20757,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 4826,000 20757,000 -11,347 ,000
a. Grouping Variable: groep
Figuur 3-11 Vergelijking KF 7& 11 (1e periode) met de Mann-Whitney U toets
33
De NUL-hypothese van de Mann-Whitney U test is: De medianen van de twee testgroepen zijn gelijk. Er is geen verschil tussen de scoreverdeling van de testgroepen. Bij een betrouwbaarheidsinterval van 95% geldt dat indien de asymptotische significantie groter is dan 0.05 de NUL-hypothese aanvaard moet worden, er is dan geen statisch bewijsbaar verschil. Bij de vergelijking van de drukken in KF 7, 9 en 11 gedurende de eerste periode is de asymptotische significantie altijd kleiner dan 0.05. Ondanks dat gesteld is dat de beginvoorwaarden gelijk zijn, verschillen de drukken van KF 7, 9 en 11 in de eerste periode, met een betrouwbaarheid van 95% toch significant. De resultaten van een vergelijking van de drukken in KF 7, 9 en 11 van de tweede tot en met de vierde geselecteerde periode zijn samengevat in tabel 3-5 tot en met tabel 3-7, voor de orginele output van SPSS wordt verwezen naar bijlage 1. Tabel 3-5 Asymptotische significantie Mann-Whitney U test vergelijking drukken KF 7, 9 en 11 tijdens 2de geselecteerde periode
KF 7 KF 7 KF 9 KF 11
0.343 0.042
KF 9 0.343
KF 11 0.042 0.005
0.005
asymptotische significantie > 0.05, drukken zijn hetzelfde Tabel 3-6 Asymptotische significantie Mann-Whitney U test vergelijking drukken KF 7, 9 en 11 tijdens 3de geselecteerde periode
KF 7 KF 7 KF 9 KF 11
0.000 0.000
KF 9 0.000
KF 11 0.000 0.943
0.943
Tabel 3-7 Asymptotische significantie Mann-Whitney U test vergelijking drukken KF 7, 9 en 11 tijdens 4de geselecteerde periode
KF 7 KF 7 KF 9 KF 11
0.000 0.000
KF 9 0.000
KF 11 0.014 0.000
0.014
De drukken zijn alleen vergelijkbaar in KF 7 en 9 gedurende de 2de geselecteerde periode en in KF 9 en 11 gedurende de 3de geselecteerde periode. De statistische analyse, met behulp van de Mann-Whitney U test, van de drukken in de koolfilters aan de even kant van straat Noord en de koolfilters in straat Zuid zijn opgenomen in bijlage 1. De resultaten laten zien dat voor geen enkele geselecteerde periode de drukopbouw van alle koolfilters hetzelfde is. Er zitten altijd combinaties tussen die significant verschillend zijn. De druk in de koolfilters is afhankelijk van de samenstelling van het influent, de oppervlaktebelasting, temperatuur, de initiële porositeit, de bedhoogte en de korrelgrootte. De samenstelling van het influent en de temperatuur zijn gedurende de
34
perioden dat de koolfilters vergeleken zijn voor alle filters hetzelfde. De initiële porositeit, de bedhoogte en de korrelgrootte kunnen een paar procent afwijken. Voor de debietverdeling geldt dat deze geregeld wordt via overstorten. Er moet verder uitgezocht worden of er sprake is van een verschil in debiet per koolfilter dat de significante verschillen tussen de gemeten drukken in de koolfilters onderling kan verklaren. 3.2.2. Invloed veranderingen door de jaren heen op de drukken in de koolfilters De grootste verandering die in de periode 2000-2005 heeft plaatsgevonden is het sluiten van de bufferbak op Weesperkarspel op 2 april 2003. Als gevolg van het sluiten van de bufferbak kan de hoeveelheid algen gemeten in het influent van de koolfilters afgenomen zijn. De fytoplanktontotaaltellingen zijn in figuur 3-12 weergegeven. Sinds 2002 worden de blauwalgen per cel geteld en niet meer per kolonie, dit heeft invloed op de totaal aantal getelde blauwalgen en dus ook op de fytoplanktontotaaltellingen. Een vergelijking tussen de fytoplanktontotaaltellingen kan dus alleen gemaakt worden van de periode 2002-april 2003 en na april 2003. Gevolg hiervan is dat de dataset sterk gereduceerd wordt hierdoor. Het aantal is wel nog groter dan 6.
25
1400
1200
aantal / liter
1000 15
800
600
10
400 5
temperatuur (graden Celcius)
20
200
0 0 28-08-99 15-03-00 01-10-00 19-04-01 05-11-01 24-05-02 10-12-02 28-06-03 14-01-04 01-08-04 17-02-05 05-09-05 Invoer tellen per cel ipv kolonie
datum [dd-m m -jj] fyto-totaal
Sluiting bufferplas
temperatuur
Figuur 3-12 Fytoplanktontotaaltellingen in influent koolfilters Toepassing van de K-S toets op de dataset laat zien dat de dataset niet normaal verdeeld is, voor verdere statische analyse wordt wederom de Mann-Whitney U test toegepast, zie figuur 3-13.
35
Ranks n/l
groepfytototaal 1 2 Total
N 14 18 32
Mean Rank 16,61 16,42
Sum of Ranks 232,50 295,50
Test Statisticsb Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed) Exact Sig. [2*(1-tailed Sig.)]
n/l 124,500 295,500 -,057 ,955 a
,955
a. Not corrected for ties. b. Grouping Variable: groepfytototaal
Figuur 3-13 Mann-Whitney U test voor vergelijking algentellingen influent koolfilters voor en na sluiten bufferplas
De fytoplanktontotaaltellingen in het influent van de koolfilters zijn niet significant veranderd. Omdat de koolfilters op een ingesteld interval, dat varieert in de tijd, gespoeld worden is er geen constante factor die het mogelijk maakt de drukken in de koolfilters voor verschillende perioden met elkaar te vergelijken. Om toch een indruk te krijgen van de drukopbouw in de koolfilters in de periode 2000-2005 is de kortst voorgekomen looptijd tussen twee spoelingen bepaald. Voor koolfilter 26 is de kortste looptijd gelijk aan 3 dagen en zijn de drukken behorende bij een looptijd van 3 dagen uitgezet over de periode 2000-2005 in figuur 3-14.
20 18
drukopbouw [kPa]
16 14 12 10 8 6 4 2 0 1-01-00
31-12-00
31-12-01
31-12-02
31-12-03
30-12-04
datum [dd-mm-jj]
Figuur 3-14 Drukopbouw bij een looptijd van 3 dagen in KF 26 in de periode 2000-2005
36
Het lijkt erop dat de opgebouwde druk vanaf begin 2003 begint af te nemen. Uit de Mann-Whitney U test blijkt dat de drukken voor en na eind 2002 daadwerkelijk significant verschillend zijn, zie figuur 3-15. Test Statisticsa V3 Mann-Whitney U 4468,000 Wilcoxon W 15793,000 Z -10,295 Asymp. Sig. (2-tailed) ,000 a. Grouping Variable: V4
Figuur 3-15 Vergelijking druk KF 26 voor en na eind 2002
Analyse van de temperatuur voor en na eind 2002 laat zien dat deze ook niet significant verschilt (zie figuur 3-16).
Test Statisticsa Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
Temp. 394982,5 662528,5 -,507 ,612
a. Grouping Variable: V3
Figuur 3-16 Vergelijking temperatuur voor en na eind 2002 Uit analyse van het debiet in de periode voor een na sluiten van de bufferplas blijkt dat deze wel significant verschilt, zie figuur 3-17. Het debiet is afgenomen over de jaren. Gegevens over de waterkwaliteit zijn verder niet geanalyseerd. Test Statisticsa Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
Kfzuid 330388,5 597934,5 -6,354 ,000
a. Grouping Variable: V4
Figuur 3-17 Vergelijking debiet voor en na eind 2002
De oorzaak van de afname van de drukopbouw in de koolfilters is uit de beschikbare data niet te achterhalen. Verder onderzoek naar verschillende factoren (zoals algen, biologische groei, ontgassing, carry-over of na-ontharding) die de drukopbouw in het koolfilter kunnen beïnvloeden kunnen hier uitsluitsel over geven.
37
3.3.
Conclusies
Ondanks dat de beginvoorwaarden voor de koolfilters in eenzelfde perioden gelijk zijn, zijn er significante verschillen in de drukopbouw tussen de verschillende koolfilters waarneembaar. De drukopbouw is afhankelijk van de samenstelling van het water, de temperatuur, de initiële porositeit, de korrelgrootte en de oppervlaktebelasting. De samenstelling van het water en de temperatuur zijn voor eenzelfde periode gelijk. De initiële porositeit en korrelgrootte verschillen niet veel voor de verschillende koolfilters aangezien de filters gevuld zijn met hetzelfde type kool. Verschillen in de oppervlaktebelasting per koolfilter kunnen een oorzaak zijn van de gevonden verschillen in de drukopbouw. Of er sprake is van een ongelijke debietverdeling moet verder uitgezocht worden. Het sluiten van de bufferbak heeft geen meetbare invloed gehad op de fytoplanktontotaal tellingen. Terwijl de drukopbouw voor en na het sluiten van de bufferbak wel verbeterd is. De oorzaak van de verandering in drukbouw kan liggen in veel verschillende variabelen zoals debiet, biologische groei, ontgassing, carry-over of gesuspendeerde stoffen. Verder onderzoek naar deze factoren moet uitwijzen wat de invloed is op de drukopbouw in de koolfilters.
38
4.
Onderzoek hypothesen
4.1.
Introductie
Analyse van het bedrijfsvoeringproces (zie hoofdstuk 3) wijst uit dat de drukopbouw sinds de laatste jaren is afgenomen, de reden hiervoor is echter met de beschikbare data niet te achterhalen. Mogelijke oorzaken kunnen zijn verandering in waterkwaliteit (algen, gesuspendeerde stoffen, carry-over of na-ontharding), biologische groei, ontgassing en debiet. Tevens volgt uit een vergelijking van de koolfilters onderling dat er verschillen in drukopbouw waarneembaar zijn. Een mogelijke oorzaak is een onevenredige debietverdeling.
4.2.
Algen
In oppervlaktewater komen vaak algen voor, zo ook in de Waterleidingplas. Een deel van de algen worden verwijderd in de voorzuivering en deels komen ze op de koolfilters terecht. Een overzicht van soorten algen die gemeten zijn in het influent van de koolfilters is gegeven in tabel 4-1. Tabel 4-1 Fytoplankton telling [n/m3] (bron: hydrobiologie jaarverslag zuivering 2002)
Sinds 2002 worden de blauwalgen per cel geteld en niet meer per kolonie met als gevolg een vertekend beeld in de algentellingen in het jaar 2002. Blauwalgen (Cyanophyceae) Blauwalgen, ook wel cyanobacteriën genoemd, zijn problematisch vanwege het nadelig beïnvloeden van smaak en geur, het produceren van giftige stoffen en het verstoppen van filters. De algen kunnen eencellig zijn, maar ze kunnen ook kolonies of celdraden, al of niet vertakt, vormen. De cellen zijn meestal omgeven door een gelatine-achtige laag. De optimale groeiomstandigheden zijn een temperatuur tussen 20 - 30 °C, lichtarme en luwe omstandigheden en mineraalrijk water. De maximale groeisnelheid is waargenomen bij temperaturen boven de 25 °C, waarbij de blauwalgen de groeisnelheid van diatomeeën en groenalgen overtreffen.
39
Groenalgen (Chlorophyceae) Groenalgen bestaan als enkele cellen of in koloniën, bestaande uit 2 of 4 flagella’s (bijvoorbeeld Chlamydomonas zie figuur 4-1 en Volvox). De flagella’s worden gebruikt om voort te bewegen.
Figuur 4-1 Chlamydomonas (10000x)
Aangegroeide groenalgen zijn meestal draadachtig en kunnen domineren in de zomer, waar ze in eutroof water groeien. Cryptophyceae De Cryptomonas, Chroomonas en Thodomonas zijn de meest voorkomende families in deze algenklasse. Cryptophyceae zijn eencellige algen met twee flagella’s van verschillende lengten. Cryptophyceae preferen licht nutrienrijk water en zijn voornamelijk aanwezig in de winter vanwege de gevoeligheid voor lichtintensiteit. Goudalgen (Chrysophyceae) Van de goudalgen worden de Symura en Dinobryon frequent geassocieerd met smaak en geurproblemen. De meeste soorten goudalgen zijn eencellig of komen voor in koloniën en bevatten twee flagella’s van ongelijke lengte waarmee ze zich in het water kunnen voortbewegen. Goudalgen kunnen de fytoplankton bij relatief lage concentraties in de zomer domineren. In eutroof water met een pH>7.5 groeien de goudalgen slecht of zijn ze zelfs afwezig, als gevolg van de vrije CO2 behoefte van de goudalgen. Diatomeeën (Bacillariophyceae) De aanwezigheid van diatomeeën (kiezelalgen) in het ruwe water wordt meestal geassocieerd met het verstoppen van de filters en het veroorzaken van smaak en geur problemen. Veel voorkomende families van de diatomee zijn Asterionella, Cyclotella, Fragilaria, Melosira, Navicula, Synedra en Tabellaria. Diatomeeën komen voor als enkelvoudige cellen, in kettingen van cellen of in kolonies. De diatomeeën kunnen onderverdeeld worden in centrische vormen en naalden. De centrische diatomeeën hebben radiaal gearrangeerde celwand markeringen en de naalddiatomeeën hebben celwanden die symmetrisch ten opzichte van een centrale lijn zijn.
40
Figuur 4-2 links: Centrische diatomee (bv. Cyclotella), rechts: Naalddiatomee (bv. Asterionella)
In gematigde klimaten overheersen de diatomeeën in de lente, wanneer er veel nutriënten beschikbaar zijn na een periode van een lage biologische activiteit in de winter, waarbij een toenemende lichtintensiteit en daglengte de fotosynthese stimuleren. De optimale temperatuur voor de groei van diatomeeën ligt tussen de 10-20 °C. Uit onderzoek onder 96 drinkwaterbedrijven in Amerika, uitgevoerd door AWWARF blijkt dat de diatomeeën de grootste invloed hebben op de verstopping van de filterbedden (Knappe et al., 2004). De verstopping van de BAKF’s in Weesperkarspel vindt voornamelijk in het voorjaar plaats, wanneer de watertemperatuur tussen de 10 en 20°C ligt. De centrale diatomee komt het meeste voor in het influent van de koolfilters. Een diatomee-bloei in de lente kan het gevolg zijn van de verstopping.
4.3.
Bacteriegroei
Tijdens de ozonisatie stap wordt het in het water aanwezige opgelost organisch koolstof (DOC) omgezet naar makkelijker afbreekbaar organisch materiaal. Dit organische materiaal wordt deels gemeten als assimileerbaar organisch koolstof (AOC). AOC is een maat voor het organische koolstof dat gebruikt kan worden voor de microbiologische groei. In en op het kool zijn bacteriën aanwezig die zich voeden met nutriënten (AOC). Er is sprake van een positieve lineaire relatie tussen de hoeveelheid levende koloniën aanwezig in het koolfilterbed en de hoeveelheid AOC. Een toename van AOC-aanbod zorgt voor een toename van de hoeveelheid bacteriën (Hijnen en van der Kooij, 1992). Indien de ozonconcentratie verhoogd wordt zal er meer DOC omgezet worden in AOC met als gevolg dat de microbiologische activiteit zal toenemen. 4.3.1. Invloed verschillende ozondoseringen op drukval In de periode 2002 tot en met 2004 zijn er experimenten over de invloed van verschillende ozondoseringen (0, 0.5, 1.5 en 2.5 mg O3/l) op BAKF’s uitgevoerd in de proefinstallatie van Weesperkarspel. Het geozoniseerde ruwe water is na voldoende contacttijd in de ozonkontaktkolommen over de BAKF’s geleid, zie figuur 4-3 en 4-4.
41
Opbouw verschildrukken koolfilters 5-8 in de proefinstallatie 0.5 mg/l O3 1.5 mg/l O3 2.5 mg/l O3 0 mg/l O3
Verschildruk [mwk]
3.5 3 2.5 2 1.5 1 0.5 0 Feb
Mar
Apr Jaar 2002
May
Jun
May
Jun
Debieten over koolfilters 5-8 in de proefinstallatie
250
Debiet [l/h]
200 150 100 50
Feb
Mar
Apr Jaar 2002
Figuur 4-3 opbouw verschildrukken koolfilters 5-8 in de proefinstallatie in periode feb.-jun. 2002
Opbouw verschildrukken koolfilters 5-8 in de proefinstallatie
Verschildruk [mwk]
2
1.5
1
0.5
0 Jan
Feb
Mar
Apr Jaar 2004
May
Jun
Jul
Debieten over koolfilters 5-8 in de proefinstallatie 300 0.5 mg/l O3 1.5 mg/l O3 2.5 mg/l O3 0 mg/l O3
250
Debiet [l/h]
200 150 100 50 0 Jan
Feb
Mar
Apr Jaar 2004
May
Jun
Jul
Figuur 4-4 Opbouw verschildrukken koolfilters 5-8 in de proefinstallatie in periode jan-jun. 2004
In het jaar 2002 hebben de koolfilters waaraan aan het influent geen ozon of 0.5 mg/l ozon gedoseerd is, een grotere drukopbouw in een kortere periode dan de koolfilters
42
waarvan het influent is behandeld met 1.5 of 2.5 mg O3/l, terwijl er bij hogere ozondoseringen meer nutriënten beschikbaar zijn met als gevolg een hogere biologische activiteit. Het koolfilter dat voorafgegaan is aan een ozondosering van 0.5 mg/l laat de kortste looptijden zien. De looptijden eind mei, begin juni lopen sterk terug tot 3 dagen voor de filters met een ozondosering van 0 of 0.5 mg/l en 7 dagen voor de overige filters. De looptijden in het jaar 2004 zijn langer dan in dezelfde periode 2002, waarbij de minimale looptijd gelijk is aan 10 dagen. De verschildrukopbouw in de filters is vergelijkbaar.
4.4.
Gevolgen ontharding
Op Weesperkarspel wordt voor de BAKF’s ontharding met natronloog toegepast. Door een stijging van de pH zal er meer carbonaat vrijkomen, waardoor er calciumcarbonaat kan vormen, zie figuur 4-1. De mate van over- of onderverzadiging van het calciumcarbonaat wordt aangegeven door de saturatie-index (SI); Ca2+ ⋅ CO32 − SI = log Ks
Water met een positieve SI is kalkafzettend en water met een negatieve SI is kalkagressief. De SI is de drijvende kracht achter de precipitatie van CaCO3. Als richtlijn voor het distributienet en het voorkomen van scaling in warm water apparaten dient de SI kleiner te zijn dan 0.3 (KIWA-report number 100, 1988). Door zuur te doseren aan het effluent verschuift het koolzuur-evenwicht, waardoor er minder CO32- beschikbaar is en er geen kalkafzetting meer plaats zal vinden.
Figuur 4-1 Relatie tussen pH, CO2 en HCO3- en CO32(bron: De Moel et al., 2004. Pagina 191)
Carry-over is het materiaal dat uit de onthardingsreactoren spoelt en op de koolfilters terecht komt en meegenomen wordt in de gesuspendeerde stof. Een hoge troebelheid van het water kan erop duiden dat er veel carry-over in het water aanwezig is.
43
4.5.
Ongelijke debietverdeling
Uit hoofdstuk 3 blijkt dat er verschillen kunnen zitten in de debietverdeling over de filters. Om dit te achterhalen is het debiet van 2 koolfilters gelegen in straat Noord en 2 koolfilters gelegen in straat Zuid gemeten. Debietmetingen KF aan begin en einde van straat (04-10-2005)
1
2
meten: tijd en afstand
3
4
Figuur 4-5 De procedure van het experiment debietmetingen
In figuur 4-5 staat de procedure van de debietmetingen aangegeven waarbij stappen 1-4 verder worden toegelicht: 1. Het desbetreffende filter wordt “in service” gezet zodat met de hand de kleppen dicht of open gedraaid kunnen worden. 2. De toevoerklep wordt dichtgedraaid, met als gevolg dat de bovenwaterstand gaat zakken. 3. Wanneer het water laag genoeg staat wordt de afvoerklep gesloten en de toevoerklep geopend. De tijd die het water nodig heeft om een vaste afstand te stijgen wordt gemeten. 4. De proef is klaar, het filter kan weer “in bedrijf” gezet worden. Het experiment is uitgevoerd voor koolfilters Noord nummer 2 en 12, met een oppervlakte van 48 m2 en voor koolfilters Zuid nummer 14 en 26, met een oppervlakte van 30.84 m2 (voor overzicht ligging koolfilters zie figuur 3-1). De resultaten van de experimenten zijn opgenomen in tabel 4-2.
44
Tabel 4-2 Resultaten experiment debietmeting KF 2 en 12 en KF 14 en 26
KF 2 35 8:17:67 121.4
∆ h [cm] t [mm:ss:hh] Q [m3/h]
KF 12 35 7:42:18 130.9
KF 14 60 10:26:60 106.2
KF 26 60 9:16:64 119.6
Het debiet over de koolfilters gelegen aan het einde van een straat is dus hoger dan het debiet over een koolfilter dat ligt in het begin van de straat. Het verschil in debiet heeft op meerdere factoren invloed:
Schoonbedweerstand: als gevolg van de hogere oppervlaktebelasting, voor KF 12 en KF 26 zal de schoonbedweerstand van deze filters hoger zijn dan de schoonbedweerstand van KF 2 en KF 14. De berekende schoonbedweerstand van KF 26 is 11.2 % hoger dan de berekende schoonbedweerstand in KF 14. De berekende schoonbedweerstand van KF 12 is 7.3 % hoger dan de schoonbed weerstand in KF 2. De verschildrukopbouw: bij een hogere lineaire snelheid is de schoonbedweerstand (H0) hoger en ontvangt het koolfilter meer deeltjes (σv neemt toe) omdat het koolfilter meer water te verwerken krijgt in eenzelfde periode. De verschildruk opbouw zal meer dan lineair toenemen ten opzichte van het koolfilter gelegen aan het begin van de straat.
Door de overstorthoogten aan te passen kan het debiet per koolfilter geregeld worden. H0
H2
Waterpeil aanvoergoot
Bovenwaterstand koolfilter
Overstorthoogte Figuur 4-6 Schema overstort
De afvoercoëfficiënt in het geval van een perfecte overlaat is gelijk aan: Cd =
Cd QKF14 QKF26 B
Q 3 ⋅B⋅H ⋅ 3 ⋅g⋅H 0 0 2 2
= = = =
(22)
1 à 1.2 debiet = 106.2 m3/h = 0.030 m3/s 119.6 m3/h = 0.033 m3/s breedte overlaat = 3.5 m
Levert als Cd = 1; H0KF14 = 13.0 mm H0KF26 = 13.9 mm Een debietverschil van 10% resulteert in een verschil van de H0 van 0.9 mm. Dit verschil is zo klein dat aanpassen van de hoogte van de overstorten niet mogelijk is. De grote
45
breedte van de overstort is de oorzaak van dit kleine verschil. Indien uit verder onderzoek naar de invloed van een verschil in oppervlaktebelasting blijkt dat de invloed significant is, moet de breedte van de overstort aangepast worden.
