TKS 4013
Analisis Struktur II Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya
Konsep Analisis Struktur contitutive law
equilibrium
STRUKTUR
Gaya Luar
Gaya Dalam
Momen Lentur Gaya Geser Gaya Normal Torsi
compatibility
Lentur Geser Aksial Torsi
Deformasi
Perpindahan
Translasi Rotasi
Konsep Analisis Struktur (lanjut) Contoh :
Konsep Analisis Struktur (lanjut) Equilibrium (Keseimbangan) :
Keseimbangan gaya luar (external force) dengan gaya dalam (internal force) pada struktur.
Keseimbangan pada struktur : Kesetimbangan Statis (Hukum Newton 1)
F 0
Kesetimbangan
F m a
Dinamis (Hukum Newton 2)
Konsep Analisis Struktur (lanjut) Persamaan keseimbangan pada struktur :
0
M
Y
0
Z
0
M M
F
X
F F
X
Y
Z
0 0 0
Konsep Analisis Struktur (lanjut) Constitutive Law (Hukum Konstitusi) :
Hubungan antara gaya dalam (internal force) dengan deformasi pada bagian struktur. Material struktur memenuhi persyaratan yang ada dalam Hukum Hooke (Elastis dan Linier).
Konsep Analisis Struktur (lanjut) F F=k dengan : F = gaya (force) k = kekakuan (stiffness) = perpindahan (displacement)
k
=fF dengan : = perpindahan (displacement) f = kelenturan (flexibility) F = gaya (force)
f F
Konsep Analisis Struktur (lanjut) Compatibility (Kesesuaian) :
Pertimbangan kesesuaian secara kinematis dari struktur yang terdeformasi (continuity displacement).
A 0
A C
A
D
0
0
; C
D
; ;
V
V
V
A C D
0 0 0
;
; ;
H
H H
A C D
0 0 0
A B
0
;
V
0
;
V
A B
0
;
H
0
;
H
A B
0
0
; V A 0
;H A 0
CA CD ; V C 0
;H C 0
D 0
; V D 0
;H D 0
A 0
; V A 0
;H A 0
B 0
; V B 0
;H B 0
Konsep Analisis Struktur (lanjut) Compatibility (Kesesuaian) :
DKK - Derajat Kebebasan Kinematis (Kinematics Degree of Freedom), adalah jumlah displacement (translasi dan rotasi) yang belum diketahui besarnya pada ujung-ujung batang. DKS - Derajat Kebebasan Statis (Statics Degree of Freedom), adalah jumlah gaya kelebihan (redudant force) pada struktur agar dapat diselesaikan dengan persamaan keseimbangan.
A C
A
D
0
0
; C
D
; ;
V
V
V
A C D
0 0 0
;
; ;
H
H H
A C D
0 0 0
A B
0
;
V
0
;
V
A B
0
;
H
0
;
H
A B
0
0
Konsep Analisis Struktur (lanjut) Contoh :
DKK = 8
DKS = 1
DKK = 0
DKS = 3
DKK = 5
DKS = 1
Bentuk dan Tipe Struktur Plane Truss (Rangka Bidang) :
Contoh : Konstruksi Jembatan Konstruksi Atap Konstruksi Pengaku Gaya Aksial (Tekan/Tarik)
Deformasi Aksial
Bentuk dan Tipe Struktur (lanjut) Space Truss (Rangka Ruang) :
Contoh : Konstruksi Jembatan Konstruksi Atap, Kubah (dome) Konstruksi Tower Gaya Aksial (Tekan/Tarik)
Deformasi Aksial
Bentuk dan Tipe Struktur (lanjut) Plane Frame (Portal Bidang) :
Contoh : Portal Sederhana Bangunan Gedung Konstruksi Tunnel/Box Momen Lentur Gaya Geser Gaya Aksial
Deformasi Lentur Deformasi Geser Deformasi Aksial
Bentuk dan Tipe Struktur (lanjut) Space Frame (Portal Ruang) :
Contoh : Bangunan Gedung Momen Lentur Gaya Geser Gaya Aksial Momen Torsi
Deformasi Lentur
Deformasi Geser Deformasi Aksial Deformasi Puntir
Bentuk dan Tipe Struktur (lanjut) Grid (Balok Silang) :
Contoh : Balok Spandrel Konstruksi Lantai Grid Pondasi Sarang Laba-laba Pondasi Rakit
Gaya Geser Momen Lentur Momen Torsi
Deformasi Geser Deformasi Lentur Deformasi Puntir
Komponen Struktur Struktur terdiri dari : 1. Elemen : batang/member 2. Titik Buhul : nodal/node/joint Transfer gaya luar pada bagian-bagian struktur melalui elemen dan node/joint.