4.6.
Aanwezigheid luchtbellen (Van der Aa, 2003)
Tot vóór de zomer van 2000 werden in de bovenwaters van de koolfilters Noord soms kleine gasbellen waargenomen. Sinds de zomer van 2000 wordt er intensiever op de ontgassing gelet en is dit fenomeen regelmatig waargenomen. Van februari tot april 2001 zijn de koolfilters van Weesperkarspel visueel beoordeeld op de mate van ontgassing en is een gasanalyse uitgevoerd. De resultaten van dit onderzoek laten zien dat de gasbellen nagenoeg de samenstelling van lucht hebben en dat de herkomst van de gasbellen niet direct te herleiden is. Mogelijke oorzaken Luchtlekkage spoelluchtsysteem. Het spoelluchtcircuit wordt op druk gehouden door twee hulpcompressoren. Deze zorgen er voor dat het spoelluchtcircuit tussen twee spoelingen in, op een druk van circa 0.5 bar gehouden wordt. Op deze wijze is de druk in het spoelluchtcircuit hoger dan in het filter en kan er – in geval van lekkage – geen water het spoelluchtcircuit inlopen. KF 6 en KF 10 zijn beide gespoeld op 1 juni 2001. KF 6 is vervolgens losgekoppeld van de spoelluchttoevoerleiding waarbij de ontgassing van beide filters met elkaar vergeleken is. De ontgassing in beide filters was vergelijkbaar met elkaar en met de waarnemingen in maart-april 2001. Ontgassing als gevolg van een luchtlekkage in het spoelluchtsysteem is dus uitgesloten. Gasproductie door biologische activiteit. Verschillende soorten bacteriën kunnen verschillende gassen produceren. In eerste instantie moet gedacht worden aan koolstofdioxide dat vrij kan komen bij de afbraak van organische koolstofverbindingen. Verder zouden ook stikstof resp. zwavel geproduceerd kunnen worden door denitrificerende resp. zwavelbacteriën. Het verschil in ontgassing tussen KF Noord en KF Zuid wijst niet op gasproductie door biomassa. Het vrijgekomen gas is lucht, wanneer gas door biomassa geproduceerd wordt heeft het gas een andere samenstelling. Gasproductie door biologische activiteit in de koolfilters is dus niet de oorzaak van ontgassing van KF Noord. Teruglopen van zuurstof/lucht via de effluentleiding. In het verleden is bij overmatig zuurstof doseren aan het effluent van de koolfiltratie gasophoping in de effluentleiding opgetreden. Er vormden zich zuurstofbellen in de effluentleiding. Dit uitte zich doordat de zuurstof vrijkwam uit een aantal monsterpunten. Voor de zuurstofdosering is inmiddels overgeschakeld op een ander doseersysteem. Dit systeem is veel effectiever, waardoor de bruto zuurstofdosering veel lager is. Er bevindt zich geen gas in de effluentleiding van KF Noord en het teruglopen van gas/lucht kan dus niet de oorzaak van de waargenomen ontgassing zijn. Elektrochemische reactie op het koolbed. Het vrijgekomen gas is lucht en niet een zuiver gas dat bij een elektrochemische reactie gevormd zou worden. Een elektrochemische reactie op het koolbed is niet de oorzaak van de waargenomen ontgassing. Ontgassing door onderdruk. Indien de weerstand over een deel van het filter op een bepaalde plaats groter is dan de bovenwaterstand plus de betreffende filterbeddiepte ontstaat lokaal in het filter onderdruk. In dat geval kunnen opgeloste gassen uit oplossing gaan en in gasvorm vrijkomen. Uit het lindquist-diagram van KF 1 blijkt dat er geen onderdruk optreedt terwijl er wel ontgassing wordt waargenomen.
46
Aanwezigheid van zeer kleine gasbelletjes in het influent van de koolfiltratie. Wanneer een monster van bovenwater van de koolfilters in een afgesloten fles bewaard wordt, ontstaan er binnen enkele uren kleine gasbellen aan de wand. Het lijkt erop dat het water zeer fijne gasbellen bevat die na verloop van tijd ophopen tot iets grotere bellen. De zeer fijne bellen zijn of reeds in het water aanwezig of ontstaan door ontgassing van oververzadigd water. Wanneer de gasbellen klein genoeg zijn is de stijgsnelheid van de bellen kleiner dan de oppervlaktebelasting van de koolfilters. De bellen stromen dan met het water het koolfilter in. Verondersteld wordt dat in de koolfilter de kleine gasbellen in botsing komen met koolkorrels en zich aan de korrels hechten. De gasbellen kunnen zo uitgroeien tot grotere bellen en uiteindelijk opborrelen. Het volume%-lucht wordt bepaald met behulp van een piknometer (meetinstrument om nauwkeurig de massa van een hoeveelheid vloeistof te bepalen) gevuld met bovenwater van de koolfilters. Het water op Weesperkarspel bevat door het zuiveringsproces heen circa 0.05-0.10 volume%-lucht. Duidelijk is dus dat het water door de zuivering heen lucht bevat. De meetmethode blijkt vooralsnog echter niet nauwkeurig genoeg om vast te stellen dat de koolfilters lucht afvangen en het is niet duidelijk of kleine gasbelletjes de ontgassing in KF Noord veroorzaken. De aanwezigheid van zeer kleine gasbellen en een sterke afname van de druk zouden samen de oorzaak kunnen zijn voor de ontgassing. Dit dient verder uitgezocht te worden.
Effecten Door de gasophoping in de koolfilters wordt de doorsnede die voor het water beschikbaar blijft kleiner. De werkelijke stroomsnelheid in de filters wordt dus groter, wat weer invloed heeft op de bedweerstand en de looptijd van de filters.
47
48
5.
Experimenten
5.1.
Introductie
De opzet van de experimenten is erop gericht te achterhalen welke hypothesen of een combinatie van de hypothesen, genoemd in hoofdstuk 4, verantwoordelijk zijn voor de verstopping van de BAKF’s. De experimenten van de procestechnische variabelen richten zich op de ontwikkeling van biomassa als gevolg van het doseren van ozon en de gevolgen van de ontharding, naar de invloed van algen wordt niet gekeken. De experimenten van de ontwerptechnische variabelen richten zich op de invloed van snelheidsvariaties en de gevolgen van luchtopeenhoping in het koolfilterbed.
5.2.
Experimenten procestechnische variabelen
De procestechnische variabelen zijn de variabelen die te maken hebben met het productieproces. Allereerst de aanwezigheid van algen in de bufferplas, vervolgens de vorming van nutrienten gedurende de ozonisatie en tot slot carry-over afkomstig van de ontharders. Resultaten van reeds eerder uitgevoerde experimenten in de proefinstallatie van Weesperkarspel (zie resultaten paragraaf 4.3.1) laten zien dat een verhoogde ozonconcentratie niet resulteert in een additionele verstopping, maar juist resulteert in een lagere of vergelijkbare drukopbouw ten opzichte van koolfilters waaraan lage ozondoseringen vooraf gegaan zijn. Daarom zal de invloed van verschillende ozondoseringen niet naast elkaar worden meegenomen gedurende deze experimenten. Het effect van de combinatie van ozon en ontharding op verstopping van de BAKF’s is nog niet eerder onderzocht en wordt meegenomen in de opzet van de experimenten. 5.2.1. Opstelling Er zijn 3 instellingen getest, met elk een looptijd van 3 weken. Er is gebruik gemaakt van koolkolommen 1 t/m 4 van de proefinstallatie te Weesperkarspel, waarbij koolkolom 4 dient als referentie met de bedrijfssituatie en dus bedrijfswater ontvangt. De instellingen van het debiet, de maximale drukval en de gewenste bedhoogte zijn afgeleid van de bedrijfssituatie van de koolfilters in straat Zuid, omdat de koolfilters in straat Zuid sneller verstoppen dan de koolfilters in straat Noord en de bedhoogte van de koolfilters in straat Zuid hoger is met als gevolg dat de bovenwaterstand (die afhankelijk is van de bedhoogte omdat de overstort op 5.6 m zit) minder hoog is, dus Zuid beter te benaderen is dan noord. Hydraulische gegevens koolfilters straat Zuid: oppervlaktebelasting = 3.89 m/h, bovenwaterstand (bws) = 1.3 m, bedhoogte = 3.2 m. Hydraulische gegevens (per koolfilter) voor koolfilters 1-4 van de proefinstallatie (een schematisch overzicht is weergegeven in bijlage B): oppervlakte = 0.43 m2, oppervlaktebelasting = 3.89 m/h, spoelcriterium (= spoel criterium koolfilters zuid): maximale weerstand = 20 kPa, bedhoogte = 3.2 m, hoeveelheid kool = 1.38 m3, bovenwaterstand = 2.5 m. Van de gestelde hypothesen wordt de invloed van de ontharding (carry-over, kalkafzettend of kalkaggresief water) in combinatie met ozon onderzocht. Het doel was de ozondosering te variëren van geen ozon, naar een ozonconcentratie die gelijk is aan de ozonconcentratie in het bedrijf (1.9 mg/l) en een hoge ozonconcentratie van 3 mg/l. Echter is gedurende de experimenten de ozongenerator problemen gaan vertonen waardoor er gedurende de laatste instelling in plaats van 3 mg/l er nog maar een
49
gemiddelde van 1.8 mg/l gehaald is. In figuur 5-1 is een schematisch overzicht gegeven van behandeling van het influent per straat. Behandeling per straat HCldosering
Ruwwater
Ruwwater
Ruwwater
O3
OH
straat 1
straat 1
O3
OH
straat 1
straat 1
BAKF 1
BAKF 2
O3
BAKF 3
straat 1
Ruwwater
O3
OH
bedrijf
bedrijf
BAKF 4
Figuur 5-1 Behandeling influent koolfilters per straat
In tabel 5-1 is een overzicht gegeven van de gehaalde instellingen per koolkolom gedurende de experimenten. Tabel 5-1 Overzicht gerealiseerde instellingen koolproeven (RW = ruwwater, OH = ontharding)
Instelling 1 Instelling 2
Instelling 3
Kolom 1
Kolom 2
Kolom 3
Kolom 4 (referentiekolom= bedrijfswater)
RW+OH+zuur (SI=-0.2) RW+O3 (1.9mg/l) +OH+zuur (SI=-0.12)
RW+OH (SI=0.45) RW+O3 (1.9 mg/l) +OH (SI=0.55)
RW
RW+O3 (2.4 mg/l) +OH (SI=-0.05) RW+O3 (1.9 mg/l) +OH (SI=0.15)
RW+O3 (1.8mg/l) +OH+zuur (SI=-0.1)
RW+O3 (1.8 mg/l)+OH (SI=0.8)
RW+O3 (1.8 mg/l)
RW+O3 (1.9 mg/l)
RW+O3 (2.4 mg/l) +OH (SI=-0.05)
Er wordt gespoeld op drukval (20 kPa = spoelcriterium KF straat zuid). Als de maximale drukval nog niet bereikt is gedurende de drie weken is de proef beëindigd. Het kool is afkomstig uit een bedrijfskoolfilter dat een looptijd heeft van anderhalf jaar, er is dus voldoende biomassa aanwezig op het kool en er is sprake van volledige doorslag van NOM, de filters hebben geen inlooptijd nodig. Om de begintoestand van de koolbedden vast te leggen is een zeefanalyse van de toplaag en bodem van de koolfilters gemaakt en is de ATP op kool bepaald als maat voor de hoeveelheid aanwezige actieve biomassa (zie tabel 5-2).
50
Tabel 5-2 Begintoestand koolfilterbedden
Schoonbedweerstand [m] ATP op kool [ng/g kool] Zeefanalyse toplaag d10 [mm] Zeefanalyse bodem d10 [mm]
KF 1 0.25 340 0.64 0.92
KF 2 0.26 330 0.71 0.91
KF 3 0.25 290 0.77 0.90
KF 4 0.27 260 0.71 0.98
De verschillen in fractiegrootte in de toplaag tussen de koolfilterbedden loopt op tot 20%, waarbij koolfilter 1 de kleinste fracties bevat. De verschillen in fractiegrootte van de bodem is niet meer dan 10%. De schoonbedweerstand is echter vergelijkbaar voor de vier koolfilters dus de verschillen in korrelgrootte hebben waarschijnlijk niet veel invloed. De actieve biomassa is van dezelfde orde grootte voor de vier koolfilters. 5.2.2. Gebruikte metingen Gedurende de experimenten is gebruik gemaakt van drukmeters van het type WIKA Tronic Line met een meetbereik van 0-0.4 bar, welke zijn aangebracht op 20 en 120 cm onder de bovenkant van het filterbed. Het mili-ampère signaal (4-20 mA) van de drukmeters wordt omgezet naar een Volt-signaal door middel van weerstanden. Dit voltsignaal wordt door een NI-USB6008 module gelogd in het VI Logger programma van Nationale Instruments. In dit programma wordt het volt-signaal omgezet in meetwaarden. De gemeten waarden zijn gecorrigeerd voor afwijkingen in de weerstanden. Iedere seconde wordt een waarde gelogd. De output is een tekstbestand welke verder is verwerkt in Matlab® en Excel®. Door middel van titratie met EDTA is de totale hardheid bepaald en door titratie met HCloplossing (0.1M) is het m-getal bepaald. Voor deze metingen is de Applikon analyzer type ADI 2040 gebruikt. De totale hardheid en het m-getal zijn telkens in tweevoud bepaald. De standaarddeviatie van de totale hardheid over 200 waarnemingen = 2.5 mg/l (equivalent Calcium). Er zijn twee deeltjestellers van het type MetOne PCX gebruikt. Het principe van de deeltjesteller is dat het influent door een versmalling naar een waarnemingsvolume stroomt, welke zich tussen de laser en de fotodiode bevindt. De versmalling is aanwezig om ervoor te zorgen dat deeltjes één voor één het waarnemingsvolume passeren. Indien een deeltje het waarnemingsvolume passeert zal dit de laserstraal blokkeren, met als gevolg dat de lichtintensiteit afneemt. De afname van lichtintensiteit wordt door de fotodiode geregistreerd. De verminderde lichtenergie wordt door de fotodiode omgezet in een spanningsimpuls (mV). In de software wordt deze impuls vervolgens omgezet in een deeltjesgrootte. Gedurende de experimenten zijn de deeltjestellers ingedeeld in grootten van 1-2,2-3,3-4,.....30-31 en >31 micrometer. In de optimale situatie is het doorstroomd volume gelijk aan 100 ml/min. De cyclus van meten en registreren is ingesteld op 2 minuten. Bij de berekening van het aantal deeltjes gaat de deeltjesteller uit van een doorstroomd volume van 40 ml. Dit komt overeen met een monstername tijd van 24 sec en een wachttijd van 96 seconden. Het werkelijk doorstroomd volume kan bepaald worden door de deeltjesteller uit te literen. Dit uitliteren gebeurt aan het begin en einde van een meting. Het aantal getelde deeltjes moet gecorrigeerd worden voor het werkelijk doorstroomde volume. De gemeten deeltjes kunnen vervolgens naar volumes omgezet worden door aan te nemen dat de getelde deeltjes bolvormig zijn. Om het gewicht van de deeltjes aanwezig in het water (influent en effluent koolfilters) te kunnen bepalen is gebruik gemaakt van twee TILVS-en. De TILVS (Time Integrated Large Volume Sampling) bestaat uit een pomp met een capaciteit van 0.5 tot 4.5 l/h, welke het water, met een constant debiet, over een filtratie systeem leidt. Er is gebruik
51
gemaakt van 0.45 µm cellulose acetaat membraan filters. Alvorens de filters gebruikt kunnen worden, worden deze voorgespoeld met 100 ml gedemineraliseerd water. Vervolgens wordt het filter gedroogd in een oven voor minimaal 2 uur bij een temperatuur van 105 °C. Hierna wordt het startgewicht bepaald. Na afloop van de proef wordt het filter wederom bij een temperatuur van 105 °C voor minimaal 2 uur gedroogd. De toename in gewicht is een maat voor de gesuspendeerde stof aanwezig in het water. De looptijd van de proef bepaalt het volume dat gefiltreerd is. Tot slot zijn door Het Waterlaboratium monsters genomen waarvan de ozon concentratie in gas en water, de troebelheid, DOC, AOC, opgelost ijzer, calcium, magnesium, koolzuur-evenwicht, gesuspendeerde stoffen, chlorofyl-a en totaal fosfaat zijn bepaald. Het meetprogramma met de gemeten waarden is opgenomen in bijlage C.
5.3.
Experimenten ontwerptechnische variabelen
De ontwerptechnische variabelen zijn de variabelen die te maken hebben met mogelijke verbeteringen in het ontwerp van de koolfilters. Zoals het verschil in debiet over een koolfilter gelegen aan het begin van de straat en aan het einde als gevolg van onjuiste overstorthoogten. Ook de invloed van de aanwezigheid van lucht in de koolbedden op de looptijd wordt nader onderzocht. 5.3.1. Opstelling Er is gebruik gemaakt van koolkolommen 5 tot en met 8 van de proefinstallatie te Weesperkarspel. De kolommen worden gevoed door bedrijfswater afkomstig van de ontharders (=influent bedrijfskoolfilters). Hydraulische gegevens (per koolfilter) voor koolfilters 5-8 van de proefinstallatie; oppervlakte = 0.049 m2 bedhoogte = 2.1 m bovenwaterstand = 0.4 tot 1.3 m
1.3 m
0.4 m
0 .8 m
BAKF 6
BAKF 7
0.8 m
2. 1 m
Water bedrijf: Ruwwwater + O 3+ontharders
BAKF 5
Figuur 5-2 Opstelling proeven proefinstallatie KF 5-8
52
BAKF 8
Het doel was om 3 instellingen te testen, met de aangepaste bovenwaterstand volgens figuur 5-3, en de snelheid per instelling te variëren. Echter al tijdens de eerste instelling bleek dat na al anderhalve week er niet meer genoeg debiet door koolfilter 7 en 5 ging. Omdat deze koolfilters de hoogste bovenwaterstand hebben en dus het grootste beschikbare energieverlies hebben zijn er vraagtekens bij de juistheid van de metingen gesteld met als gevolg dat dezelfde instelling herhaald is. Tot slot zijn de koolfilters ter controlle op dezelfde manier bedreven om eventuele verschillen tussen de koolfilterbedden te ontdekken. Tabel 5-3 Gerealiseerde instellingen KF 5-8 van de proefinstallatie
Instelling 1 Instelling 2 Instelling 3
Kolom 5 referentie KF Zuid v=4 m/h, bws = 1.3 m v=4 m/h, bws = 1.3 m v=4 m/h, bws = 1.9 m
Kolom 6
Kolom 7
v=4 m/h, bws=0.4 m v=4 m/h, bws = 0.4 m v=4 m/h, bws=1.9 m
v=4 m/h, bws=0.8 m v=4 m/h, bws = 0.8 m v=4 m/h, bws=1.9 m
Kolom 8 referentie KF Noord v = 2.5 m/h, bws= 0.8 m v= 2.5 m/h, bws = 0.8 m v = 2.5 m/h, bws= 1.9 m
5.3.2. Gebruikte metingen Er is gebruik gemaakt van de drukmeters van het type WIKA Tronic Line met een meetbereik van 0-0.4 bar. De drukmeters zijn aangebracht op 10 cm en 60 cm onder de bovenkant van de koolfilterbedden. De waarden zijn op dezelfde wijze geregistreerd en bewerkt als bij de procestechnische experimenten (zie paragraaf 5.2.2).
53
5.4.
Resultaten en discussie
5.4.1. Procestechnische variabelen Tijdens de experimenten van de procestechnische variabelen is de druk gemeten over de hoogte van het filterbed. In de figuren 5-3 tot en met 5-5 is de drukopbouw in het filterbed aan het einde van de instellingen 1, 2 en 3 grafisch weergegeven door middel van een Lindquist diagram. De methode waarop de drukmetingen verwerkt zijn tot een Lindquist diagram is opgenomen in bijlage D.
6
hydrostatische druk onderkant filterbed KF1 (SI=-0.22 , FTU=0.24)
5
KF2 (SI=0.32, FTU=0.41) KF3 (SI=0.09, FTU=0.17) 4
KF4 (O3=2.4 mg/l, SI=-0.09, FTU=0.24, dP=0.95 m) schoonbedweerstand
3
2
1
0 0
1
2
3
4
5
Figuur 5-3 Lindquist diagram einde instelling 1 voor KF 1-4 (T=9.8-12.3 °C)
54
6
6
hydrostatische druk onderkant filterbed KF1 (O3=1.9 mg/l, SI=-0.03, FTU=0.16, dP =0.99 m) KF2 (O3=1.9 mg/l, SI=0.64, FTU=0.44, dP=1.2 m) KF3 (O3=1.9 mg/l, SI=0.30, FTU=0.15, dP=2.02 m) KF4 (O3=1.9 mg/l,SI=0.01, FTU=0.29, dP=1.05 m) schoonbedweerstand
5
4
3
2
1
0 0
1
2
3
4
5
6
Figuur 5-4 Lindquist diagram KF 1-4 einde instelling 2 voor KF 1-4 (T = 12.3-17.1 °C) 6
hydrostatische druk onderkant filterbed KF1 (O3=1.8 mg/l, SI=-0.05, FTU=0.29, dP=1.1 m) KF2 (O3=1.8 mg/l, SI=0.73, FTU=0.75, dP=1.61 m) KF3 (O3=1.8 mg/l,SI= 0.25, FTU=0.16, dP=1.97 m) KF4 (O3=2.4 mg/l, SI=0.01, FTU=0.28, dP=1.46 m) schoonbedweerstand
5
4
3
2
1
0 0
1
2
3
4
5
6
Figuur 5-5 Lindquist diagram KF 1-4 einde instelling 3 voor KF 1-4 (T = 15-16.1 °C)
55
Als aanvulling op de Lindquist diagrammen is voor iedere instelling in de tabellen 5-4 tot en met 5-6 een overzicht gegeven van de belangrijkste gemeten parameters, die een oorzaak kunnen zijn van de drukopbouw in de koolfilterbedden. De in de tabel opgenomen saturatie-index (SI) is een maat voor de drijvende kracht achter het neerslaan van calciumcarbonaat. Een richtlijn is dat als de SI >+0.3 calciumcarbonaat kan neerslaan. Hoeveel CaCO3 dan neerslaat is afhankelijk van de grootte van de TACC (totaal afzetbaar calcium carbonaat) in mmol/l. Tabel 5-4 Instelling 1 met een temperatuurvariatie van 9.8-12.3 °C
O3 [g/m3] SI [-] TACCstart [mmol/l] TACCeind [mmol/l] FTU ATPstart [ng/g] ATPeinde[ng/g] Algen [-] dPtotaal [m]
KF 1 0 -0.2193 -0.08 -0.09 0.24 340 160
KF 2 0 0.3228 0.09 -0.02 0.41 330 250
KF 3 0 0.0901 0.03 -0.02 0.17 290 27
KF 4 2.4 -0.0927 -0.003 -0.09 0.24 260 220
0.29
0.26
0.29
0.90
Tabel 5-5 Instelling 2 met een temperatuurvariatie van 12.3-17.1 °C 3
O3 [g/m ] SI [-] TACCstart [mmol/l] TACCeind [mmol/l] AOC [ug/l] FTU [-] ATPstart [ng/g] ATPeinde[ng/g] Algen dPtotaal [m]
KF 1 1.9 -0.0291 -0.04 -0.09 73 0.16 160 1400 Piek bloei 0.91
KF 2 1.9 0.6359 0.11 0.03 61 0.44 250 1100 Piek bloei 1.17
KF 3 1.9 0.2960 0.07 0.02 120 0.15 27 1100 Piek bloei 1.96
KF 4 1.9 0.0061 0.06 -0.05 52 0.29 220 1600 Piek bloei 1.00
Tabel 5-6 Instelling 3 met een temperatuurvariatie van 15-16.1 °C
O3 [g/m3] SI [-] TACCstart [mmol/l] TACCeind [mmol/l] AOC [ug/l] FTU [-] ATPstart [ng/g] ATPeinde[ng/g] Algen dPtotaal [m]
KF 1 1.8 -0.0516 -0.03 -0.11
KF 2 1.8 0.7279 0.12 0.01
0.29 1400 210 Einde bloei 1.03
0.75 1100 290 Einde bloei 1.59
KF 3 1.8 0.2541 0.06 0.00 110 0.16 1100 560 Einde bloei 1.94
KF 4 2.4 0.0097 -0.01 -0.05 60 0.28 1600 490 Einde bloei 1.36
In het algemeen komt uit de Lindquist diagrammen duidelijk naar voren dat de verstopping gedurende alle experimenten in de bovenste laag van het filterbed plaatsvindt en dat er dus sprake is van koekfiltratie. Verder is er een analyse van de verschillen in drukopbouw en waterkwaliteit van de koolfilters gedurende een instelling en van het drukverloop van een koolfilter gedurende de verschillende instellingen uitgevoerd. Tijdens instelling 1 (figuur 5-2) heeft alleen koolfilter 4 geozoniseerd water ontvangen, het influent van de overige koolfilters is niet geozoniseerd. In koolfilter 1 tot en met 3 is
56
de druk niet toegenomen ten opzichte van de schoonbedweerstand. De druk in koolfilter 4 is wel toegenomen ten opzichte van de schoonbedweerstand. Naast dat koolfilter 4 als enige geozoniseerd water heeft ontvangen is verder de SI negatief, er vindt dus geen afzetting van CaCO3 op het filterbed plaats en ligt de troebelheid in dezelfde range als de troebelheid van KF 1. Uit instelling 1 blijkt dat ozon invloed heeft op de drukopbouw in het koolfilter. Tijdens instelling 2 (figuur 5-3) is de druk ten opzichte van de schoonbedweerstand in alle filters toegenomen. De grootste drukopbouw vindt plaats in KF 3 en is ongeveer twee keer zo groot dan de drukopbouw in de overige filters. Ondanks dat de ozondosering gelijk is voor alle koolfilters is de AOC-concentratie in het influent van koolfilter 3 ongeveer twee keer zo groot dan de AOC-concentratie in het influent van koolfilters 1,2 en 4. Koolfilter 3 is het enige koolfilter dat geen onthard water ontvangt. Er wordt dus AOC omgezet in de ontharders. Verder geldt dat de gemeten troebelheid het laagst is voor koolfilter 3 en de SI kleiner is dan 0.3, hetgeen ook niet tot precipitatie van CaCO3 leidt. Uit instelling 2 blijkt dat een hogere AOC-concentratie tot een grotere drukopbouw leidt. Hoe hoger de ozondosering, des te meer AOC er gevormd wordt. De ozon heeft dus invloed op de drukopbouw in het filterbed.
80 70
delta AOC [ug/l]
60 50 y = 53.46x - 45.662 R2 = 0.7758
40 30 20 10 0 0
0.5
1
1.5
2
2.5
druk [kPa]
Figuur 5-6 AOC concentratie versus druk
Wederom vindt tijdens instelling 3 (figuur 5-4) ondanks een lage troebelheid en een SI<0.3 toch de grootste drukopbouw plaats in koolfilter 3. Met een AOC-concentratie van 110 µg/l heeft koolfilter 3 een hogere AOC-concentratie dan koolfilter 4 (AOC = 60 µg/l) ondanks dat het influent van koolfilter 4 behandeld is met een hogere ozondosering (2.4 mg/l versus 1.8 mg/l). De omzetting van AOC in de ontharders, met als gevolg een lagere AOC concentratie in het influent van het koolfilter, resulteert in een lagere drukopbouw. Bij een vergelijking tussen koolfilter 1 en koolfilter 4, welke een vergelijkbare SI en troebelingsgraad hebben, maar voorafgegaan zijn aan een verschillende ozondosering (KF1=1.8 mg O3/l en KF4=2.4 mg O3/l) is in koolfilter 4 meer druk opgebouwd dan in dezelfde periode in koolfilter 1. Wederom blijkt hieruit dat een hogere ozondosering zorgt voor meer drukopbouw.
57
Bij een vergelijking tussen koolfilter 1 en 2 is de drukopbouw in koolfilter 2 een halve meter hoger aan het einde van de instelling dan de druk die opgebouwd is in koolfilter 1. Beide koolfilters zijn voorafgegaan aan dezelfde ozondosering en ontharding, echter is aan koolfilter 1 zuur toegevoegd met als gevolg dat de SI van KF 1 lager is dan de SI van KF 2, waarbij de SI van koolfilter 2 voldoende groot is dat er CaCO3 kan precipiteren. Tevens is de troebelheid van koolfilter 2 een stuk hoger, het lijkt erop dat een hoge SI een hogere troebelheid tot gevolg heeft. De hoge troebelheid en positieve SI hebben invloed op de drukopbouw. Naast dat de koolfilters onderling met elkaar vergeleken zijn gedurende een instelling worden ook dezelfde koolfilters met elkaar vergeleken gedurende de verschillende instellingen. De SI van koolfilter 1 is als gevolg van een zuurdosering aan het influent gedurende alle instellingen negatief, zodat de precipitatie van CaCO3 niet bijdraagt aan de verstopping in het koolfilter. De troebelingsgraad ligt tussen 0.16 NTU en 0.29 NTU. Zodra er ozon gedoseerd wordt is er sprake van een toename van de druk in het koolfilter. De opgebouwde druk in koolfilter 1, gedurende instelling 2 en 3, verschilt niet veel van elkaar (10%). Een verschil in ozondosering van 1.9 of 1.8 mg/l heeft niet veel gevolgen voor de druk die in het filterbed opgebouwd wordt, echter het verloop van de drukopbouw is wel anders (zie figuur 5-7). 1.2
1.0
Drukopbouw [kPa]
0.8
0.6
0.4
0.2 Instelling 2 Instelling 3 0.0 0
50
100
150
200
250
300
350
400
450
Filterlooptijd [uren]
Figuur 5-7 Drukopbouw KF 1 gedurende instelling 2 en 3 De druk in koolfilter 1 neemt tijdens instelling 2 pas na verloop van tijd toe, er is eerst sprake van een “instelperiode”. Doordat de ontharder voorafgaand aan koolfilter 2 zo ingesteld is dat het effluent kalkafzettend is, is de SI van koolfilter 2 altijd groter dan 0.3 en kan er CaCO3 precipiteren. De troebelheid van koolfilter 2 is meer dan twee keer zo groot als de troebelheid van de andere koolfilters. Het lijkt erop dat een hogere SI leidt tot een hogere troebelingsgraad. Een sterke relatie tussen de TACC en een toename van de troebelheid is echter niet terug te vinden (figuur 5-8).
58
totaal afzetbaar calciumcarbonaat [mmol/l]
0.14
0.12
0.1
0.08
y = 0.0217Ln(x) + 0.1255 R2 = 0.2539
0.06
0.04
0.02
0 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
toename troebelheid [NTU]
Figuur 5-8 TACC versus de troebelheid
Een toename van de SI van 0.64 naar 0.73 en een verdubbeling van de troebelingsgraad leidt tot een toename van de drukopbouw in het filterbed van 25% gedurende eenzelfde looptijd.
1.8 1.6
Drukopbouw [kPa]
1.4 1.2 1.0 0.8 0.6 0.4 Instelling 2
0.2
Instelling 3 0.0 0
50
100
150
200
250
300
350
400
450
Filterlooptijd [uren]
Figuur 5-9 Drukopbouw KF 2 gedurende instelling 2 en 3 uitgezet tegen de looptijd
59
Het verloop van de drukopbouw in koolfilter 2 gedurende de instellingen is vergelijkbaar met het verloop van de drukopbouw in koolfilter 1. De opgebouwde druk in koolfilter 3, gedurende instelling 2 en 3 is vergelijkbaar, dit zelfde geldt ook de AOC concentratie, de SI en de troebelheid. Het verloop van de drukopbouw van koolfilter 3 is echter verschillend per instelling (figuur 5-10).
2.5
Drukopbouw [kPa]
2.0
1.5
1.0
0.5 Instelling 2 Instelling 3 0.0 0
50
100
150
200
250
300
350
400
450
Filterlooptijd [uren]
Figuur 5-10 Drukopbouw KF 3 voor instelling 2 en 3 uitgezet tegen de looptijd
De opgebouwde druk in koolfilter 4 is vergelijkbaar gedurende instelling 1 en 2. Gedurende instelling 3 is de opgebouwde druk 28% hoger. De troebelheid en SI zijn vergelijkbaar voor elke instelling, de ozondosering varieerde van 2.4 naar 1.9 weer terug naar 2.4 mg/l.
60
1.6
1.4
Drukopbouw [kPa]
1.2
1.0
0.8
0.6
0.4 Instelling 2
0.2
Instelling 3 Instelling 1
0.0 0
50
100
150
200
250
300
350
400
450
Filterlooptijd [uren]
Figuur 5-11 Drukopbouw KF 4 tijdens instelling 2 en 3 voor de looptijd
Tijdens instelling 1 neemt de druk pas toe na een looptijd van 150 uur. Het verloop van de drukopbouw in koolfilter 4 is gedurende instelling 2 en 3 lineair, zie figuur 5-11. Indien de druk in een koolfilter lineair toeneemt, betekent dit dus dat er meteen verstopping plaatsvindt in het filter, terwijl bij een instelperiode er of geen deeltjes aanwezig zijn die zorgen voor een verstopping of dat het filter slecht zuivert en de concentraties in het effluent niet veel verschillen van de concentraties in het influent. De druk in koolfilter 1 tot en met 3 gedurende instelling 2 begint pas na een instelperiode van rond de 150 uur toe te nemen. Tijdens instelling 3 neemt de druk vanaf het begin van de instelling toe. Het influent van koolfilters 1 tot en met 3 is niet geozoneerd gedurende instelling 1, ook is er toen geen additionele drukopbouw waargenomen. Vanaf instelling 2 is er ozon gedoseerd voorafgaand aan de koolfilters 1 tot en met 3. Als gevolg van de ozon zijn de nutriënten toegenomen in het influent en is het aantal levende bacteriën in het koolfilterbed toegenomen, dit blijkt ook uit de ATP op kool metingen. Door de vorming van een biofilm op de koolkorrels worden de fijne gesuspendeerde stof aanwezig in het influent beter afgevangen, met als gevolg een toename van de druk in het koolfilterbed. Om de invloed van een slecht werkende ontharding en de gevolgen van een goed afgestemde zuurdosering te kunnen bepalen is gedurende de experimenten regelmatig de totale hardheid (voor de bepaling van het calcium) gemeten in het influent en effluent. Door een verschil tussen het influent en effluent te bepalen kan berekend worden hoeveel calcium er achtergebleven is in het koolfilter. Door het calcium in mg/l om te rekenen naar een volume kan de bijdrage aan de verstopping bepaald worden. In figuur 5-12 is de gemeten calciumconcentratie in het influent en effluent opgenomen, waarbij ook de foutmarge van de bepaling is aangegeven.
61
1.5
Calciumgehalte [mmol/l]
1.45
1.4
1.35
1.3
1.25 22-mei
27-mei
1-jun
6-jun
11-jun
datum
KF 2 influent
KF 2 effluent
KF 2 infl. HWL
KF 2 effl. HWL
Figuur 5-12 Gemeten calciumconcentratie in influent en effluent voor KF 2 (SI=0.73)
Het verschil in calciumconcentratie tussen het influent en effluent van koolfilter 2 is klein en ligt in alle gevallen binnen de foutmarge. Met de beschikbare metingen kan dus niet gezegd worden hoeveel calcium er achtergebleven is in het filterbed. Voor een overzicht van alle calciummetingen in het influent en effluent van de koolfilters wordt verwezen naar bijlage E. Om een vergelijking te kunnen maken tussen de drukopbouw in de bedrijfskoolfilters en de koolfilters in de proefinstallatie is koolfilter 4 van de proefinstallatie bedreven met bedrijfswater. Koolfilter 4, gevuld met Chemviron F300 kool, kan alleen vergeleken worden met een bedrijfskoolfilter gelegen in straat Zuid en gevuld met Chemviron F300 kool. In tabel 5-7 is de drukopbouw in koolfilter 4 vergeleken met koolfilter 16 (kleinste drukopbouw in de straat) en koolfilter 26 (grootste drukopbouw). Het verloop van de drukken is opgenomen in bijlage F. Tabel 5-7 Vergelijking looptijd [dagen] koolfilters bij eenzelfde drukval
Instelling 1 (dP=4.27 kPa) Instelling 2 (dP=9.98 kPa) Instelling 3 (dP=9.98 kPa)
KF 4 (PI) 10 21 11
KF 16 10 6 6
KF 26 8 6 3
Vanaf instelling 2 is de looptijd van koolfilter 4 in de proefinstallatie veel langer dan de looptijd van de bedrijfskoolfilters, hierdoor wordt het lastig om de resultaten van de proefinstallatie te vergelijken met het bedrijf. Het verloop van de drukopbouw over de hoogte van het filterbed in bedrijfskoolfilter 16 is echter vergelijkbaar. Tot slot is er met betrekking tot de drukken en de bijbehorende looptijden nog gekeken naar de minimale looptijd van zowel de bedrijfskoolfilters als de koolfilters in de proefinstallatie (zie bijlage G). De looptijden van zowel de bedrijfskoolfilters als de looptijden van de koolfilters in de proefinstallatie liggen boven de kritieke grens van 4 dagen.
62
Naast de drukmetingen, die aangeven hoeveel verstopping gedurende de experimenten heeft plaatsgevonden in de filterbedden en het laboratorium en chemische analyses ter bepaling van wat er in het influent van de koolfilters aanwezig is, is een poging gedaan om de dichtheid van de deeltjes in het influent te bepalen. De dichtheid van de deeltjes kan bepaald worden door het volume aan deeltjes te delen door de massa van de deeltjes. Het volume aan deeltjes wordt berekend uit de resultaten van de deeltjesteller en de massa wordt bepaald door de TILVS. Echter het verkrijgen van bruikbare resultaten met de zowel de deeltjestellers als de TILVS is zeer lastig gebleken. De TILVS, voorzien van influent water koolfilters, hebben al bij een laag volume (3 tot 4 liter) een additionele drukopbouw van al meer dan 3 bar, terwijl de massatoename als gevolg van gesuspendeerde stoffen zeer gering is (0 tot 2 mg). Om te controleren of dit boven de onnauwkeurigheid van de meting uitkomt zijn beide TILVS tegelijkertijd naast elkaar op hetzelfde water gezet met een herhaling van 3 keer voor het influent en het effluent van een koolfilter. Uit deze waarden zijn gemiddelden en standaardafwijkingen bepaald om zo de betrouwbaarheid van de gemeten resultaten te kunnen vaststellen (tabel 5-8). Tabel 5-8 Vergelijking metingen TILVS Type water Influent Influent Influent Effluent Effluent Effluent
# liter 3 3 3.85 14 16 16
Extra druk over filter [bar] 3 4 5 0 0 0
∆ g1 [mg] 322.5 -0.1 0.2 -1.2 -0.4 0.8
∆ g2 [mg] -0.2 0.2 1.7 -0.9 0.3 -1.5
Gem.
σSD
161.15 0.05 0.95 -1.05 -0.05 -0.35
228.18 0.212 1.06 0.21 0.49 1.63
Er is nog geen druktoename waargenomen gedurende TILVS metingen met effluent koolfilter. Het doel van de TILVS is ook dat er juist een groot volume overheen geleid kan worden zodat het een sterk geconcentreerd monster wordt en er een toename in massa gemeten kan worden (Verberk et al., 2006 a). Echter het doel van het onderzoek is om te kunnen kwantificeren wat er achterblijft in het filterbed, dit kan alleen door hetzelfde water ingaand en uitgaand te bemonsteren, met als gevolg dat bij het maximale debiet van het pompje dit het maximale volume is dat over de TILVS heen geleidt kan worden. Uit tabel 5-8 blijkt dat de gemeten verschillen in massa tussen de start en het einde van de proef allemaal binnen de onnauwkeurigheid van de meting liggen. In het vervolg moet voordat de TILVS gebruikt kunnen worden eerst onderzoek gedaan worden naar het type filterpapier dat het beste gebruikt kan worden. Waarbij er minder verstopping plaatsvindt en voldoende gesuspendeerde stoffen afgevangen worden, maar nog steeds wel rekening gehouden wordt met de grootte van de deeltjes aanwezig in het water zodat niet onnodig veel informatie verloren gaat. Tijdens de experimenten hebben de deeltjestellers een calibratiefout gegeven, met als gevolg dat de deeltjestellers tussentijds opnieuw gecalibreerd zijn. Uiteindelijk zijn de deeltjestellers alleen ingezet gedurende de laatste 2 weken van de experimenten. Van deze twee weken meten is slechts 1 dag bruikbaar. Redenen hiervoor zijn: het sterk teruglopen van het doorstroomde volume, het tijdstip en de manier waarop dit gebeurd is, is niet meer te achterhalen. het uitvallen van de pomp in de proefinstallatie met als gevolg dat het laatste weekend niet meer is gemeten. In de analyse van de bruikbare dag is gekeken naar het verloop van de deeltjes en vervolgens is het gemiddelde van het aantal deeltjes per ml per ingedeelde range uitgezet, zie figuur 5-13.
63
100
Influent Effluent
gemiddeld aantal deeltjes per ml
10 1 0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30
0.1 0.01 0.001 0.0001 0.00001 deeltjes range (1-2, 2-3,......,30-31, >31) [um]
Figuur 5-13 Totaal aantal deeltjes per range gedurende een instelling
De meeste deeltjes zitten in de range van 1-2 µm en er is nog een kleine piek te vinden in de ranges 5-6 en 6-7 µm. In figuur 5-14 is het gemiddelde aantal deeltjes gemeten gedurende een uur in het influent weergegeven, waarbij bij de berekening van het volume uitgegaan is van een perfecte bol.
Gemiddelde deeltjes volume over een uur [m3/ ml]
1.6E-16 1.4E-16 1.2E-16 1E-16 8E-17 6E-17 4E-17 2E-17 0 0
5
10
15
20
25
30
35
groottte deeljes ingedeeld in de ranges 1-2, 2-3,..., >31[um]
Figuur 5-14 Het gemiddelde uurvolume van de gemeten deeltjes in influent koolfilters
De deeltjes met een grootte van 1-2 µm bepalen ondanks dat de deeltjes klein zijn toch voor een groot deel het volume dat de deeltjes innemen als gevolg van de grote aantallen die aanwezig zijn. Het volume gemeten in het influent van de koolfilters is heel erg laag (factor 100 verschil) in vergelijking met het volume aan deeltjes gemeten af pomp Weesperkarspel (Verberk et al., 2006 b). Het verschil tussen de proefinstallatie en
64
het bedrijf is dat er een bufferbak aanwezig is, deze kan tot gevolg hebben dat er deeltjes bezinken, de vraag is echter of dit zo een groot verschil uitmaakt. Er dienen vraagtekens gezet te worden bij de gemeten volumes. Door het cumulatieve volume dat achterblijft te bepalen kan achterhaald worden wat de invloed is van de getelde deeltjes op de totale verstopping. In figuur 5-15 is het cumulatieve volume dat achterblijft in het filter gedurende een periode van de gemeten dag weergegeven.
8.E-08
cumulatieve volume [m3]
7.E-08 6.E-08 rc=4.3357e-08 R2 = 0.9962
5.E-08 4.E-08 3.E-08 2.E-08 1.E-08 0.E+00 6-6-06 16:04
6-7-06 4:04
6-7-06 16:04
6-8-06 4:04
6-8-06 16:04
datum [mm-dd-jj hh:mm]
Figuur 5-15 Cumulatieve volume dat achterblijft in het filterbed
Het volume van deeltjes dat achterblijft in het filterbed neemt dus toe met 4.3357 x 10-8 m3 per uur. In totaal wordt er 21 [dagen] * 24 [uur] gefiltreerd. Het totale opgehoopte volume is dus 21*24*4.3357 x 10-8 = 2.185 x 10-5 m3. De oppervlakte van het koolfilter is gelijk aan 0.43 m2 en de poriegrootte wordt aangenomen op 40%, dit zorgt voor een verstoppende laag van 1.27 x 10-4 m, dit is dus gelijk aan 0.13 mm. Dit is heel weinig, de data gemeten met de deeltjesteller gedurende de dag zijn niet te extrapoleren naar de totale periode en het is de vraag of voor een totale gemeten periode het volume gemeten met de deeltjesteller meer geweest zou zijn. Door eerst een studie uit te voeren naar de range waarin de meeste deeltjes liggen, dit is namelijk afhankelijk van het type water, kan misschien een betrouwbaardere dataset verkregen worden, echter het grootste aantal deeltjes wordt gemeten bij de detectiegrens van de meetcel, wat ook tot onnauwkeurigheden kan leiden. 5.4.2. Ontwerptechnische variabelen Alvorens de waterhoogte verlaagd is, zijn de filters voor dezelfde beginvoorwaarden bedreven om te bepalen of de filterbedden vergelijkbaar zijn, zie figuur 5-16.
65
Opbouw verschildrukken koolfilters 5-8 in de proefinstallatie 3
Verschildruk [mwk]
2.5 2 1.5 1 0.5 0 -0.5 -1 07/02
07/09
07/16 Jaar 2006
07/23
07/30
Debieten over koolfilters 5-8 in de proefinstallatie 250
KF KF KF KF
Debiet [l/h]
200
5 6 7 8
150
100
50
0 07/02
07/09
07/16 Jaar 2006
07/23
07/30
Figuur 5-16 Opbouw verschildrukken KF 5-8 voor eenzelfde bovenwaterstand
Het verloop van de verschildrukken van koolfilters 5-7 is van dezelfde orde grootte. Vervolgens is de bovenwaterstand verlaagd, de resultaten staan in figuur 5-16.
Opbouw verschildrukken koolfilters 5-8 in de proefinstallatie 3
Verschildruk [mwk]
2.5 2 1.5 1 0.5 0 -0.5 -1 05/28
06/04
06/11
06/18 Jaar 2006
06/25
07/02
07/09
Debieten over koolfilters 5-8 in de proefinstallatie 300 bws bws bws bws
250
Debiet [l/h]
200
= = = =
1.3 m 0.4 m 0.8 m 0.8 m
150 100 50 0 05/28
06/04
06/11
06/18 Jaar 2006
06/25
07/02
Figuur 5-17 Opbouw verschildrukken KF 5-8 bij verschillende bovenwaterstanden
66
07/09
Als gevolg van de verstopping gaat er na verloop van tijd minder debiet door de filters heen, dit maakt het lastig de filters met elkaar te vergelijken. Uit de perioden waarvoor de debieten nog wel gelijk zijn blijkt dat de drukopbouw het snelst verloopt voor de koolfilters met de hoogste bovenwaterstand. Verwacht zou worden dat het koolfilter met de laagste bovenwaterstand het snelst zou verstoppen als gevolg van de lagere verschildruk die beschikbaar is. Als gevolg van de lagere verschildruk kan het zo zijn dat er geen gasopeenhoping in het filterbed ontstaat, maar alles meteen ontsnapt. Dit is echter bij visuele inspectie van de koolfilters niet waargenomen. Een vergelijking van een verschil in drukbouw als gevolg van een variabel debiet bij eenzelfde bovenwaterstand is helaas niet te maken aangezien het debiet niet constant is geweest.
67
68
6.
Model
6.1.
Introductie
Voor de modellering is gebruik gemaakt van het software pakket Matlab/Simulink®. Met Matlab® kunnen op een relatief eenvoudige manier diverse numerieke berekeningen uitgevoerd worden. Binnen Matlab® bestaat het pakket Simulink® dat een platform is voor simulaties en model gebaseerd ontwerp van dynamische systemen. Simulink® bestaat uit een interactieve grafische omgeving en een aanpasbare set van blokken waarmee een model opgebouwd kan worden, zie figuur 6-1.
./ExperimentBT2_PAR_in.sti To File DHV 1
./ExperimentBT2_PAR_uit.sti
in_1
Mux
enkfil_s
Demux
enkfil
2
To File DHV1 ./ExperimentBT2_PAR_EM.sti
in_2
To File DHV2 Mux
Verzamelen invoer gegevens
Demux
Uitvoeren van de berekeningen
Wegschrijven resultaten
Figuur 6-1 Opzet single media filter in simulink
In figuur 6-1 is de opzet van het gebruikte model weergegeven. Allereerst worden de invoer gegevens verzameld. De invoergegevens worden gebruikt in de file enkfil_s (zie bijlage 7), hier is de benodigde set vergelijkingen ingevoerd en worden de berekeningen uitgevoerd, dit is dus de basis van het model. Vervolgens worden de waterkwaliteitsparameters van het effluent verzameld en weggeschreven naar een _uitfile. De waterkwaliteitsparamters in het proces, bijvoorbeeld over de hoogte van het filterbed worden weggeschreven naar de extra metingen file ( _EM-file).
6.2.
Modelopzet
De oplossing van set vergelijkingen bepaald in hoofdstuk 2 wordt gevonden door numerieke integratie in plaats en in tijd. De afgeleide in de tijd wordt bepaald door middel van een Matlab® integratie methode (sys). Voor de integratie in de plaats wordt het interval opgedeeld in kleine stappen. Voor iedere stap mag aangenomen worden dat deze klein genoeg is zodat de concentratie nauwelijks verandert.
C1 C2
Cn
∂c1 σ1 v c − c0 v =− ⋅ 1 − ⋅ λ0 ⋅ 1 − ⋅ c1 ρ ⋅ p0 ⋅ nmax ∂t p ∆y p c − c0 ∂σ 1 = −v ⋅ 1 ∂t ∆y
Dit levert het volgende stelsel aan matrices die verder in Stimela (Matlab/Simulink) berekend worden;
®
69
dc1 dt dc2 dt M dc n dt
=− v p ⋅ dy
0 c0 −1 1 O ⋅ c1 − v ⋅ λ ⋅ M p 0 O −1 1 cn −1 0
1 ⋅ 1 − ρ ⋅ p0 ⋅ nmax
σ 1 c1 c σ ⋅ 2 ⋅ 2 M M σ n cn
(23) dσ 1 dt dσ 2 dt M dσ n dt
= −v
0 c0 −1 1 O ⋅ c1 ⋅ M O −1 1 cn −1 0
Uit de experimenten volgt dat er voornamelijk twee mechanismen verantwoordelijk zijn voor de verstopping van de BAKF’s. De vorming van een biofilm door biologische activiteit en de aanwezigheid van nutriënten (AOC) en de vorming van calciumcarbonaat als gevolg van een positieve SI.
AOC. De hoeveelheid AOC in het influent is afhankelijk van de ozondosering en of het water onthard wordt. De effluentconcentratie AOC is een vast percentage (33%) van de influentconcentratie (Rietveld et al., 2006). Uit de uitgevoerde ATP op kool metingen blijkt dat de biologische activiteit het hoogst is in de bovenste laag van het koolfilterbed, hier vindt dan ook met name de verstopping ten gevolg van de afbraak van AOC plaats. CaCO3. De CaCO3 concentratie wordt gekoppeld aan het verschil van de berekende TACC in het influent en effluent van de koolfilters. De aanwezigheid van een biofilm leidt tot het afzetten van de CaCO3 in de toplaag.
De toename van de drukopbouw is het gevolg van het heel snel verstoppen van de poriën, waardoor de dikte van de verstopping zich uitbreidt dieper het bed in, hetgeen beschreven is met onderstaande formules; Op 20 cm onder de bovenkant van het filterbed is de druk gemeten, de druk op 20 cm, na spoelen, is gelijk aan 0.076 m. Voor de initiële situatie (schoonbed) geldt dat de weerstandsgradiënt gelijk is aan: I0 =
H0 0.076 = = 0.38 L 0.2
Naarmate er verstopping plaatsvindt, zal deze gradiënt veranderen in: 2
I =
p0 H = I0 ⋅ L p0 − σ v
De drukopbouw (H) is afhankelijk van I0·C·L. De drukopbouw neemt dus toe met de dikte van de laag waarvan de poriën gevuld zijn.
70
6.3.
Calibratie
Het model wordt gecalibreerd op het verloop van de drukopbouw en op de concentratie van CaCO3 en AOC in het effluent. Daarbij worden alleen de bovenste 20 cm van het filterbed gesimuleerd, aangezien de verstopping bovenin het filterbed plaatsvindt. Aangenomen is dat alles in de toplaag afgevangen wordt. 6.3.1. Schoonbedweerstand
De schoonbedweerstand wordt bepaald door de snelheid, initiële porositeit, de kleinste diameter en de temperatuur. De snelheid, temperatuur en kleinste diameter zijn bekend. De initiële porositeit is dus de enige parameter die gecalibreerd kan worden voor de schoonbedweerstand. Een initiële porositeit van 48% is te hoog met als gevolg dat de voorspelde schoonbedweerstand te laag is, zie figuur 6-2. Parameters:
Total filter resistance 0.7
Pressure drop [mWk]
0.6
Filter opp
0.43
Water hoogte
2.5
m2 m
Debiet
1.7
m 3/h
0.5
Porositeit
48.0
%
0.4
Maximum porefilling
81.0
-
Bedhoogte
0.2
m
0.3
Korrelgrootte top/bodem 0.70.7 Lambda biomassa
0.2 0.1 0
0
200 400 Time [hour]
600
300.0
mm -
Massadichth. biomassa 1.46000
kg/m 3
Massadichtheid CaCO3 2730.0
kg/m 3
Compleet gemixte vaten 20
-
Figuur 6-2 p0 = 48%, voorspelde schoonbedweerstand is te laag
xxxx = gemeten druk Een initiële porositeit van 38% schoonbedweerstand, zie figuur 6-3.
= voorspelling model zorgt
Pressure drop [mWk]
1.5
1
0.5
0
200 400 Time [hour]
een
goed
voorspelling
van
de
Parameters:
Total filter resistance 2
0
voor
600
Filter opp
0.43
m2
Water hoogte
2.5
m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
-
Bedhoogte
0.2
m
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
-
300.0
Massadichth. biomassa 1.46000
kg/m 3
Massadichtheid CaCO3 2730.0
kg/m 3
Compleet gemixte vaten 20
-
Figuur 6-3 p0 = 38%, de voorspelde schoonbedweerstand is gelijk aan de gemeten schoonbedweerstand
71
6.3.2. Biologisch
Voor de calibratie van de biologische parameters in het model worden de filters gebruikt waarin de drukopbouw alleen het gevolg is van de omzetting van AOC. De parameter die invloed heeft op de effluent AOC concentratie is de filtratiecoëfficiënt (λAOC). Hoe hoger de filtratiecoëfficiënt, hoe beter de filtrerende werking van het filter is en des te meer er afgevangen wordt. De dichtheid heeft invloed op verloop van de drukopbouw. In figuur 6-4 is de gemeten drukopbouw tijdens de experimenten weergegeven. 2
Instelling 2
Instelling 3
1.8 1.6
drukopbouw [m]
1.4 1.2 1 0.8 0.6
KF1top
0.4
KF2top KF3top
0.2
KF4top 0
1-5
8-5
15-5
22-5
29-5
5-6
12-6
datum [dd-mm]
Figuur 6-4 Drukverloop gedurende instelling 2 en 3 van de experimenten gemeten op 20 cm onder bovenkant van het filterbed
Uit figuur 6-4 blijkt dat de koolfilters tijdens de laatste instelling van de experimenten een steady-state hebben bereikt. Deze instelling zal dan ook gebruikt worden voor de calibratie van het model. Gekozen is koolfilter 3 als eerste te calibreren aangezien de drukopbouw in dit koolfilter het hoogst is en louter afhankelijk is van de AOC concentratie. Een indicatie van de dichtheid kan berekend worden uit de schoonbedweerstand, drukopbouw, bedhoogte en totale AOC concentratie die omgezet is tijdens de filterrun, zie tabel 6-1.
72
Tabel 6-1 Berekening dichtheid 2
p0 H = H0 ⋅ p0 − σ v
2
0.38 1.87 = 0.07 ⋅ 0.38 − σ v 3 0.38 = 0.306 m σ v = 0.38 − m3 1.87 0.07 ∂σ ∂c =v⋅ ∂t ∂y
(
σ = 1.7
σv = ρ =
0.43
⋅ (24 ⋅ 21) = 737.25 g ) ⋅ 0.074 m 0.2
3
σ ρ
737.25 = 2409 g 3 m 0.306
2.4 kg
m3
In tabel 6-2 zijn de invoerparameters gegeven. Tabel 6-2 Invoerparameters calibratie KF 3
Invoerparameters Q [m3/h] T [°C] cAOC [mg/l] cCaCO3 [mg/l]
Waarde 1.7 15.5 0.67*0.110 = 0.074 0
73
Lindquist diagram (the time interval between the lines is 84.0 hour)
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
Water hoogte
2.5
m2 m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
0.08
0.06
0.04
0.02
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46 Lambda CaCO3
0
0
200 400 Time [hour]
2.5
Parameters:
Outgoing concentration suspended solids Concentration suspended solids [mg/l]
Height from the bottom of the filterbed [m]
Total filter resistance 2
600
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 1/m kg/m 3 -
Figuur 6-5 Resultaten voorspelling model: λAOC = 3001/m, ρAOC = 1.46 kg/m3 en nmax=81%
Het model geeft in het begin van het filter een goede voorspelling van de gemeten waarden tijdens de experimenten. Halverwege de simulatie stijgt de drukopbouw in het koolfilter echter minder hard. Een mogelijke oorzaak hiervan is dat de ozondosering ook afgenomen is tijdens de laatste instelling vanwege problemen met de ozongenerator, zie figuur 6-5. Instelling 2
Instelling 3
20
Ozone concentration in gas [g/Nm3]
18 16 14 12 10 8 6 4 2 0 05/01
05/08
05/15
05/22
05/29
06/05
Figuur 6-6 Verloop ozondosering tijdens de experimenten
74
06/12
In hoofdstuk 2 is reeds met waarden uit de literatuur bepaald dat 1 gr AOC = 1.008.10-5 m3 biomassa (ρAOC = 99.2 kg/m3). De dichtheid bepaald door het model is gelijk aan 1.46 kg/m3. Dit betekent dus dat maar 1.5 % van het totale volume veroorzaakt wordt door de levende biomassa en de rest het gevolg is van de binding van water. In koolfilter 1 en 4 wordt de verstopping ook alleen veroorzaakt door de omzetting van AOC in biomassa. De gecalibreerde λAOC en ρAOC zijn gebruikt voor de simulatie van de drukopbouw in koolfilter 1 en 4 bij verschillende influentconcentraties AOC. Lindquist diagram (the time interval between the lines is 84.0 hour)
Pressure drop [mWk]
1.5
1
0.5
Concentration suspended solids [mg/l]
0
2.5
0
200 400 Time [hour]
600
Height from the bottom of the filterbed [m]
Total filter resistance 2
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
m2
Water hoogte
2.5
m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
Parameters:
-6 Outgoing concentration suspended solids x 10
2 1.5 1 0.5
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46 Lambda CaCO3
0
0
200 400 Time [hour]
2.5
600
1200
kg/m 3 1/m
Massadichtheid CaCO3 1400
kg/m 3
Compleet gemixte vaten 20
-
Figuur 6-7 Simulatie koolfilter 1: cAOC = 0.03 mg/l, Q = 1.7 m3/h, T=15.5 °C
75
Lindquist diagram (the time interval between the lines is 84.0 hour)
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
Concentration suspended solids [mg/l]
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
m2
Water hoogte
2.5
m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
Outgoing concentration suspended solids x 10
1.2 1 0.8 0.6
Korrelgrootte top/bodem 0.70.7
mm
0.4
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46
0.2 0
Lambda CaCO3 0
200 400 Time [hour]
2.5
Parameters:
-3
1.4
Height from the bottom of the filterbed [m]
Total filter resistance 2
600
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 1/m kg/m 3 -
Figuur 6-8 Simulatie koolfilter 4: cAOC = 0.04 mg/l, Q = 1.7 m3/h, T = 15.5 °C
De drukopbouw in koolfilter 1 laat aan het einde van de run een afname zien als gevolg van de afname van de ozondosering. Hiervan is geen sprake bij koolfilter 4 aangezien koolfilter 4 bedrijfswater ontvangt, met als gevolg dat de voorspelling van het model en de gemeten drukken goed overeenkomen. In koolfilter 4 neemt de druk gedurende instelling 1 wel toe en gedurende instelling 2 meteen toe doodat dit filter, in tegenstelling tot koolfilter 1 tot en met 3, al gedurende instelling 1 met geozoniseerd water is bedreven. Gedurende instelling 1 is de watertemperatuur echter laag, met als gevolg dat de filtratiecoëfficiënt lager zal zijn. Aan het begin van de instelling 2 is de temperatuur ook nog laag (12 °C) met als gevolg dat de filtratiecoëfficiënt in het begin lager zal zijn. In figuur 6-9 en 6-10 is de simulatie van koolfilter 4 weergegeven, waarbij het model gefit is door alleen de filtratiecoëfficiënt aan te passen.
76
Lindquist diagram (the time interval between the lines is 84.0 hour)
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
Height from the bottom of the filterbed [m]
Total filter resistance 2
2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
m2
Water hoogte
2.5
m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
0.02
0.015
0.01
0.005
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
21
kg/m 3
Massadichth. biomassa 1.46 Lambda CaCO3
0
0
200 400 Time [hour]
2.5
Parameters:
Outgoing concentration suspended solids
1200
1/m kg/m 3 -
Massadichtheid CaCO3 1400
600
Compleet gemixte vaten 20
Figuur 6-9 Calibratie KF 4, cAOC =0.04 mg/l, T=11 °C, Q=1.7 m3/h Lindquist diagram (the time interval between the lines is 84.0 hour)
1.5
1
0.5
Concentration suspended solids [mg/l]
0
6
0
200 400 Time [hour]
600
Height from the bottom of the filterbed [m]
Total filter resistance 2
Pressure drop [mWk]
Concentration suspended solids [mg/l]
↑
2.5
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
Water hoogte
2.5
m2 m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
Parameters:
-3 Outgoing concentration suspended solids x 10
5 4 3 2
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
45
Massadichth. biomassa 1.46
1
Lambda CaCO3 0
0
200 400 Time [hour]
2.5
600
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 1/m kg/m 3 -
Figuur 6-10 Calibratie KF 4, cAOC=0.035 mg/l
77
Door de aanpassing van de filtratiecoëfficiënt geeft het model ook een redelijke voorspelling van de drukopbouw gedurende instelling 1 en 2. De aanbeveling is dan ook om door middel van meer metingen een relatie tussen de filtratiecoëfficiënt en de temperatuur te bepalen. 6.3.3. Chemisch
Als gevolg van sterk oververzadigd water afkomstig van de ontharders kan er afzetting van calcliumcarbonaat plaatsvinden of kunnen zich vlokken vormen die tot een toename van de druk kunnen leiden. Een indicatie van de dichtheid van de vaste stof calciumcarbonaat kan via de methode beschreven in tabel 6-1 uitgevoerd worden. Waarbij de H= 1.45 m (gelijk aan de drukopbouw in koolfilter 2) en de H0= 0.83 m (gelijk aan de drukopbouw in koolfilter 1). ρCaCO3 ligt in de orde grootte van 1300 kg/m3.
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
Concentration suspended solids [mg/l]
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
m2
Water hoogte
2.5
m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
0.3 0.25 0.2 0.15 0.1
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46
0.05
Lambda CaCO3 0
200 400 Time [hour]
2.5
Parameters:
Outgoing concentration suspended solids 0.35
0
Height from the bottom of the filterbed [m]
Lindquist diagram (the time interval between the lines is 84.0 hour)
Total filter resistance 2
600
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 1/m kg/m 3 -
Figuur 6-11 Simulatie KF 2, cAOC=0.03 mg/l, cCaCO3 =12 mg/l, Q=1.7 m3/h, T=15.5 °C Bij een λAOC = 1200 1/m is bijna alle CaCO3 afgevangen in de eerste 20 cm van het filterbed. De dichtheid is gelijk aan 1400 kg/m3.
6.4.
Validatie
Voor de validatie van de λAOC, ρAOC, λCaCO3 en ρCaCO3 moet de temperatuur in hoger zijn dan 15°C en moet er een steady state aanwezig zijn in het filterbed. Aangezien koolfilters 1 tot en met 3 met niet geozoniseerd water zijn bedreven gedurende instelling 1 hebben de filters tijdens instelling 2 een instelperiode (TLag) nodig alvorens de druk toeneemt. Door de gemeten drukken over deze instelperiode te verschuiven kan toch een validatie van de lambda en de dichtheid uitgevoerd worden aangezien de temperatuur hier 15°C is.
78
Total filter resistance
Pressure drop [mWk]
2
1.5
1
0.5
0
0
200 400 Time [hour]
600
Figuur 6-12 KF 3 inclusief rijping
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
Water hoogte
2.5
m2 m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
0.08
0.06
0.04
0.02
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46 Lambda CaCO3
0
0
200 400 Time [hour]
2.5
Parameters:
Outgoing concentration suspended solids Concentration suspended solids [mg/l]
Height from the bottom of the filterbed [m]
Lindquist diagram (the time interval between the lines is 84.0 hour)
Total filter resistance 2
600
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 1/m kg/m 3 -
Figuur 6-13 Validatie steady state KF 3 (204 uur verschoven), cAOC = 0.078 mg/l, Q=1.7 m3/h, T=15.5 °C
79
Total filter resistance
Pressure drop [mWk]
2
1.5
1
0.5
0
0
200 400 Time [hour]
600
Figuur 6-14 KF 1 inclusief rijping
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
Concentration suspended solids [mg/l]
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Outgoing concentration suspended solids x 10
1.2 1 0.8
Filter opp
0.43
m2
Water hoogte
2.5
m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
0.6
Korrelgrootte top/bodem 0.70.7
mm
0.4
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46
0.2 0
Lambda CaCO3 0
200 400 Time [hour]
2.5
Parameters:
-3
1.4
Height from the bottom of the filterbed [m]
Lindquist diagram (the time interval between the lines is 84.0 hour)
Total filter resistance 2
600
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 1/m kg/m 3 -
Figuur 6-15 Validatie steady state KF 1 (252 uur verschoven), cAOC = 0.04 mg/l, Q=1.7 m3/h, T=15.5 °C
80
Total filter resistance
Pressure drop [mWk]
2
1.5
1
0.5
0
0
200 400 Time [hour]
600
Figuur 6-16 KF 2 inclusief rijping
Lindquist diagram (the time interval between the lines is 84.0 hour)
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
↑
2.5 2 1.5
Water level above the filter bed
1 0.5 ↓ Filterbed height ↓ 0
0
0.5
1 1.5 Head [mWk]
2
Filter opp
0.43
Water hoogte
2.5
m2 m
Debiet
1.7
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
8
6
4
2
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46 Lambda CaCO3
0
0
200 400 Time [hour]
2.5
Parameters:
Outgoing concentration suspended solids Concentration suspended solids [mg/l]
Height from the bottom of the filterbed [m]
Total filter resistance 2
600
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 1/m kg/m 3 -
Figuur 6-17 Validatie steady state KF 2 (252 uur verschoven), cAOC = 0.04 mg/l, cCaCO3=8 mg/l, Q=1.7 m3/h, T=15.5 °C
Het model geeft een goede voorspelling van het verloop van de drukopbouw bij temperaturen boven de 15°C. Gedurende deze temperaturen is het verloop van de drukopbouw in het bedrijf ook het meest cruciaal.
6.5.
Case
Met behulp van de gecalibreerde en gevalideerde λAOC, ρAOC, λCaCO3 en ρCaCO3 worden verschillende scenario’s doorgerekend ter analyse van de gevoeligheid van verschillende parameters op het verloop van de drukopbouw in het filterbed. Aangezien de λAOC en λCaCO3 bepaald zijn voor de bovenste 20 cm van het filterbed wordt nu ook alleen de toplaag van het filterbed gesimuleerd. Wel is de oppervlakte van het filter, het debiet en
81
de bovenwaterstand aangepast naar de situatie zoals deze geldt in de bedrijfskoolfilters in straat Zuid, zie figuur 6-18. Lindquist diagram (the time interval between the lines is 84.0 hour) 1.5 ↑
Pressure drop [mWk]
1.5
1
0.5
Concentration suspended solids [mg/l]
0
4
0
200 400 Time [hour]
600
2
1
0
200 400 Time [hour]
1 Water level above the filter bed
0.5 height ↓ Filterbed ↓ 0
0
0.5 1 Head [mWk]
1.5
Parameters:
-5 Outgoing concentration suspended solids x 10
3
0
Height from the bottom of the filterbed [m]
Total filter resistance 2
600
Filter opp
30.87
m2
Water hoogte
1.3
m
Debiet
120.2
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46
kg/m 3
Lambda CaCO3
1/m
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 -
Figuur 6-18 Basisgrafiek, cAOC=0.035 mg/l, Q = 120.2 m3/h, T = 15.5 °C, dPeind = 1.2836 m
Er wordt gekeken naar de invloed van een toename van de oppervlaktebelasting, een toename van de korreldiameter en een toename van AOC concentratie in het influent, zie figuren 6-19 tot en met 6-21.
82
Lindquist diagram (the time interval between the lines is 84.0 hour) 1.5 ↑
Pressure drop [mWk]
1.5
1
0.5
Concentration suspended solids [mg/l]
0
3.5
0
200 400 Time [hour]
600
Height from the bottom of the filterbed [m]
Total filter resistance 2
2.5 2 1.5 1 0.5 0
200 400 Time [hour]
Water level above the filter bed
0.5 height ↓ Filterbed ↓ 0
0
0.5 1 Head [mWk]
1.5
Parameters:
-4 Outgoing concentration suspended solids x 10
3
0
1
600
Filter opp
30.87
m2
Water hoogte
1.3
m
Debiet
132.2
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46
kg/m 3
Lambda CaCO3
1/m
1200
Massadichtheid CaCO3 1400
kg/m 3
Compleet gemixte vaten 20
-
Figuur 6-19 oppervlaktebelasting stijgt 10%; cAOC=0.035 mg/l, Q = 132.2 m3/h, dPeind = 1.5574 m
Een toename van de oppervlaktebelasting met 10% resulteert in een toename in de drukopbouw van 21%. Lindquist diagram (the time interval between the lines is 84.0 hour) 1.5 ↑
Pressure drop [mWk]
1.5
1
0.5
0
0
200 400 Time [hour]
600
Concentration suspended solids [mg/l]
Outgoing concentration suspended solids x 10
3
2
1
0
0
200 400 Time [hour]
1 Water level above the filter bed
0.5 height ↓ Filterbed ↓ 0
0
0.5 1 Head [mWk]
1.5
Parameters:
-5
4
Height from the bottom of the filterbed [m]
Total filter resistance 2
600
Filter opp
30.87
m2
Water hoogte
1.3
m
Debiet
120.2
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
Korrelgrootte top/bodem 0.80.8
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46
kg/m 3
Lambda CaCO3
1/m
1200
Massadichtheid CaCO3 1400 Compleet gemixte vaten 20
kg/m 3 -
Figuur 6-20 korreldiameter is 10% groter; cAOC=0.035 mg/l, Q = 120.2 m3/h, dPeind = 1.0608 m
83
Een toename van de korreldiameter van 10% resulteert in een afname van de drukopbouw gelijk aan 17%. Lindquist diagram (the time interval between the lines is 84.0 hour) 1.5 ↑
Pressure drop [mWk]
1.5
1
0.5
Concentration suspended solids [mg/l]
0
4
0
200 400 Time [hour]
600
0
200 400 Time [hour]
1 Water level above the filter bed
0.5 height ↓ Filterbed ↓ 0
0
0.5 1 Head [mWk]
1.5
Parameters:
-4 Outgoing concentration suspended solids x 10
2
0
Height from the bottom of the filterbed [m]
Total filter resistance 2
600
Filter opp
30.87
m2
Water hoogte
1.3
m
Debiet
120.2
m 3/h
Porositeit
38.0
%
Maximum porefilling
81.0
%
Bedhoogte
0.2
m
Korrelgrootte top/bodem 0.70.7
mm
Lambda biomassa
1/m
300
Massadichth. biomassa 1.46
kg/m 3
Lambda CaCO3
1/m
1200
Massadichtheid CaCO3 1400
kg/m 3
Compleet gemixte vaten 20
-
Figuur 6-21 10% hogere AOC belasting; cAOC=0.0385 mg/l, Q = 120.2 m3/h, dPeind = 1.4162 m
Een toename van de AOC belasting met 10% resulteert in een evenredige toename van de drukopbouw van 10%. Een verschil in oppervlaktebelasting een korreldiameter hebben het grootste effect op het verloop van de drukopbouw. In de optimalisatie van deze parameters valt dan ook nog winst te boeken zodat de ozondosering in het bedrijf omhoog komt zonder dat er frequent gespoeld hoeft te worden.
84
7.
Conclusies en aanbevelingen
7.1.
Oorzaak verstopping
De doelstelling van het rapport is de oorzaken van de verstopping van de BAKF’s te achterhalen. Aan de hand van een analyse van het zuiveringsproces van Weesperkarspel en een literatuurstudie zijn de volgende hypothesen opgesteld: Verstopping door de aanwezigheid van algen Dichtgroeien BAKF’s als gevolg van de biodegradatie van AOC, gevormd door de dosering van ozon. Invloed carry-over of na-ontharding Invloed aanwezigheid luchtbellen Gevolgen ongelijke debietverdeling Combinatie van bovengenoemde hypothesen Naar aanleiding van uitgevoerde experimenten in koolfilter 1 tot en met 4 in de proefinstallatie van Weesperkarspel, waarbij de invloed van ozon, ontharding en de combinatie van beide getest zijn kan het volgende worden geconcludeerd: Een hogere AOC concentratie leidt tot een hogere drukopbouw. De helft van de AOC die gevormd wordt gedurende ozonisatie wordt omgezet in de ontharders. Uit de uitgevoerde ATP op kool metingen in de toplaag en op 70 cm onder de bovenkant van het filterbed blijkt dat de grootste biologische activiteit in de toplaag van het filterbed zit. AOC wordt hier door de bacteriën omgezet en er wordt een biofilm gevormd, door de aanwezigheid van de biofilm, vindt de meeste verstopping plaats in de bovenste 20 cm van het filterbed. Hoe positiever de saturatie-index des te hoger de troebelheid. De troebelheid wordt veroorzaakt door de aanwezigheid van calciumcarbonaat vlokken. Een optimalisatie van de zuurdosering resulteert in minder drukopbouw. De invloed van gesuspendeerde stoffen op de verstopping is verwaarloosbaar. Naar aanleiding van uitgevoerde experimenten in koolfilter 5 tot en met 8 in de proefinstallatie van Weesperkarspel, waarbij de invloed van variaties in de oppervlaktebelasting en de aanwezigheid van luchtbellen getest zijn kan het volgende worden geconcludeerd: Als gevolg van het vroegtijdig teruglopen van het debiet het helaas niet mogelijk geweest de invloed van variaties in oppervlaktebelasting te testen door middel van de experimenten. Een lage bovenwaterstand lijkt een positieve invloed te hebben op de drukopbouw, terwijl als gevolg van een lager beschikbaar energieverlies verwacht mag worden dat een filter met een lage bovenwaterstand juist eerder verstopt. Indien het water afkomstig van de ontharders oververzadigd is, kan er kristallisatie van CaCO3 in het bovenwater van de koolfilters plaatsvinden. Hoe lager de bovenwaterstand des te kleiner de mogelijkheid dat uitvlokken van CaCO3.
85
7.2.
Ontwerp
Het model geeft boven de 15 graden een goede voorspelling van de drukopbouw gemeten in de koolfilters in de proefinstallatie. Met behulp van het gecalibreerde model is een gevoeligheidsanalyse uitgevoerd van de invloed van variaties in oppervlaktebelasting, de korrelgrootte en waterkwaliteitsveranderingen bijvoorbeeld als gevolg van de toevoeging van additionele zuiveringsstappen. Een verschil van 10% in oppervlakte belasting leidt tot een toename in de drukopbouw van 20%. Het nauwkeuriger afstellen van de verdeling van het debiet over de koolfilters heeft dus wel degelijk nut op de toename van drukopbouw. Nauwkeurige afstelling van het debiet kan verkregen worden door de overstortbreedten aan te passen naar een kleinere breedte. Een toename van de korrelgrootte van 10% leidt tot een afname van de drukopbouw van 17%. Het vullen van de koolfilters met een grotere korreldiameter heeft dus positieve gevolgen op de drukopbouw. Ook kan er gekozen worden om bovenop de koolfilters een laag materiaal te storten bestaande uit lichter materiaal met een grotere diameter, zodat dit materiaal wel boven blijft tijdens terugspoelen van de filterbedden. Een toename van de AOC concentratie van 10% leidt tot een evenredige toename van de drukopbouw in het filterbed.
7.3.
Spoelregime
Door niet meer te spoelen op een vast interval dat gebaseerd is op de drukval van het slechtste koolfilter kan het spoelinterval aanzienlijk verlengd worden. De koolfilters met de snelste drukopbouw kunnen tussen de normale cyclus door gespoeld worden. Het spoelencriterium waarop gespoeld moet worden is dan gelijk aan de maximale weerstandsverlies, dit is gelijk aan de hoogte van de bovenwaterstand plus de hoogte van het filterbed min de uitstroomhoogte van het effluent. Door het uitbreiden van modellen voor de voorspelling van de looptijd van de individuele filters kan een optimalisatie van het spoelregime bewerkstelligd. Als gevolg van deze optimalisatie kan de ozondosering omhoog zonder dat de capaciteit van de spoelwaterverwerking in geding komt.
7.4.
Aanbevelingen
Aanbevelingen verder onderzoek. Het komt voor dat in het bedrijf in plaats van dat de filters teruggespoeld worden de filters stil gezet worden voor een paar minuten om zo ontgassing te bewerkstelligen, waarna de druk in het filter weer afneemt. Verder onderzoeken kan bepalen wat de invloed is van het dagelijks stilzetten van het filter gedurende 5 minuten op de drukopbouw in het filter en daarmee ook de looptijd Nader uitzoeken wat de invloed is van de bovenwaterstand op de drukopbouw in een koolfilter. Aanbevelingen ten behoeve van de gebruikte meetmethoden. Deeltjestellers. Voordat de deeltjestellers ingezet voor het meten kunnen worden, moet eerst onderzoek gedaan worden naar de instelling van de ranges voor de deeltjesgrootte. Dit hangt namelijk af van de waterkwaliteit. TILVS. Allereerst moet onderzoek naar verschillende type filterpapiertjes uitwijzen welke het meest geschikt is voor de waterkwaliteit die getest moet worden. Indien er meerdere TILVS beschikbaar zijn kan door de TILVS op hetzelfde water naast elkaar te laten draaien de nauwkeurigheid bepaald worden. De uitkomsten van de deeltjestellers moeten gebruikt worden bij de bepaling van de zeefmaat van de filterpapiertjes, zodat niet onnodig veel deeltjes verloren gaan.
86
Model: Het model geeft boven de 15 graden een goede voorspelling van de drukopbouw gemeten in de koolfilters in de proefinstallatie. Aangezien de druk in het koolfilter bedreven met water uit het bedrijf minder snel toeneemt dan de druk in de bedrijfskoolfilters moet er nog wel een koppeling van het model naar de bedrijfssituatie gemaakt worden. Verder onderzoek uitvoeren om een relatie tussen de filtratiecoëfficiënt en de watertemperatuur te vinden.
87
88
Literatuurlijst Aa, L.T.J. van der; Magic-Knezev, A.; Rietveld, L.C.; Dijk, J.C. van; Biomass development in biological activated carbon filters. IWA publishing, 2006. Aa, L.T.J. van der; Ontgassing koolfilters Noord (Weesperkarspel); intern rapport Waternet, oktober 2003. Clements, M.; Changes in the mechanical behaviour of filter media due to biological growth; Dissertatie, November 2004. Darby, J.L; Attanasio, R.E.; Lawler, D.F; Filtration of heterodisperse suspensions: Modeling of particle removal and head loss; Water Research, Vol. 26, No. 6, pages 711726, 1992. Gemeentewaterleidingen Amsterdam; Productie Oost; Jaarverslag Plassenwaterleiding. Intern rapport Waternet, 1992-2002. Haarhoff, J; Edzwald, J.K.; Dissolved air flotation modelling: insights and shortcomings; Jounal of Water Supply: Research and Technology, pages 127-150, 2004. Hijnen, W.A.M.; Kooij, D. van der; The effect of low concentrations of assimilable organic carbon (AOC) in water on biological clogging of sand beds; Water Research, Vol. 26, No. 7, pages 963-972, 1992. Knappe, D.R.U; Belk, R.C.; Briley, D.S.; Gandy, S.R.; Rastogi, N.; Rike, A.H; Glasgow, H.; Hannon, E.; Frazier, W.D.; Kohl, P.; Pugsley, S.; Algae Detection and Removal Strategies for Drinking Water Treatment Plants; Book AWWA Research Foundation, 2004. Lawler, D.F.; Nason, J.A.; Integral Water Treatment Plant Modeling: Improvements for Particle Processes; Environmental Science and Technology, Vol. 39, pages 6337-6342, 2005. Maarel, H. A. van der; De modellering van de verwijdering van micro-organismen tijdens de vlokvorming in de drinkwaterzuivering; afstudeerverslag TU Delft, Juni 1995. Magic-Knezev, A.; Kooij, D. van der; Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment; Water Research, Vol. 38, pages 3971-3979, 2004. Magic-Knezev, A.; Kooij, D. van der; Nutritional versatility of two Polaromonas related bacteria isolated from biological granular activated carbon filter; IWA Publishing, 2006. Mauclaire, L.; Schurmann, A.; Thullner, M.; Gammeter, S.; Zeyer. J.; Sand filtration in a water treatment plant: biological parameters responsible for clogging; Journal of Water Supply: Research and Technology, 2004. Moel, P.J. de; Verberk, J.Q.J.C.; Dijk, J.C. van; Drinkwater-principes en praktijk; Sdu Uitgevers bv, Den Haag, 2004. Rietveld, L.C.; Improving operation of drinking water treatment through modelling; Proefschrift, februari 2005. Rietveld, L.C.; Helm, A.C.W. van der; Schagen, K. van; Aa, L.T.J. van der; Dijk, J.C. van; Integral Deterministic Modelling of Drinking Water Treatment; Modelling Workshop Delft, Juni 2006.
89
Nijdam, Y.A.; Hydrobiologie jaarverslag Weesperkarspel; intern rapport Waternet, 19932002. Veen, W. ter; Onderzoek naar drukval, opstartprocedure en spoelprocedure van koolfiltratie. Intern rapport Waternet, Juni 1991. Verberk, J.Q.J.C.; Hamilton, L.A.; O’Halloran, K.J.; Vreeburg, J.H.G.; Dijk, J.C. van; Volume, mass, chemical composition and origin of particles in drinking water transportation pipelines; submitted Water Research, August 2006 a. Verberk, J.Q.J.C.; Hamilton, L.A.; O’Halloran, K.J.; Vreeburg, J.H.G.; Dijk, J.C. van; Measuring particles in drinking water transportation systems with particle counters; submitted Aqua, August 2006 b. Yao, K.M.; Habibian, M.T; O’Melia, C.R; Water and Waste Water Filtration: Concepts and Applications; Environmental Science and Technology, No 11. pages 1105-1112, 1971. http://www.euronet.nl/users/warnar/demosttistiek/stat/mwutwo.htm
90
Bijlagen
91
Bijlagen A. B. C. D. E. F. G. H. I.
Analyse verschildrukken..............................................................................3 Stroomdiagram kolommen 1-4................................................................... 25 Analyses HWL.......................................................................................... 27 Opzet lindquistdiagram ............................................................................. 39 Invloed vorming CaCO3 ............................................................................. 41 Vergelijking looptijd KF 4 en bedrijfskoolfilters ............................................. 43 Looptijden bij drukval van 20 kPa (PI en bedrijf) .......................................... 49 Euler expliciet.......................................................................................... 55 Matlab code: Enkfil_s................................................................................ 57
2
A. Analyse verschildrukken Voor een statistische analyse van de verschildrukken zijn per straat, even of oneven kant en type kool perioden geselecteerd waarvoor de verschildrukken met elkaar vergeleken mogen worden. In deze bijlage is de selectie van de perioden weergegeven en zijn de uitkomsten van de uitgevoerde statische analyses opgenomen.
3
Oneven koolfilters straat noord Drukverloop KF 7,9 en 11 gevuld met Chemviron F300
Periode waarin de KF’s onderling vergeleken worden
14 12
druk [kPa]
10 8 6 4 2 0 1-1-2000
31-12-2000
31-12-2001
31-12-2002
31-12-2003
30-12-2004
datum [dd-mm-jjjj]
Regeneratie KF’s
KF7
KF9
KF11
Figuur A-1 Selectie perioden KF 7, 9 en 11 gevuld met Chemviron F300
Het duurt 8 maanden voordat de biomassa op het kool zich volledig ontwikkeld heeft (van der Aa et al, 2006). De periode waarin de koolfilters onderling met elkaar vergeleken worden liggen dus 8 maanden nadat het laatste filter geregenereerd is tot dat het eerst volgende filter weer geregenereerd moet worden. Tabel A-1 Perioden waarin de drukken van de koolfilters met elkaar vergeleken mogen worden
Periode Periode Periode Periode
4
1 2 3 4
11/01/2001 02/07/2002 11/01/2004 26/06/2005
- 07/07/2001 - 29/12/2002 – 15/05/2004 – 20/09/2005
Drukverloop KF 7, 9 en 11 Drukverloop KF 7,9 en 11 gevuld met Chemviron F300 (periode 1) 12
druk[kPa]
10 8 6 4 2 0 11-01-01
11-02-01
14-03-01
14-04-01
15-05-01
15-06-01
datum [dd-mm-jj] KF7
KF9
KF11
Figuur A-2 Drukverloop KF 7, 9 en 11 gevuld met Chemviron F300 kool (1ste periode) Drukverloop KF 7,9 en 11 gevuld met Chemviron F300 (periode 2) 12
druk[kPa]
10 8 6 4 2 0 2-07-02
2-08-02
2-09-02
3-10-02
3-11-02
4-12-02
datum [dd-mm-jj] KF7
KF9
KF11
Figuur A-3 Drukverloop KF 7, 9 en 11 gevuld met Chemviron F300 kool (2de periode) Drukverloop KF 7,9 en 11 gevuld met Chemviron F300 (periode 3) 12
druk [kPa]
10 8 6 4 2 0 11-01-04
11-02-04
13-03-04
13-04-04
14-05-04
datum [dd-mm-jj] KF7
KF9
KF11
Figuur A-4 Drukverloop KF 7, 9 en 11 gevuld met Chemviron F300 kool (3de periode)
5
Drukverloop KF 7,9 en 11 gevuld met Chemviron F300 (periode 4) 12
druk [kPa]
10 8 6 4 2 0 26-06-05
27-07-05
27-08-05
datum [dd-mm-jj] KF7
KF9
KF11
Figuur A-5 Drukverloop KF 7, 9 en 11 gevuld met Chemviron F300 kool (4de periode)
Test normale verdeling De een steekproef K-S toets is uitgevoerd ter controle normale verdeling van KF 7, 9 en 11 in de vier geselecteerde perioden. One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences
Mean Std. Deviation Absolute Positive Negative
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF71 178 3,0940 1,91626 ,249 ,249 -,198 3,327 ,000
KF72 181 2,5760 1,64240 ,213 ,213 -,196 2,861 ,000
a. Test distribution is Normal. b. Calculated from data.
Figuur A-6 K-S toets voor koolfilter 7
6
KF73 126 2,2088 ,32842 ,093 ,093 -,061 1,047 ,223
KF74 87 2,1166 1,53880 ,322 ,322 -,219 3,007 ,000
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences
Mean Std. Deviation Absolute Positive Negative
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF91 178 2,6930 1,84550 ,279 ,279 -,217 3,722 ,000
KF92 181 2,5407 1,63235 ,207 ,207 -,188 2,782 ,000
KF93 126 1,983 ,2836 ,128 ,128 -,070 1,432 ,033
KF94 87 2,3680 1,61346 ,270 ,270 -,243 2,516 ,000
KF113 126 1,9816 ,27782 ,110 ,110 -,078 1,238 ,093
KF114 87 2,7091 1,71511 ,193 ,192 -,193 1,796 ,003
a. Test distribution is Normal. b. Calculated from data.
Figuur A-7 K S toets voor koolfilter 9
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences
Mean Std. Deviation Absolute Positive Negative
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF111 178 1,7637 ,58510 ,162 ,159 -,162 2,160 ,000
KF112 181 2,6903 1,42218 ,196 ,196 -,132 2,632 ,000
a. Test distribution is Normal. b. Calculated from data.
Figuur A-8 K S toets voor koolfilter 11
Alleen KF 7 en KF 11 zijn gedurende periode 3 normaal verdeeld in de overige perioden zijn de koolfilters niet normaal verdeeld. De Mann-Whitney U test (non-parametrisch) is toegepast. Vergelijking koolfilters onderling Test Statistics a
Ranks KF7911
groep 71 91 Total
N 178 178 356
Mean Rank 197,60 159,40
Sum of Ranks 35172,00 28374,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 12443,000 28374,000 -3,501 ,000
a. Grouping Variable: groep
Figuur A-9 Periode 1: vergelijking KF 7 & 9
7
Ranks KF7911
groep 91 111 Total
N 178 178 356
Mean Rank 226,25 130,75
Test Statistics a
Sum of Ranks 40273,00 23273,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 7342,000 23273,000 -8,755 ,000
a. Grouping Variable: groep
Figuur A-10 Periode 1: vergelijking KF 9 & 11 Test Statistics a
Ranks KF7911
groep 71 111 Total
N 178 178 356
Mean Rank 240,39 116,61
Sum of Ranks 42789,00 20757,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 4826,000 20757,000 -11,347 ,000
a. Grouping Variable: groep
Figuur A-11 Periode 1: vergelijking KF 7 & 11
Koolfilters 7, 9 en 11 verschillen significant van elkaar.
Test Statistics
Ranks KF7911
groep 72 92 Total
N 181 181 362
Mean Rank 186,71 176,29
Sum of Ranks 33794,50 31908,50
a
KF7911 15437,500 31908,500 -,947 ,343
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
a. Grouping Variable: groep
Figuur A-12 Periode 2: vergelijking KF 7 & 9
Test Statistics a
Ranks KF7911
groep 92 112 Total
N 181 181 362
Mean Rank 166,18 196,82
Sum of Ranks 30078,50 35624,50
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 13607,500 30078,500 -2,786 ,005
a. Grouping Variable: groep
Figuur A-13 Periode 2: vergelijking KF 9 & 11
Test Statistics a
Ranks KF7911
groep 72 112 Total
N 181 181 362
Mean Rank 170,33 192,67
Sum of Ranks 30830,50 34872,50
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 14359,500 30830,500 -2,030 ,042
a. Grouping Variable: groep
Figuur A-14 Periode 2: vergelijking KF 7 & 11
KF 7 en KF 9 hebben gedurende periode 2 een vergelijkbare drukopbouw. KF 7 en 11 en KF 9 en 11 zijn, met een betrouwbaarheid van 95%, significant verschillend.
8
Test Statistics a
Ranks KF7911
groep 73 93 Total
N 126 126 252
Mean Rank 154,68 98,32
Sum of Ranks 19490,00 12388,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 4387,000 12388,000 -6,139 ,000
a. Grouping Variable: groep
Figuur A-15 Periode 3: KF 7 & 9 Test Statistics a
Ranks KF7911
groep 93 113 Total
N 126 126 252
Mean Rank 126,17 126,83
Sum of Ranks 15898,00 15980,00
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 7897,000 15898,000 -,071 ,943
a. Grouping Variable: groep
Figuur A-16 Periode 3: KF 9 & 11 Test Statistics
Ranks KF7911
groep 73 113 Total
N 126 126 252
Mean Rank 154,23 98,77
Sum of Ranks 19433,50 12444,50
a
KF7911 4443,500 12444,500 -6,041 ,000
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
a. Grouping Variable: groep
Figuur A-17 Periode 3: KF 7 & 11
KF 9 en KF 11 hebben gedurende periode 3 een vergelijkbare drukopbouw. KF 7 & KF 9 en KF 7 & KF 11 zijn significant verschillend. Test Statistics a
Ranks KF7911
groep 74 94 Total
N 87 87 174
Mean Rank 71,76 103,24
Sum of Ranks 6243,00 8982,00
KF7911 2415,000 6243,000 -4,123 ,000
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
a. Grouping Variable: groep
Figuur A-18 Periode 4: KF 7 & 9
Test Statistics
Ranks KF7911
groep 94 114 Total
N 87 87 174
Mean Rank 78,16 96,84
Sum of Ranks 6799,50 8425,50
a
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 2971,500 6799,500 -2,447 ,014
a. Grouping Variable: groep
Figuur A-19 Periode 4: KF 9 & 11
9
Ranks KF7911
groep 74 114 Total
N 87 87 174
Test Statistics
Mean Rank 68,54 106,46
Sum of Ranks 5963,00 9262,00
a
Mann-Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)
KF7911 2135,000 5963,000 -4,965 ,000
a. Grouping Variable: groep
Figuur A-20 Periode 4: KF 7 & 11
De koolfilters zijn allemaal significant verschillend ten opzichte van elkaar gedurende periode 4.
10
Even koolfilters straat noord Drukverloop KF 2,4,8,10 en 12 gevuld met Chemviron F300
Periode waarin de KF’s onderling vergeleken worden
16 14
druk [kPa]
12 10 8 6 4 2 0 1-1-2000
31-12-2000
31-12-2001
31-12-2002
31-12-2003
30-12-2004
datum [mm-dd-jjjj]
Regeneratie KF’s KF2
KF4
KF8
KF10
KF12
Figuur A-21 Selectie perioden waarvoor KF 8, 10 en 12 met elkaar vergeleken kunnen worden
Het is niet mogelijk alle Chemviron F300 koolfilters aangegeven in bovenstaand figuur mee te nemen in de analyse als gevolg van de tijd tussen de reactivatie en de aanwezigheid van een constante biomassa. Er is gekozen om KF 8, 10 en 12 met elkaar te vergelijk daar deze ook even vaak gereactiveerd zijn en eventuele verschillen in filtratiecapaciteit als gevolg van de reactivatie buiten beschouwing gelaten worden. Tabel 1-A-2 Perioden waarin de drukken van de koolfilters met elkaar vergeleken mogen worden
Periode 1 Periode 2 Periode 3
21/08/2001 – 26/01/2001 16/02/2003 – 03/08/2003 21/08/2004 – 31/01/2005
11
Drukverloop KF 8, 10 en 12 gevuld met Chemviron F300 kool Drukverloop KF 8,10 en 12 gevuld met Chemviron F300 (periode 1) 14 12
druk[kPa]
10 8 6 4 2 0 21-08-01
20-09-01
20-10-01
19-11-01
19-12-01
18-01-02
datum [mm-dd-jj] KF8
KF10
KF12
Figuur A-22 Drukverloop KF 8, 10 en 12 (1ste periode) Drukverloop KF 8,10 en 12 gevuld met Chemviron F300 (periode 2) 14 12
druk[kPa]
10 8 6 4 2 0 16-02-03
18-03-03
17-04-03
17-05-03
16-06-03
16-07-03
datum [mm-dd-jj] KF8
KF10
KF12
Figuur A-23 Drukverloop KF 8, 10 en 12 (2de periode) Drukverloop KF 8,10 en 12 gevuld met Chemviron F300 (periode 3) 14 12
druk[kPa]
10 8 6 4 2 0 21-08-04
20-09-04
20-10-04
19-11-04
19-12-04
datum [mm-dd-jj] KF8
KF10
KF12
Figuur A-24 Drukverloop KF 8, 10 en 12 (3de periode)
12
18-01-05
Controle normale verdeling
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b
Mean Std. Deviation Absolute Positive Negative
Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF81 159 2,668 2,0189 ,198 ,198 -,176 2,495 ,000
KF82 169 2,221 1,2840 ,225 ,225 -,148 2,929 ,000
KF83 164 1,8234 1,06687 ,195 ,195 -,185 2,500 ,000
a. Test distribution is Normal. b. Calculated from data.
Figuur A-25 K-S toets voor koolfilter 8
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b
Mean Std. Deviation Absolute Positive Negative
Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF101 159 2,1472 1,47110 ,229 ,229 -,218 2,883 ,000
KF102 169 2,7289 1,87227 ,258 ,258 -,181 3,352 ,000
KF103 164 2,146 1,2725 ,246 ,246 -,189 3,156 ,000
a. Test distribution is Normal. b. Calculated from data.
Figuur A-26 K-S toets voor koolfilter 10
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences
Mean Std. Deviation Absolute Positive Negative
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF121 159 2,763 2,0644 ,203 ,203 -,181 2,557 ,000
KF122 169 1,8288 ,91470 ,243 ,243 -,197 3,156 ,000
KF123 164 3,0373 2,26511 ,228 ,228 -,202 2,915 ,000
a. Test distribution is Normal. b. Calculated from data.
Figuur A-27 K S toets voor koolfilter 12
13
Geen van de datasets is normaal verdeeld. Vergelijking koolfilters onderling Tabel A-3 Periode 1
KF 8 KF 8 KF 10 KF 12
0.054 0.435
KF 10 0.054
KF 12 0.435 0.006
0.006 Tabel A-4 Periode 2
KF 8 KF 8 KF 10 KF 12
0.008 0.002
KF 10 0.008
KF 12 0.002 0.000
0.000 Tabel A-5 Periode 3
KF 8 KF 8 KF 10 KF 12
0.000 0.000
KF 10 0.000
KF 12 0.000 0.002
0.002
Alleen KF 8 & 10 en KF 8 & 12 zijn vergelijkbaar tijdens periode 1, de overige koolfilters en perioden zijn de drukken significant verschillend van elkaar terwijl de koolfilters zelfs even vaak gereactiveerd zijn.
14
Oneven koolfilters straat zuid type Chemviron F300 Drukverloop KF 13, 15, 21, 23 en 25 straat zuid
Periode waarin de KF’s onderling vergeleken worden
20 18 16 druk [kPa]
14 12 10 8 6 4 2 0 1-1-2000
31-12-2000
31-12-2001
31-12-2002
31-12-2003
30-12-2004
datum [dd-mm-jjjj]
Regeneratie KF’s KF13
KF15
KF21
KF23
KF25
Figuur A-28 Selectie perioden KF 13, 21, 23 en 25 gevuld met Chemviron F300 kool
Het is niet mogelijk om alle oneven koolfilters gevuld met Chemviron F300 in straat zuid met elkaar te vergelijken. Aangezien het 8 maanden duurt voordat de biomassa zich na regeneratie van de koolfilters weer volledig heeft ontwikkeld. Om deze reden is koolfilter 15 niet meegenomen. Tabel A-6 Perioden waarin de drukken van de oneven koolfilters straat zuid (type Chemviron F300) met elkaar vergeleken worden
Periode 1 Periode 2 Periode 3
28/02/2002 – 20/05/2002 27/08/2003 - 17/11/2003 06/03/2005 – 16/05/2005
15
Drukverloop Drukverloop KF 13, 21, 23 en 25 straat zuid (periode 1) 20 18 16 druk[kP a]
14 12 10 8 6 4 2 0 28-02-02
30-03-02
29-04-02
datum [dd-mm-jj] KF13
KF21
KF23
KF25
Figuur A-29 Drukverloop KF 13, 21, 23 en 25 (1ste periode) Drukverloop KF 13, 21, 23 en 25 straat zuid (periode 2) 20 18 16 druk[kP a]
14 12 10 8 6 4 2 0 27-08-03
26-09-03
26-10-03
datum [dd-mm-jj] KF13
KF21
KF23
KF25
Figuur A-30 Drukverloop KF 13, 21, 23 en 25 (2de periode)
Drukverloop KF 13, 21, 23 en 25 straat zuid (periode 3) 20 18 16 druk [kPa]
14 12 10 8 6 4 2 0 6-03-05
5-04-05
5-05-05
datum [dd-mm-jj] KF13
KF21
KF23
KF25
Figuur A-31 Drukverloop KF 13, 21, 23 en 25 (3de periode)
16
Controle normale verdeling One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b
Mean Std. Deviation Absolute Positive Negative
Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF131 82 5,3795 1,46283 ,125 ,125 -,101 1,134 ,153
KF132 83 3,1594 1,18327 ,142 ,142 -,079 1,294 ,070
KF133 72 2,4251 ,43727 ,115 ,115 -,090 ,976 ,296
a. Test distribution is Normal. b. Calculated from data.
Figuur A-32 K S toets voor koolfilter 13
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b
Mean Std. Deviation Absolute Positive Negative
Most Extreme Differences Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF211 82 6,024 2,2844 ,150 ,150 -,149 1,362 ,049
KF212 83 4,4963 1,75947 ,135 ,135 -,109 1,233 ,096
KF213 72 3,3340 ,62576 ,149 ,149 -,091 1,263 ,082
a. Test distribution is Normal. b. Calculated from data.
Figuur A-33 K S toets voor koolfilter 21
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences
Mean Std. Deviation Absolute Positive Negative
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF231 82 6,3411 2,07355 ,137 ,137 -,109 1,238 ,093
KF232 83 3,9587 1,33686 ,141 ,141 -,086 1,285 ,074
KF233 72 2,7810 ,58168 ,204 ,204 -,146 1,730 ,005
a. Test distribution is Normal. b. Calculated from data.
Figuur A-34 K S toets voor koolfilter 23
17
One-Sample Kolmogorov-Smirnov Test N Normal Parameters a,b Most Extreme Differences
Mean Std. Deviation Absolute Positive Negative
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
KF251 82 6,5337 2,17227 ,126 ,126 -,095 1,138 ,150
KF252 83 4,5408 1,28982 ,116 ,116 -,075 1,060 ,212
KF253 72 3,7983 ,63675 ,198 ,198 -,116 1,676 ,007
a. Test distribution is Normal. b. Calculated from data.
Figuur A-35 K S toets voor koolfilter 25
Niet alle datasets zijn normaal verdeeld. Voor de analyse is wederom de Mann-Whitney U toets gebruikt. Vergelijking koolfilters onderling
KF 13 KF KF KF KF
13 21 23 25
0.134 0.002 0.000
Tabel A-7 Periode 1 KF 21 KF 23 0.134 0.002 0.148 0.148 0.029 0.503
KF 25 0.000 0.029 0.503
De opeenvolgende koolfilters hebben vergelijkbare drukopbouwen alsmede KF 13 & 21. Een vergelijking van de drukopbouw van de overige koolfilters laat significante verschillen zien.
KF 13 KF KF KF KF
13 21 23 25
0.000 0.000 0.000
Tabel A-8 Periode 2 KF 21 KF 23 0.000 0.000 0.023 0.023 0.225 0.001
KF 25 0.000 0.225 0.001
Alleen KF 21 & 25 hebben vergelijkbare drukopbouw. Alle andere koolfilters verschillen significant ten opzichte van elkaar.
KF 13 KF KF KF KF
13 21 23 25
0.000 0.000 0.000
Tabel A-9 Periode 3 KF 21 KF 23 0.000 0.000 0.000 0.000 0.000 0.000
KF 25 0.000 0.000 0.000
Voor periode 3 geldt dat alle koolfilters significant verschillende drukopbouwen hebben.
18
Oneven koolfilters straat zuid type Norit GAC 830 Drukverloop KF 15 en 17 gevuld met type Norit GAC 830 kool
Periode waarin de KF’s onderling vergeleken worden
20 18 16 druk [kPa]
14 12 10 8 6 4 2 0 1-1-2000
31-12-2000
31-12-2001
Regeneratie KF’s
31-12-2002
31-12-2003
30-12-2004
datum [dd-mm-jjjj] KF17
KF19
Figuur A-36 Selectie periode koolfilter 15 en 17 gevuld met Norit GAC 830 kool
Tabel A-10 Perioden waarin de drukken van de oneven koolfilters straat zuid (type Norit GAC 830) met elkaar vergeleken worden Periode 1 27/10/2001 – 01/07/2002 Periode 2 28/04/2003 – 29/12/2003 Periode 3 09/10/2004 – 04/07/2005
19
Drukverloop Drukverloop KF 15 en 17 gevuld met type Norit GAC 830 kool (periode 1) 20 18 16 druk[kPa]
14 12 10 8 6 4 2 0 27-10-01
26-12-01
24-02-02
25-04-02
24-06-02
datum [dd-mm-jj] KF17
KF19
Figuur A-37 Drukverloop KF 15 en 17 (1ste periode) Drukverloop KF 15 en 17 gevuld met type Norit GAC 830 kool (periode 2) 20 18 16 druk[kPa]
14 12 10 8 6 4 2 0 28-04-03
27-06-03
26-08-03
25-10-03
24-12-03
datum [dd-mm-jj] KF17
KF19
Figuur A-38 Drukverloop KF 15 en 17 (2de periode)
Drukverloop KF 15 en 17 gevuld met type Norit GAC 830 kool (periode 3) 20 18 16 druk [kPa]
14 12 10 8 6 4 2 0 09-10-04
08-12-04
06-02-05
07-04-05
datum [dd-mm-jj] KF17
KF19
Figuur A-39 Drukverloop KF 15 en 17 (3de periode)
20
06-06-05
Uit de een-steekproef Kolmogorov-Smirnov test blijkt geen enkele dataset normaal verdeeld is. De non-parametrische Mann-Whitney U toets wordt wederom toegepast. Tabel A-11 Periode 1 KF 17 KF 17 KF 19
0.000 Tabel A-12 Periode 2 KF 17
KF 17 KF 19
KF 19 0.000
0.000 Tabel A-13 Periode 3 KF 17
KF 17 KF 19
KF 19 0.000
KF 19 0.575
0.575
Alleen in periode 3 is de drukopbouw in koolfilter 17 en 19 vergelijkbaar, in periode 1 en 2 is de drukopbouw significant verschillend tussen beide koolfilters.
21
Even koolfilters straat zuid Drukopbouw KF 16, 18, 22, 24 en 26 gevuld met Chemviron F300 kool
Periode waarin de KF’s onderling vergeleken worden
20 18 16 druk [kPa]
14 12 10 8 6 4 2 0 1-1-2000
31-12-2000
31-12-2001
31-12-2002
31-12-2003
30-12-2004
datum [dd-mm-jjjj]
Regeneratie KF’s
KF16
KF18
KF22
KF24
KF26
Figuur A-40 Selectie perioden KF 16, 18, 22 en 26 gevuld met Chemviron F300 Kool
Vanwege de spreiding in de regeneraties van de koolfilters is ervoor gekozen alleen KF 16, 18, 22 en 26 met elkaar te vergelijken en KF 24 buiten beschouwing te laten.
Periode 1 Periode 2 Periode 3
22
Tabel A-14 Perioden waarin de drukken van de even koolfilters straat zuid met elkaar vergeleken worden 29/01/2002 – 17/03/2002 14/07/2003 – 15/09/2003 11/12/2004 – 14/03/2005
Drukopbouw Drukopbouw KF 16, 18, 22 en 26 gevuld met Chemviron F300 kool (periode 1) 20 18 16 druk[kPa]
14 12 10 8 6 4 2 0 29-01-02
12-02-02
26-02-02
12-03-02
datum [dd-mm-jj] KF16
KF18
KF22
KF26
Figuur A-41 Drukopbouw KF 16, 18, 22 en 26 (1ste periode) Drukopbouw KF 16, 18, 22 en 26 gevuld met Chemviron F300 kool (periode 2) 20 18 16 druk[kPa]
14 12 10 8 6 4 2 0 14-07-03
28-07-03
11-08-03
25-08-03
8-09-03
datum [dd-mm-jj] KF16
KF18
KF22
KF26
Figuur A-42 Drukopbouw KF 16, 18, 22 en 26 (2de periode) Drukopbouw KF 16, 18, 22 en 26 gevuld met Chemviron F300 kool (periode 3) 20 18 16 druk [kPa]
14 12 10 8 6 4 2 0 11-12-04
25-12-04
8-01-05
22-01-05
5-02-05
19-02-05
5-03-05
datum [dd-mm-jj] KF16
KF18
KF22
KF26
Figuur A-43 Drukopbouw KF 16, 18, 22 en 26 (3de periode)
23
Controle normale verdeling
KF KF KF KF
16 18 22 26
Tabel A-15 Controle normale verdeling met K-S toets Periode 1 Periode 2 Periode 3 0.370 0.600 0.026 0.461 0.242 0.140 0.264 0.341 0.169 0.319 0.671 0.373
Aangezien KF 16 in periode 3 niet normaal verdeeld is wordt de Mann-Whitley-U toets toegepast.
KF KF KF KF
16 18 22 26
Tabel A-16 Vergelijking koolfilters periode 1 KF 16 KF 18 KF 22 0.047 0.050 0.047 0.000 0.050 0.000 0.605 0.125 0.011
KF 26 0.605 0.125 0.011
KF 16 & 26 en KF 18 & 26 hebben vergelijkbare drukopbouw, de overige combinaties zijn significant verschillend.
KF KF KF KF
16 18 22 26
Tabel A-17 Vergelijking koolfilters periode 2 KF 16 KF 18 KF 22 0.324 0.032 0.324 0.284 0.032 0.284 0.493 0.659 0.097
KF 26 0.493 0.659 0.097
Op KF 16 & 22 na is gedurende periode 2 de drukopbouw van de koolfilters vergelijkbaar.
KF KF KF KF
16 18 22 26
Tabel A-18 Vergelijking koolfilters periode 3 KF 16 KF 18 KF 22 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.059
KF 26 0.005 0.000 0.059
Alleen KF 22 & 26 hebben vergelijkbare drukopbouw, de drukopbouw van de andere koolfilters is significant verschillend.
24
B. Stroomdiagram kolommen 1-4 In onderstaand schema staat het stroomdiagram tijdens de experimenten van koolfilter 1-4 in de proefinstallatie met daarin opgenomen de coderingen van de monsterpunten voor Het Waterlaboratorium.
PWKPI023
ODK 4
PWKPI 010
PWKPI032
ODK 3
OCK4
OCK3
OBT2
PWK -PI008
Ruwwater
PWKPI031
PWK -PI001
Proefopzet proefinstallatie
PWK -PI028
Water bedrijf: Ruwwater + O3 + ontharders
OH 2
PWK-PI KF4-INF
KF 4
PWK -PI057
PWK-PIKF3-INF
KF 3
PWK-PI056
PWK -PI053
PWK-PI052
PWK-PI KF2-INF
PWK-PI KF1-INF
PWK -PI050
KF 2
PWK-PI 049
ontharder = kalkafzettend
KF 1
HCLdosering PWK -PI045
PWK-PI 044
Behandeling per straat
Ruwwater
Ruwwater
Ruwwater
HCldosering O3
OH
straat 1
straat 1
O3
OH
straat 1
straat 1
O3
BAKF 2
BAKF 3
straat 1
Ruwwater
BAKF 1
O3
OH
bedrijf
bedrijf
BAKF 4
Figuur B-1 Stroomdiagram koolfilters 1-4 in de proefinstallatie
25
26
C. Analyses HWL Gedurende de experimenten van de procestechnische variabelen zijn op iedere dinsdag monsters genomen door Het Waterlaboratorium. In onderstaande tabellen zijn de wekelijkse analyses die zijn uitgevoerd opgenomen (grijze vlakken). Aansluitend zijn de resultaten van deze analyses weergegeven. De experimenten zijn gestart in week 15. Naast de wekelijkse analyses zijn er ook nog ad hoc metingen uitgevoerd; zeefanalyses van toplaag en bodem van koolfilter 1-4, analyse spoelwater na instelling 3 op onder andere zoo- en fyto-plankton. ATP op kool in de toplaag van de koolfilters voor en na spoelen.
Wekelijkse analyses
11.3 11.3 <2 0.06 <0.2 11.6 11.4
pH
6
Mg
8
Ca
15
O2
13
CO3
<10 <10 <10 5.2 <10
Gesusp. stoffen
35
PO4-t
130
HCO3
0.24 0.52 0.26 0.17
18
Chlorfyl-a
Fe-opg [ug/l]
FTU 5
ATP op kool [ng/g]
6
AOC [ug/l C]
6
DOC [mg/l C]
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
O3 in gas
Week 15 Dinsdag
O3 in water
Tabel C-1 Metingen HWL week 15
4
1
6
6
4
0 0 0 0
157 168 199 164
54.5 54.3 85.9 52.4
6.24 6.25 6.35 6.24
7.59 8.11 7.6 7.73
0 0 0 0
164 167 198 163
56.6 54.0 85.1 52.7
6.43 6.19 6.23 6.19
7.69 7.76 7.51 7.54
340 330 290 260 0.14 0.27 0.1 0.2
<10 <10 <10 <10
8.0 8.0 8.5 8.4
27
7.6 7.4 7.8 8.1
pH
10.5 10.8 <2 0.06 <0.2 10.9 10.9
Mg
<10 <10 <10 <10
6
Ca
0.08 0.09 0.08 0.1
8
CO3
<10 <10 <10 5.8 <10
15
HCO3
0.14 0.3 0.15 0.29
13
O2
35
Gesusp. stoffen
130
PO4-t
18
Chlorfyl-a
Fe-opg [ug/l]
FTU 5
ATP op kool [ng/g]
6
AOC [ug/l C]
6
DOC [mg/l C]
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
O3 in gas
Week 16 Dinsdag
O3 in water
Tabel C-2 Metingen HWL week 16
4
1
6
6
4
0 0 0 0
162 173 206 167
52.1 52.2 81.9 49
5.81 5.82 5.88 5.79
7.52 8.04 7.57 7.6
0 0 0 0
162 173 205 166
51.4 51.2 81.5 47.7
5.73 5.71 5.85 5.67
7.38 7.69 7.39 7.42
28
Mg
pH
<10 <10 <10 <10
6
Ca
0.1 0.06 0.1 0.07
8
CO3
<10 <10 <10 6.3 <10
15
HCO3
0.33 0.41 0.1 0.27
13
O2
35
Gesusp. stoffen
130
PO4-t
18
Chlorfyl-a
Fe-opg [ug/l]
FTU 5
ATP op kool [ng/g]
6
AOC [ug/l C]
6
DOC [mg/l C]
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
O3 in gas
Week 17 Dinsdag
O3 in water
Tabel C-3 Metingen HWL week 17
4
1
6
6
4
162 174 202 171
54.5 54.4 84.2 53.2
6.12 6.13 6.18 6.17
7.56 8.06 7.57 7.72
162 173 202 171
55.6 54.9 85 53
6.17 6.2 6.25 6.15
7.41 7.75 7.43 7.51
10.3 0 10.1 0 <2 0.04 <0.2 9.6 0 0
6.5 6.4 5.9 6.9
0 0 0 0
4
1
6
6
4
10.5 10.6 9.4 10.7
0 0 0 0
164 175 203 169
55.2 54.8 85.5 54
6.26 6.21 6.27 6.18
7.63 8.23 7.62 7.74
7.6 6.1 7.5 7.0
0 0 0 0
162 174 202 161
53.3 54 84.3 51.4
5.99 6.01 6.25 6.1
7.4 7.74 7.42 7.5
O2
pH
Gesusp. stoffen
PO4-t
Mg
18 130 35 6.1
Chlorfyl-a
ATP op kool [ng/g]
AOC [ug/l C]
DOC [mg/l C]
Fe-opg [ug/l]
5 0.1
Ca
6
CO3
6
HCO3
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
FTU
Week 18 Dinsdag
O3 in gas [g/Nm3]
O3 in water
Tabel C-4 Metingen HWL week 18
13 15 8 6 <2 <0.03 0.3
0.04 0.1 0.14 0.48 0.2 0.28
0.06 0.08 0.08 0.04
<10 <10 10 <10 250 27 220 160
<10 <10 <10 <10
pH
4
1
6
6
4
9.8 9.6 9.6 10.1
0 0 0 0
164 178 208 163
55.4 55.4 85.6 49.8
6.09 6.11 6.17 6.03
7.69 8.36 7.71 7.75
4.7 7.3 4.5 5.4
0 0 0 0
164 176 203 162
56.1 55.1 87.2 49.6
6.19 6.08 6.3 5.96
7.45 7.8 7.49 7.51
O2
Mg
Gesusp. stoffen
PO4-t
ATP op kool [ng/g] Chlorfyl-a
AOC [ug/l C]
DOC [mg/l C]
Fe-opg [ug/l]
5 0.08
Ca
6
CO3
6
HCO3
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
FTU
Week 19 Dinsdag
O3 in gas [g/Nm3]
O3 in water
Tabel C-5 Metingen HWL week 19
18 130 35 13 15 8 6 5.5 <2 <0.03 <0.2
0.04 0.18 0.2 0.23 0.38 0.1 0.22
<10 <10 <10 <10
0.06 0.08 0.08 0.04
<10 <10 <10 <10
73 61 120 52
29
pH
O2
Gesusp. stoffen
13 15 8 6 <2 <0.03 <0.2
Mg
18 130 35 5.8
PO4-t
ATP op kool [ng/g] Chlorfyl-a
AOC [ug/l C]
DOC [mg/l C]
Fe-opg [ug/l]
5 0.12
Ca
6
CO3
6
HCO3
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
FTU
Week 20 Dinsdag
O3 in gas [g/Nm3]
O3 in water
Tabel C-6 Metingen HWL week 20
4
1
6
6
4
0.05 0.26 0.04 0.1 0.45 0.14 0.38
<10 <10 <10 <10
9.2 9.3 9.1 9.7
0 0 0 0
166 178 209 176
61.3 59.7 92.8 57.6
6.83 6.66 6.93 6.72
7.64 8.28 7.77 8.05
0.04 0.08 0.07 0.09
<10 <10 <10 <10
4.5 3.9 3.9 4.6
0 0 0 0
164 176 203 172
59.5 60.2 96 57.8
6.6 6.67 7.18 6.73
7.39 7.81 7.47 7.64
30
4
1
6
6
4
9.4 9.5 9.8 10.4
0 1.7 0 0
159 169 199 167
55 54.6 86 56.4
6.01 6.27 6.36 6.26
7.7 8.41 7.71 7.75
3.8 3.6 3.8 4.9
0 0 0 0
160 172 198 169
55 55.1 85.7 56.7
6.21 6.24 6.43 6.28
7.44 7.81 7.47 7.55
O2
pH
Gesusp. stoffen
PO4-t
Mg
18 130 35 6.3
Chlorfyl-a
ATP op kool [ng/g]
AOC [ug/l C]
DOC [mg/l C]
Fe-opg [ug/l]
5 0.24
Ca
6
CO3
6
HCO3
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
FTU
Week 21 Dinsdag
O3 in gas [g/Nm3]
O3 in water
Tabel C-7 Metingen HWL week 21
13 15 8 6 <2 0.03 0.8
<0.02 0.29 0.57 0.62 <0.02 0.38 1.1 0.29 0.38
0.03 0.09 0.14 0.03
<10 <10 <10 <10
<10 <10 <10 <10
1100 1100 1600 1400
pH
4
1
6
6
4
9.7 9.8 10 10.3
0 1.8 0 0
158 168 199 166
54.2 53.8 86.1 56
6.31 6.26 6.42 6.31
7.68 8.41 7.69 7.72
4.3 4.2 4.4 5.4
0 0 0 0
157 170 198 166
53.7 53.7 85.8 55.8
6.15 6.17 6.07 6.28
7.42 7.79 7.45 7.46
O2
Mg
Gesusp. stoffen
PO4-t
ATP op kool [ng/g] Chlorfyl-a
AOC [ug/l C]
DOC [mg/l C]
Fe-opg [ug/l]
5 0.1
Ca
6
CO3
6
HCO3
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
FTU
Week 22 Dinsdag
O3 in gas [g/Nm3]
O3 in water
Tabel C-8 Metingen HWL week 22
18 130 35 13 15 8 6 5.7 <2 <0.03 0.2
0.35 0.35 0.82 0.79 <0.02 0.31 0.7 0.1 0.26
<10 <10 <10 <10
0.05 0.05 <0.03 <0.03
<10 <10 <10 <10
110 60
pH
18 130 35 13 15 8 6 6 <2 <0.03 <0.2
Mg
O2
Gesusp. stoffen
PO4-t
ATP op kool [ng/g] Chlorfyl-a
AOC [ug/l C]
DOC [mg/l C]
Fe-opg [ug/l]
5 0.14
Ca
6
CO3
6
HCO3
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1INF PWK-PI-KF2INF PWK-PI-KF3INF PWK-PI-KF4INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
FTU
Week 22 Dinsdag
O3 in gas [g/Nm3]
O3 in water
Tabel C-9 Metingen HWL week 22
4
1
6
6
4
0.14 0.04 0.74 0.19 <0.02 0.18 0.44 0.09 0.19
<10 <10 <10 <10
9.5 9.5 9.6 10
0 2.1 0 0
161 144 203 173
53 52.4 83 55.6
6.04 5.96 6.09 5.97
76 8.37 7.62 7.57
<0.03 <0.03 <0.03 <0.03
<10 <10 <10 <10
4.2 4 4.2 5.1
0 0 0 0
158 172 203 167
52.4 52.1 82.8 55
5.97 5.97 6.06 6.11
7.3 7.74 7.36 7.37
31
pH
6
Mg
8
Ca
15
CO3
13
HCO3
35
O2
130
Gesusp. stoffen
18
PO4-t
DOC [mg/l C]
Fe-opg [ug/l]
5
Chlorfyl-a
6
ATP op kool [ng/g]
6
AOC [ug/l C]
Kiwapunten PWK-PI-001 PWK-PI-028 PWK-PI-008 PWK-PI-031 PWK-PI-010 PWK-PI-032 PWK-PI-023 PWK-PI-KF1-INF PWK-PI-KF2-INF PWK-PI-KF3-INF PWK-PI-KF4-INF PWK-PI-045 PWK-PI-050 PWK-PI-053 PWK-PI-057 PWK-PI-044 PWK-PI-049 PWK-PI-052 PWK-PI-056
FTU
Week 23 Donderdag
O3 in gas
O3 in water
Tabel C-10 Metingen HWL week 23
4
1
6
6
4
210 290 560 490
In onderstaande figuren zijn de gemeten waarden grafisch verwerkt en worden per parameter kort toegelicht. De metingen van opgelost ijzer in het influent en effluent van de koolfilters, de gesuspendeerde stoffen en chlorofyl-a in het ruwe water liggen allen onder de rapportage grens. Ondanks dat de chlorofyl-a metingen onder de rapportage grens liggen is er toch gedurende instelling 2 een algenbloei geweest op de bufferplas in Loenen. Dit is visueel waargenomen. De chlorofyl-a bepaling is niet de juiste bepaling gebleken voor het type algen aanwezig in de plas. Troebelheid inf luent en ef f luent KF 1-4
1.2 Instelling 1
Instelling 2
Instelling 3
Troebelheid [FTU]
1 0.8 0.6 0.4 0.2 0 10-042006
17-042006
24-042006
01-052006
08-052006
15-052006
22-052006
29-052006
05-062006
12-062006
Datum KF1 INF
KF1 EFF
KF2 INF
KF3 EFF
KF4 INF
KF4 EFF
KF2 EFF
Figuur C-1 Troebelheid influent en effluent KF 1-4
32
KF3 INF
De troebelheid van KF 2 (SI>0.45) ligt hoger dan de troebelheid van KF 1,3 en 4. Een positieve SI als gevolg van de ontharding zorgt voor een hogere troebelheid (meer carryover)
Zuurstofconcentratie influent en effluent KF 1-4
14 Instelling 1
Instelling 2
Instelling 3
Zuurstofconcentratie [mg/l]
12 10 8 6 4 2 0 10-042006
17-042006
24-042006
01-052006
08-052006
15-052006
22-052006
29-052006
05-062006
12-062006
Datum KF1 INF
KF1 EFF
KF2 INF
KF3 EFF
KF4 INF
KF4 EFF
KF2 EFF
KF3 INF
Figuur C-2 Zuurstofconcentratie influent en effluent KF 1-4
Verschil zuurstofconcentratie influent en verzadigingsconcentratie
1.5 Instelling 1
Instelling 2
Instelling 3
1
Ca-Cs [mg/l]
0.5
Oververzadigd 0 10-42006 -0.5
17-42006
24-42006
1-5-2006 8-5-2006
15-52006
22-52006
29-52006
5-6-2006
12-62006
-1 KF 1
-1.5
Onderverzadigd
KF 2 KF 3 KF 4
-2 datum
Figuur C-3 Verschil zuurstofconcentratie influent en verzadigingsconcentratie
33
De gemeten zuurstofconcentratie in het influent is verminderd met de verzadigingsconcentratie. Bij de start van de experimenten is het water oververzadigd. DOC concentratie ruw w ater 7
DOC [mg C/l]
6 5 4 3 2 1 0 10-04- 17-04- 24-04- 01-05- 08-05- 15-05- 22-05- 29-05- 05-06- 12-062006 2006 2006 2006 2006 2006 2006 2006 2006 2006 Datum [dd-mm-jjjj]
Figuur C-4 DOC concentratie ruw water
Saturatie index KF 1-4
1 Instelling 1
0.8
Instelling 2
Instelling 3
0.6
Saturatie index
0.4 0.2 0 10-04-0.2 2006
17-042006
24-042006
01-052006
08-052006
15-052006
22-052006
29-052006
05-062006
12-062006
-0.4 -0.6 -0.8 -1 Datum KF1 INF
KF1 EFF
KF2 INF
KF3 EFF
KF4 INF
KF4 EFF
KF2 EFF
KF3 INF
Figuur C-5 Saturatie index (berekend in Stimela) influent en effluent KF 1-4
Zeefanalyses toplaag en bodem koolfilter 1-4
34
Tabel C-11 Zeefanalyse toplaag KF 1-4
Toplaag Uniformiteit D10 [mm] D50 [mm] D60 [mm] D90 [mm]
KF1 1.28 0.64 0.79 0.82 0.97
KF2 1.31 0.71 0.88 0.92 1.12
KF3 1.39 0.77 1.01 1.07 1.33
KF4 1.37 0.71 0.91 0.97 1.32
Tabel C-12 Zeefanalyse onderkant filterbed KF 1-4
Bodem Uniformiteit D10 [mm] D50 [mm] D60 [mm] D90 [mm]
KF1 1.78 0.92 1.58 1.64 2.09
KF2 1.67 0.91 1.42 1.52 1.67
KF3 1.66 0.90 1.39 1.49 1.90
KF4 1.66 0.98 1.52 1.63 2.06
Zeefcurve toplaag KF1-4 PI
100 90 80
% gepasseerd
70 60 50 40 30 KF1 20
KF2
10
KF3 KF4
0 0
0.5
1
1.5
2
2.5
3
Maasw ijdte [mm]
Figuur C-6 Zeefcurve toplaag KF 1-4
Koolfilter 1 bevat in de toplaag de kleinste fractie ten opzichte van de andere koolfilters. Hoe kleiner de fractie, hoe kleiner de poriegrootte met als gevolg dat er meer deeltjes in de bovenste laag afgevangen zullen worden. Dit zou een snellere en grotere weerstandstoename als gevolg kunnen hebben.
35
Zeefcurve bodem KF1-4 PI 100 90 80
% gepasseerd
70 60 50 40 30
KF1
20
KF2 KF3
10
KF4 0 0
0.5
1
1.5
2
2.5
3
Maasw ijdte [mm]
Figuur C-7 Zeefcurve onderkant filterbed KF 1-4
Analyse spoelwater KF 1-4 na instelling 3 Het spoelwater is bemonsterd zodra het eerste water via de overstort in de goot terecht kwam. Deze monsters zijn genomen om een indicatie te krijgen van wat zich in de koolfilters heeft opgehoopt gedurende de filterlooptijd. Tabel C-13 Anorganische parameters analyse spoelwater KF 1-4 Anorganisch KF 1 KF 2 KF 3 KF 4 Calcium [mg/l] 97.4 80.6 93.9 70.4 Ijzer [mg/l] 1.8 1.3 2.2 2.4 Tabel C-14 Fytoplankton tellingen analyse spoelwater KF 1-4 Fytoplankton [n/l] KF 1 KF 2 KF 3 KF 4 Bacillariophyceae 1,800,000 1,500,000 1,700,000 2,000,000 Chlorophyceae 220,000 430,000 870,000 610,000 Chrysophyceae 94,000 180,000 430,000 250,000 Cryptophyceae 130000 0 0 0 Cyanophyceae 0 0 0 0 Dinophyceae 0 0 0 0 Euglenophyceae 310,000 61,000 0 120,000 fytoplankton, diversen 0 610,000 430,000 180,000 fytoplankton, totaal 2,500,000 2,800,000 3,500,000 3,100,000 xanthophyceae 0 0 0 0 centrale centrale centrale centrale dominante soort diatomeeën diatomeeën diatomeeën diatomeeën
36
Tabel C-15 Zooplankton tellingen analyse spoelwater KF 1-4 Zooplankton [n/m3] KF 1 KF 2 KF 3 KF 4 actinopoda 0 0 0 0 calanoida 0 0 0 0 chironomidae 0 0 0 2,900 ciliata 72,000 0 0 0 cladocera 6,500 14,000 11,000 29,000 collembola 0 0 0 0 cyclopoida 0 670 0 0 dierlijke organismen, diversen 0 0 0 0 dierlijke organismen, totaal 46,809,000 30,998,000 89,307,690 93,160,000 dominante soort gastrotricha 290,000 0 620,000 2,700,000 gymnamoebia 0 0 0 0 harpacticoida 1,000 2,700 1,500 5,700 hydrachnellae 0 0 0 0 hydrachnellae-larven 0 0 0 0 naupliuslarven 1000 1300 0 0 nematoda 72,000 480,000 2,100,000 2,200,000 nummer zeefje oligochaeta 0 0 0 0 ostracoda 0 0 0 0 rotifera 45,720,000 30,400,000 83,384,620 85,600,000 tardigrada 500 3,300 3,100 2,900 testaceae 650,000 96,000 3,200,000 2,600,000 turbellaria 0 0 0 0
37
38
D. Opzet lindquistdiagram De drukmeter die de totale drukopbouw registreert, bevindt zich onder het filterbed in de ruimte waar het effluent verzameld wordt. De ruimte is tot aan de onderkant van het filterbed volledig gevuld met water. Over deze hoogte zal de druk dus ook een hydrostatisch verloop hebben. Bovenkant kolom B.W.S
10.5 cm
240 cm
Bovenkant koolfilterbed dP1
320 cm
dP2
Onderkant koolfilterbed 30.6 cm 22.5 cm
Bevestigingspunt stijgbuis en drukmeter
Figuur D-1 Opzet Lindquist diagram
De weerstand over de filterkoppen wordt verwaarloosbaar gesteld aangezien het verloop van de druk, na de drukmeter op 120 cm onder de bovenkant van het filterbed, nagenoeg hydrostatisch is. Indien de weerstand over de filterkoppen groot is resulteerd dit in een vlakker dan hydrostatische drukverloop. Dit is niet mogelijk.
39
40
E. Invloed vorming CaCO3 Gedurende de experimenten is op door de weekse dagen de totale hardheid (TH) gemeten met behulp van de Applikon Analyzer. Deze TH is vervolgens omgerekend naar het calciumgehalte in mmol/l. In onderstaande figuren is het berekende calciumgehalte weergegeven met daarbij de onnauwkeurigheid van de meting. De meting heeft een standaarddeviatie van 2.5 mg/l (equivalent calcium). Deze afwijking is per meting gecorrigeerd en omgerekend naar de afwijking van het calciumgehalte in mmol/l. Gedurende instelling 1 zijn er geen effluentmetingen gedaan vanwege de beperkte beschikbaarheid van de Applikon Analyzer. Instelling 1 is dus niet opgenomen in onderstaande resultaten, waarbij opgemerkt wordt dat het gemeten calciumgehalte in het influent vergelijkbaar is met de waarden hieronder afgebeeld. Tevens heeft Het Waterlaboratorium op iedere dinsdag het calciumgehalte van zowel het influent als effluent van de koolfilters bepaald. Deze waarden zijn ook in onderstaande figuren opgenomen ter vergelijking van de lab meting met de metingen uitgevoerd met de Applikon Analyzer. KF 1 influent
KF 1 instelling 2 SI = -0.15
KF 1 influent
KF 1 instelling 3 SI = -0.15
KF 1 effluent 1.6
KF 1 effl. HWL Calciumgehalte [mmol/l]
1.5 1.45 1.4
1.45
1.4
1.35
1.3
1.35 1.3 2-mei
KF 1 infl. HWL
KF 1 effl. HWL
1.55 Calc iumgehalte [mmol/l]
KF 1 effluent 1.5
KF 1 infl. HWL
7-mei
12-mei
17-mei
22-mei
1.25 22-mei
27-mei
datum
1-jun
6-jun
11-jun
datum
Figuur E-1 Calcium metingen KF 1
KF 2 influent
KF2 instelling 2 SI = 0.65 1.6
KF 2 influent
KF2 instelling 3 SI = 0.8
KF 2 effluent
KF 2 effluent
1.5
KF 2 infl. HWL
KF 2 infl. HWL KF 2 effl. HWL Calciumgehalte [mmol/l]
Calc iumgehalte [mmol/l]
1.55 1.5 1.45 1.4 1.35 1.3 2-mei
7-mei
12-mei
17-mei
22-mei
KF 2 effl. HWL
1.45
1.4
1.35
1.3
1.25 22-mei
27-mei
datum
1-jun
6-jun
11-jun
datum
Figuur E-2 Calcium metingen KF 2
41
KF 3 influent
KF 3 instelling 2 SI =0.12
KF 3 influent
KF 3 instelling3 SI =0.15
KF 3 effluent 2.5 2.45
KF 3 infl. HWL
KF 3 effl. HWL
2.4
KF 3 effl. HWL C alc ium gehalte [m m ol/l]
C alc ium gehalte [m m ol/l]
KF 3 effluent 2.25
KF 3 infl. HWL
2.35 2.3
2.25 2.2
2.15 2.1
2.2
2.15
2.1
2.05
2.05 2 1-mei
6-mei
11-mei
16-mei
2 22-mei
21-mei
27-mei
datum
1-jun
6-jun
11-jun
datum
Figuur E-3 Calcium metingen KF 3
KF 4 influent
KF4 instelling 2 SI =0.07
KF 4 influent
KF4 instelling 3 SI =-0.05
KF 4 effluent 1.5
1.35 1.3 1.25
KF 4 effl. HWL
1.55 Calciumgehalte [mmol/l]
Calc iumgehalte [mmol/l]
1.4
1.2 2-mei
KF 4 infl. HWL
KF 4 effl. HWL
1.45
KF 4 effluent
1.6
KF 4 infl. HWL
1.5 1.45 1.4 1.35
7-mei
12-mei
17-mei
22-mei
1.3 22-mei
27-mei
datum
1-jun
6-jun
11-jun
datum
Figuur E-4 Calcium metingen KF 4
Met bovenstaande metingen is het niet mogelijk om de hoeveelheid calcium [mmol/l] die is achtergebleven in het koolfilterbed te bepalen. De gemeten waarden liggen allen binnen de nauwkeurigheid van de Applikon Analyzer. Ook de waarden gemeten door Het Waterlaboratorium liggen binnen de nauwkeurigheid van de bepaling.
42
F. Vergelijking looptijd KF 4 en bedrijfskoolfilters Een vergelijking tussen de looptijd van KF 4 in de proefinstallatie en de bedrijfskoolfilters wordt gemaakt door bij een gestelde drukopbouw (die zowel het filter in de proefinstallatie als de bedrijfskoolfilters gehaald hebben) de bijbehorende looptijden met elkaar te vergelijken. KF 4 zal vergeleken worden met twee bedrijfskoolfilters gesitueerd in straat zuid, waarbij één filter een minimale drukopbouw heeft en één filter een maximale drukopbouw heeft allebei gevuld met kool van het type Chemviron F300. Koolfilter 16 (minimale drukopbouw) en 26 (maximale drukopbouw) voldoen aan deze eisen. Instelling 1 KF 1
Weers tandopbouw KF 1-4 instelling 1
KF 2 10
KF 3 KF 4
9 8 7
dP [kPa]
6 5 4 3 2 1 0 11-4
13-4
15-4
17-4
19-4
21-4
23-4
25-4
27-4
29-4
1-5
3-5
Datum [dd-mm]
Figuur F-1 Drukopbouw KF 1-4 proefinstallatie, instelling 1
Drukverloop KF 16 Instelling 1 10 9 8
Druk [kPa]
7 6 5 4 3 2 1 0 10-4
12-4
14-4
16-4
18-4
20-4
22-4
24-4
26-4
28-4
30-4
Datum [dd-mm ]
Figuur F-2 Drukopbouw bedrijfskoolfilter 16, instelling 1
43
Drukverloop KF 26 Instelling 1 10 9 8
druk [kPa]
7 6 5 4 3 2 1 0 10-4
12-4
14-4
16-4
18-4
20-4
22-4
24-4
26-4
28-4
30-4
Datum [dd-m]
Figuur F-3 Drukverloop bedrijfskoolfilter 26, instelling 1
De maatgevende drukval waarbij de looptijd van de drie filters met elkaar vergeleken worden is gelijk aan de minimale maximale drukval van een van de filters. Tabel F-1 Vergelijking looptijd KF 4 en bedrijfskoolfilters 16 en 26 bij druk = 4.27 kPa
Koolfilter KF 4 KF 16 KF 26
44
Startdatum 10/4/2006 10/4/2006 13/4/2006
LT totaal [dagen] 10 10 8
Instelling 2 Weerstandopbouw KF 1-4 instelling 2 20 18 16 14
dP [kPa]
12 10 8 6 KF 1
4
KF 2 KF 3
2
KF 4
0 3/5
5/5
7/5
9/5
11/5
13/5
15/5
17/5
19/5
21/5
23/5
25/5
Datum [dd-mm]
Figuur F-4 Drukopbouw KF 1-4 proefinstallatie, instelling 2
KF 16 Instelling 2 20 18 16
Druk [kPa]
14 12 10 8 6 4 2 0 1-5
3-5
5-5
7-5
9-5
11-5
13-5
15-5
17-5
19-5
21-5
Datum [dd-mm]
Figuur F-5 Drukopbouw bedrijfskoolfilter 16, instelling 2
45
KF 26 Instelling 2 20 18 16 14 12 10 8 6 4 2 0 1-5
3-5
5-5
7-5
9-5
11-5
13-5
15-5
17-5
19-5
21-5
Figuur F-6 Drukopbouw bedrijfskoolfilter 26, instelling 2
Tabel F-2 Vergelijking looptijd KF 4 en bedrijfskoolfilters 16 en 26 bij druk = 9.98 kPa Koolfilter Startdatum LT totaal [dagen] KF 4 01/5/2006 21 KF 16 10/5/2006 6 KF 26 12/5/2006 6
46
Instelling 3 Weerstandopbouw KF 1-4 instelling 3
20 18 16 14 dP [kPa]
12 10 8 6 KF 1
Run 1
4
KF 2 KF 3
2
KF 4
0 21/5
23/5
25/5
27/5
29/5
31/5
2/6
4/6
6/6
8/6
10/6
Datum [dd-mm]
Figuur F-7 Drukopbouw KF 1-4 proefinstallatie, instelling 3
KF 16 Instelling 3 20 18 16
Druk [kPa]
14 12 10 8 6 4 2 0 22-5
24-5
26-5
28-5
30-5
1-6
3-6
5-6
7-6
9-6
11-6
Datum [dd-mm]
Figuur F-8 Drukopbouw bedrijfskoolfilter 16, instelling 3
47
KF 26 Instelling 3 20 18 16 14 12 10 8 6 4 2 0 22-5
24-5
26-5
28-5
30-5
1-6
3-6
5-6
7-6
9-6
11-6
Figuur F-9 Drukopbouw bedrijfskoolfilter 26, instelling 3
Tabel F-3 Vergelijking looptijd KF 4 en bedrijfskoolfilters 16 en 26 bij druk = 9.98 kPa Koolfilter Startdatum LT totaal [dagen] KF 4 22/5/2006 11 KF 16 28/5/2006 6 KF 26 12/5/2006 3 Vanaf instelling 2 zitten er grote verschillen tussen de looptijd van koolfilter 4 en de bedrijfskoolfilters. Waarbij de looptijd van koolfilter 4 een factor 2 tot 3 langer is dan de looptijd van de bedrijfskoolfilters. De drukmeters van de proefinstallatie zijn door middel van stijgbuizen gecontroleerd en gecorrigeerd. De drukmeters van de bedrijfskoolfilters zijn niet gecontroleerd, hier zouden afwijkingen mogelijk kunnen zijn. Dit verklaart echter niet het grote verschil in looptijden. De vertaalslag van de proefinstallatie naar de bedrijfskoolfilters kan dus niet worden gemaakt.
48
G. Looptijden bij drukval van 20 kPa (PI en bedrijf) Bij de looptijd tussen twee spoelingen korter dan 4 dagen wordt de capaciteit van de spoelwaterverwerking een kritieke factor. De looptijden van zowel de koolfilters in de proefinstallatie en de bedrijfskoolfilters zijn gedurende de experimenten bepaald. Indien de maximale druk tussen twee spoelingen lager is dan 20 kPa is de looptijd bij 20 kPa voorspeld door de weerstandsopbouw aan het einde van de looptijd te lineariseren. Deze linearisering is een vereenvoudiging van de werkelijkheid maar geeft een indicatie van de looptijd. De periode welke gelineariseerd wordt is per figuur omcirkeld.
Instelling 1 Weerstandopbouw KF 1-4 instelling 1
Linearisering weerstandopbouw KF 1-4 instelling 1
20
KF 1
KF 2
18
KF 2
KF 3
16 14
14
12
12
10 8
KF 3
16
KF 4
d P [k P a ]
d P [k P a ]
20
KF 1
18
KF 4
y = 0.4091x - 15878 R2 = 0.937
10 8
6
6
4
4
2
2
0
0
11-4
13-4
15-4
17-4
19-4
21-4
23-4
25-4
27-4
29-4
1-5
3-5
17-4
Datum [dd-mm]
19-4
21-4
23-4
25-4
27-4
29-4
1-5
3-5
Datum [dd-mm]
Figuur G-1 Linearisering drukopbouw KF 1-4 proefinstallatie, instelling 1
Linearisering w eerstand KF 16 Instelling 1 20
18
18
16
16
14
14 D ruk [k Pa]
D ruk [k Pa]
Drukverloop KF 16 Instelling 1 20
12 10 8
12 10 8
6
6
4
4 2
2 0 10-4 12-4
y = 0.2552x - 9903.3 R2 = 0.9317
14-4 16-4 18-4 20-4
22-4 24-4 26-4
Datum [dd-mm]
28-4 30-4
0 16-4
18-4
20-4
Datum [dd-mm]
Figuur G-2 Linearisering drukopbouw bedrijfskoolfilter 16, instelling 1
49
Linearisering w eerstand KF 26 Instelling 1 20
18
18
16
16
14
14 D ruk [k Pa]
druk [k Pa]
Drukverloop KF 26 Instelling 1 20
12 10 8
12 10 8
6
6
4
4
2
2
0 10-4
12-4
14-4 16-4
18-4
20-4
22-4 24-4
26-4
28-4
y = 0.6012x - 23341 R2 = 0.9425
0 21-4
30-4
22-4
23-4
24-4
Datum
Datum [dd-m]
Figuur G-3 Linearisering drukopbouw bedrijfskoolfilter 26, instelling 1
Tabel G-1 Looptijd KF 4 en bedrijfskoolfilters 16 en 26 bij druk = 20 kPa
Koolfilter KF 4 KF 16 KF 26
Startdatum 10/4/2006 10/4/2006 13/4/2006
LT totaal [dagen] 42.4 67.2 37.3
De looptijd van KF 4 in de proefinstallatie ligt tussen de looptijd van bedrijfskoolfilter 16 en 26 in. De situatie in de proefinstallatie kan teruggekoppeld worden naar de bedrijfssituatie. Er zit echter wel een groot verschil in de voorspelde looptijd tussen bedrijfskoolfilter 16 en 26. Instelling 2 Weerstandopbouw KF 1-4 instelling 2
Linearisering weerstandopbouw KF 1-4 instelling 2 20
20
y = 1.7069x - 66307 R2 = 0.9821
18
18
16
16
14
y = 0.9624x - 37388 R2 = 0.9819
14 d P [k P a ]
12
d P [k P a ]
12
y = 0.3935x - 15281 R 2 = 0.9932
10
10 8
8
y = 0.8009x - 31114 R2 = 0.9822
6
6
4
KF 1
4
KF 2 KF 3
2
KF 4
0 3/5
5/5
7/5
9/5
11/5
13/5
15/5
Datum [dd-mm]
17/5
19/5
21/5
23/5
25/5
2 0 15-5
17-5
19-5
21-5
23-5
Datum [dd-mm] KF 1
KF 2
KF 3
KF 4
Linear (KF 3)
Linear (KF 4)
Linear (KF 2)
Linear (KF 1)
Figuur G-4 Linearisering drukopbouw KF 1-4 proefinstallatie, instelling 2
50
KF 16 Instelling 2
Linearisering w eerstand KF 16 Instelling 2
20
20
18
18
16
16
Run 2
14 Druk [kPa]
D ru k [kP a ]
14 12
Run 1
10 8
12 10 8
y = 0.9378x - 36423 R2 = 0.9697
6
6
y = 1.9126x - 74301 R2 = 0.9829
4
4
2 2
0 1-5
0 1-5
3-5
5-5
7-5
9-5
11-5
13-5
15-5
17-5
19-5
21-5
3-5
5-5
7-5
9-5 11-5 13-5 15-5 17-5 19-5 21-5 Datum [dd-mm]
Datum [dd-mm]
Figuur G-5 Linearisering drukopbouw bedrijfskoolfilter 16, instelling 2
Toename weerstand KF 26 Instelling 2
KF 26 Instelling 2 20
20
18
18
16
16
14
14
Run 2
Run 1
12 10
10
8
8
6
6
4
4
2
2
0
y = 1.8188x - 70661
y = 2.4017x - 93297 R2 = 0.9886
12
R2 = 0.9783
0
1/5
3/5
5/5
7/5
9/5
11/5
13/5
15/5
17/5
19/5
21/5
9/5
11/5
13/5
15/5
17/5
19/5
Figuur G-6 Linearisering drukopbouw bedrijfskoolfilter 26, instelling 2
Tabel G-2 Looptijd KF 4 en bedrijfskoolfilters 16 en 26 bij druk = 20 kPa Koolfilter Startdatum LT totaal [dagen] KF 1 01/5/2006 35.1 KF 2 01/5/2006 30.8 KF 3 01/5/2006 19.5 KF 4 01/5/2006 45.7 KF 16 01/5/2006 21.7 10/5/2006 11.2 KF 26 04/5/2006 13.2 12/5/2006 11.6
51
Instelling 3 Weerstandopbouw KF 1-4 instelling 3
Weerstandopbouw KF 1-4 instelling 3
20
20
18
18
y = 1.0165x - 39495 R2 = 0.9571
16
16
14
14
y = 0.6792x - 26392 R2 = 0.9984
d P [k P a ]
12
d P [k P a ]
12 10
10 y = 0.815x - 31668 R2 = 0.996
8
y = 0.4694x - 18240 R2 = 0.9862
6
8
4
6
2
KF 1
4
KF 2
0
KF 3
2 0 21/5
21/5
23/5
25/5
27/5
29/5
KF 4
23/5
25/5
27/5
29/5
31/5
2/6
4/6
6/6
8/6
31/5
2/6
4/6
6/6
8/6
10/6
Datum [dd-mm]
10/6
Datum [dd-mm]
KF 1
KF 2
KF 3
KF 4
Linear (KF 1)
Linear (KF 2)
Linear (KF 3)
Linear (KF 4)
Figuur G-7 Linearisering drukopbouw KF 1-4 proefinstallatie, instelling 3
KF 16 Instelling 3
Toename weerstand KF 16 Instelling 3
20
20
18
18
16
16 14
Run 2
Run 1
12
D ruk [kPa]
D ru k [k P a ]
14
10 8
y = 1.4124x - 54901 R2 = 0.994
10 8
6
6
4
4
2
2 0
0 22-5
y = 1.2496x - 48566 R2 = 0.9861
12
24-5
26-5
28-5
30-5
1-6
3-6
Datum [dd-mm]
5-6
7-6
9-6
11-6
29-5
31-5
2-6
4-6
6-6
Datum [dd-mm]
Figuur G-8 Linearisering drukopbouw bedrijfskoolfilter 16
52
8-6
10-6
12-6
KF 26 Instelling 3
Toename weerstand KF 26 Instelling 3
20
20
18
18
Run 2
16
Run 3
Run 1
14
16 14
12
12
10
10
8
8
6
6
4
4
2
2
0 22/5
y = 2.9146x - 113268 R2 = 0.9937
y = 2.5492x - 99093 R 2 = 0.9791
y = 2.6263x - 102074 R2 = 0.994
0
24/5
26/5
28/5
30/5
1/6
3/6
5/6
7/6
9/6
11/6
25/5
27/5
29/5
31/5
2/6
4/6
6/6
8/6
10/6
Figuur G-9 Linearisering drukopbouw bedrijfskoolfilter 26, instelling 3
Tabel G-3 Looptijd KF 4 en bedrijfskoolfilters 16 en 26 bij druk = 20 kPa Koolfilter Startdatum LT totaal [dagen] KF 1 22/5/2006 41.0 KF 2 22/5/2006 21.3 KF 3 22/5/2006 13.9 KF 4 22/5/2006 27.2 KF 16 28/5/2006 15.5 04/6/2006 12.9 KF 26 24/5/2006 8.0 28/5/2006 7.7 03/6/2006 8.9 De looptijd van zowel de koolfilters in de proefinstallatie als de bedrijfskoolfilters liggen boven de grens van 4 dagen.
53
54
H. Euler expliciet Voor de discretisatie in het model is euler expliciet toegepast. Om te verivieren of deze discretisatie in deze set vergelijkingen gebruikt kan worden is het systeem gecontroleerd op stabiliteit en continuiteit. Consistentie ∂c v ∂c v =− ⋅ −λ ⋅ ⋅c ∂t p ∂y p ∂c v ∂c v + ⋅ + ⋅λ ⋅c = 0 ∂t p ∂y p
Euler expliciet; n cmn +1 − cm v c n − cmn −1 v + ⋅ m + ⋅ λ ⋅ cmn = 0 ∆t p ∆y p
lim
c ( t + ∆t , y ) − c ( t , y ) ∆t
∆t → 0 ∆y → 0
c + ∆tct + lim
∆t → 0 ∆y → 0
lim ct +
∆t → 0 ∆y → 0
Met
lim
∆t → 0 ∆y → 0
+
v c ( t , y ) − c ( t , y − ∆y ) v ⋅ + ⋅ λ ⋅ c (t, y ) = 0 p ∆y p
∆t 2 ∆y 2 ctt + O(∆t 3 ) − c c − c + ∆ycy − cyy + O(∆y 3 ) v v 2! 2! + ⋅ + ⋅λ ⋅c = 0 p p ∆t ∆y
v ∆t ∆y v ctt + O(∆y 2 ) + ⋅ cy − cyy + O(∆y 2 ) + ⋅ λ ⋅ c = 0 p 2! 2! p
∂c v ∂c v + ⋅ + ⋅λ ⋅c = 0 ∂t p ∂y p ∆t v ctt + O ∆t 2 − 2! p
(
)
∆y ⋅ cyy + O ∆y 2 = 0 2!
(
)
Stabiliteit Om te controleren of de vergelijking stabiel is moet n cmn+1 − cm v c n − cmn −1 v + ⋅ m + ⋅ λ ⋅ cmn = 0 ∆t p ∆y p
Omgeschreven worden naar de vorm; ^ n +1
c
^n
= r ⋅c
Waarbij r ≤ 1. n cmn+1 − cm v c n − cmn −1 v + ⋅ m + ⋅ λ ⋅ cmn = 0 ∆t p ∆y p
55
^n
Stel cmn = c ⋅ e ^ n +1 ^ n c − c ∆t
^ n +1
^n
−c +
ϕ =
2π∆y L
2π m∆y L
(Neumann Analyse), dan volgt:
2π v i L m∆y ⋅ e + p∆y
Delen door e
c
i
i
v ∆t p∆y
2π m∆y L
2π ^n ^ n i 2π m∆y ^ n i 2Lπ ( m−1) ∆y v i m∆y ⋅ c ⋅ e L −c ⋅e =0 + ⋅ λ ⋅ c ⋅ e L p
levert;
^n ^ n ^ n i 2π ( −1) ∆y v ∆t ⋅ c − c ⋅ e L + ⋅ λ ⋅ c =0 p
e − i β = −i sin β + cos β ^ n +1
c
^ v ∆t v ∆t = 1 − ⋅ (1 + i sin ϕ − cos ϕ ) − ⋅λ ⋅c p∆y p
n
Dit is op te splitsen in een imaginair deel en een reeel deel; v ∆t v ∆t v ∆t ⋅ (1 − cos ϕ ) − ⋅ λ ≤ 1 en − ⋅ sin ϕ ≤ 1 1 − p ∆y p ∆ y p
56
I.
Matlab code: Enkfil_s
function [sys,x0,str,ts] = enkfil_s(t,x,u,flag,B,x0,U,P), % [sys,x0,str,ts] = enkfil_s(t,x,u,flag,B,x0,U,P), % Stimela S-Function % % t = time % x = state vector, filled with continuous states (flag 1) or % discrete states (flag 2) % u = input vector % % P = proces parameters, filled with enkfil_p.m and defined in enkfil_d.m % B = Model size, filled with enkfil_i.m, % x0 = initial state, filled with enkfil_i.m, % U = Translationstructure for inout vector, filled in uit Blok00_i.m. % Fields are determined by 'st_varia' % % Stimela, 2004 % © Kim van Schagen, % General purpose calculations if any(abs(flag)==[1 2 3]) %%%% MODEL-SPECIFIC => %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % optional: convert input vector to user names % eg. Temp = u(U.Temperature); % in the code it is also possible to use u(U.Temparature) directly. NumCel = P.NumCel; Opp = P.Surf; Diam = P.Diam; nmax = P.nmax; rhoDSS = P.rhoDSS; rhoDAOC = P.rhoDAOC; rhoDCa = P.rhoDCa; FilPor = P.FilPor; FilPor0= FilPor; Lwater = P.Lwater; %LaShift= P.LaShift; dy = P.dy; Lambda_SS = P.Lambda_SS; Lambda_AOC = P.Lambda_AOC; Lambda_Ca = P.Lambda_Ca; lengteNumCel = [1 NumCel]; lengteNumCeli=1:NumCel; Diam=interp1(lengteNumCel,Diam,lengteNumCeli); %%%% <= MODEL-SPECIFIC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%
57
%%%% MODEL-SPECIFIC => %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % optional: calculated values used for al flags % eg. TempArea = u(U.Temperature)/P.Area; Susp = u(U.Suspended_solids);%mg/l Susp = Susp/1000;%kg/m3 Temp = u(U.Temperature); Debiet = u(U.Flow); AOC = u(U.DOC)/1000; %kg/m3 Ca = u(U.Calcium); %kg/m3 Ca = Ca/1000; MatQ = spdiags([[1*ones(NumCel,1)],[1*ones(NumCel,1)]],[0,1],NumCel,NumCel+1); vel = Debiet/(Opp*3600); %oppervlakte filtratiesnelheid VelReal = vel/FilPor; %poriesnelheid [lambda0,I0] = d_filcof(Temp,vel,Diam,FilPor0); % Lambda0 wordt niet gebruikt MatQ1 = d_filmat(dy,VelReal,vel,NumCel); %Concentratie/accumulatie laag1 %%%% <= MODEL-SPECIFIC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%
end; % of any(abs(flag)==[1 2 3])
if flag == 1, % Continuous states derivative calculation % default derivative =0; sys = zeros(B.CStates,1); %%%% MODEL-SPECIFIC => %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % fill sys with the derivatives of the continuous states % eg. sys(1) = (u(U.Temperature)-x(1))/P.Volume; spoelen = u(U.Number+1); %%% modification Rene - Petra FilPor(1:NumCel) = FilPor0 - (x(NumCel+1:2*NumCel)/rhoDSS+ x(3*NumCel+1:4*NumCel)/rhoDAOC+ x(5*NumCel+1:6*NumCel)/rhoDCa); FilPor=FilPor';
if spoelen == 1 sys(1:2*NumCel)=-(1/90)*x(1:2*NumCel); else
sys(1:NumCel) = -(vel./(FilPor*dy)).*(MatQ*[Susp;x(1:NumCel)]) (vel./(FilPor)).*([Lambda_SS*(1abs(x(NumCel+1:2*NumCel)./(nmax*rhoDSS*FilPor0)+x(3*NumCel+1:4*NumCel)./(nm 58
ax*(0.001/rhoDAOC)*FilPor0)+x(5*NumCel+1:6*NumCel)./(nmax*rhoDCa*FilPor0)))]). *x(1:NumCel); sys(1+NumCel:2*NumCel) = -vel*MatQ*[Susp;x(1:NumCel)]/dy; sys(1+2*NumCel:3*NumCel) = (vel./(FilPor*dy)).*(MatQ*[AOC;x(2*NumCel+1:3*NumCel)])(vel./(FilPor)).*([Lambda_AOC.*(1abs(x(3*NumCel+1:4*NumCel)./(nmax*rhoDAOC*FilPor0)+x(5*NumCel+1:6*NumCel)./ (nmax*rhoDCa*FilPor0)))]).*x(2*NumCel +1:3*NumCel); sys(1+3*NumCel:4*NumCel) = -vel*MatQ*[AOC;x(2*NumCel+1:3*NumCel)]/dy; sys(1+4*NumCel:5*NumCel) = (vel./(FilPor*dy)).*(MatQ*[Ca;x(1+4*NumCel:5*NumCel)])(vel./(FilPor)).*([Lambda_Ca*(1abs(x(NumCel+1:2*NumCel)./(nmax*rhoDSS*FilPor0)+x(3*NumCel+1:4*NumCel)./(nm ax*rhoDAOC*FilPor0)+x(5*NumCel+1:6*NumCel)./(nmax*rhoDCa*FilPor0)))]).*x(4*Nu mCel +1:5*NumCel); sys(1+5*NumCel:6*NumCel) = -vel*MatQ*[Ca;x(4*NumCel+1:5*NumCel)]/dy;
end; %%%% <= MODEL-SPECIFIC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% elseif flag ==2, %discrete state determination % default next sample same states (length is B.DStates) sys = x(B.CStates+1:B.CStates+B.DStates); %%%% MODEL-SPECIFIC => %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % fill sys with the state value on the next samplemoment (determined by % B.SampleTime) % eg. sys(1) = (x(1)+u(U.Temperature))/P.Volume; %%%% <= MODEL-SPECIFIC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% elseif flag ==3, % output data determination % default equal to the input with zeros for extra measurements sys = [u(1:U.Number); zeros(B.Measurements,1)]; %%%% MODEL-SPECIFIC => %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % Determine output for calculated values % eg. sys(U.Temparature) = x(1); sys(U.Suspended_solids)=x(NumCel)*1000; %Concentratie zwevende stoffen [mg/l] sys(U.DOC)=x(3*NumCel)*1000; %concentratie AOC [mg/l] sys(U.Calcium)=x(5*NumCel)*1000; %concentratie Calcium [mg/l]
% Determine extra measurements % eg. sys(U.Number+1) = x(1)/P.Opp; sys(U.Number+1:U.Number+NumCel)= x(1:NumCel)*1000; %concentratie SS [mg/l] 59
sys(U.Number+1+NumCel:U.Number+2*NumCel)=cumsum(dyI0*dy.*(FilPor0./(FilPor0(x(NumCel+1:2*NumCel)/rhoDSS+x(3*NumCel+1:4*NumCel)/rhoDAOC+x(5*NumCel+ 1:6*NumCel)/rhoDCa))).^2); %weerstand tgv accumulatie laag1 %%% per laag de (gecumuleerde) absolute druk t.o.v. bovenkant filter (en niet drukval) sys(U.Number+2*NumCel+1:U.Number+3*NumCel)= x(NumCel+1:2*NumCel)*1000; %%%% <= MODEL-SPECIFIC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif flag == 0 % initialize Model % [cs,ds,out,in,,direct] sys = [B.CStates,B.DStates,U.Number+B.Measurements,U.Number+B.Setpoints, 0, B.Direct,1]; ts = [B.SampleTime,0]; str = 'enkfil'; x0=x0; else % If flag is anything else, no need to return anything % since this is a continuous system sys = []; end function [lambda0F,I0F] = d_filcof(T,v,d,P0) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% % This function returns the factor coefficient % for the filtration coefficient %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Kinematic viscosity nu=(497e-6)/((T+42.5)^1.5); % Factor coefficient for head loss I0F=(180*nu*(1-P0)^2*v)./(9.81*P0^3*d.^2); I0F=I0F'; lambda0F=(9e-18)./(nu*v*d.^3);%Lerk function val = d_filmat(dy,vp,v,N) % This function returns the main matrix Q for filtration b = -vp/dy; c = vp/dy; e = v/dy; alpha = -vp/dy; beta = vp/dy; v1=[[c*ones(N,1);beta], [b*ones(N,1);0]]; q1=spdiags(v1,[0,1],N,N+1); v2=[[e*ones(N,1);2*e], [-e*ones(N,1);0]]; q2=spdiags(v2,[0,1],N,N+1);
val = [q1;q2]; 60