Titik Buhul (Joint) Titik Buhul (Node/Joint) adalah bagian dari struktur yang menghubungkan elemen-elemen struktur. Node/Joint terbagi atas : 1. Node/Joint Terkekang (disebut juga “constraintnode”) Perletakan roll, sendi, jepit 2. Node/Joint Bebas (disebut juga “free-node”) Perletakan kenyal, Titik buhul, Titik kumpul
Titik Buhul (Joint) (lanjut)
Free Node/Joint/Nodal Roll
Sendi/Pin/Hinge
Jepit/Fixed
Nodal - Displacement (u, v, w)
Elemen (Member) Elemen adalah bagian dari struktur yang dihubungkan oleh dua atau lebih titik buhul/node/joint. Elemen terdiri atas : 1. Elemen garis (truss/frame/grid element) 2. Elemen bidang (plate/wall element) 3. Elemen ruang (hexagonal/cube element)
Gaya Ujung Batang (Nodal Force)
Nodal Forces (Momen+Geser)
Nodal Forces (Momen+Geser+Aksial)
Nodal Forces
(Momen+Geser+Aksial+Torsi)
Gaya Ujung Batang (Nodal Force) (lanjut)
Gaya Ujung Batang (Nodal Force) (lanjut)
Gaya Ujung Batang (Nodal Force) (lanjut)
Hubungan Nodal Displacement dengan Nodal Force F=k x atau
F K x F1 K11 F K 2 21 F3 K 31 : : : : F K n n1
K12 K 22
K13 K 23
K 32 :
K 33 :
: Kn2
: K n3
.. K1n X1 .. K 2 n X 2 .. K 3n X 3 :: : : :: : : .. K nn X n
Hubungan Deformasi dengan Internal Force DEFORMASI AKSIAL
X
x E
N A E
d x x .dx
N EA
N .dx EA L
L d x
N L .dx N EA EA O
EA = axial rigidity
dengan : A = luas tampang E = modulus elastis bahan L = panjang elemen
Hubungan Deformasi dengan Internal Force (lanjut) DEFORMASI LENTUR
x
M .y Iz
x
M .y x E EI Z
d
x .dx y
M .dx EI Z
L
M .dx EI Z O
d
EIz = flexural rigidity
Hubungan Deformasi dengan Internal Force (lanjut) DEFORMASI GESER
Shear Stress,
Shear Strain, Relative Displacement, d f .
V .Q I z .b G
GA shear rigidity f
V .dx G. A
f = shape factor L
f .V f .L S d . dx .V GA O GA
Hubungan Deformasi dengan Internal Force (lanjut) DEFORMASI TORSI
T d maks dx dx R G.J L
T L d . dx .T G.J GJ O
T .r G G.J maks T .R
maks
J = momen inersia polar (konstanta torsi)
G
G.J
T .r J
max
T.R J
GJ = torsional rigidity
Hubungan Deformasi dengan Internal Force (lanjut) KONSTANTA TORSI PENAMPANG
Hubungan Deformasi dengan Internal Force (lanjut) KONSTANTA TORSI PENAMPANG
Hubungan Deformasi dengan Internal Force (lanjut) KONSTANTA TORSI PENAMPANG
Hubungan Deformasi dengan Internal Force (lanjut) KONSTANTA TORSI PENAMPANG
Hubungan Displacement dengan External Force Menghitung hubungan external force (action) dengan displacement pada balok prismatis (prismatic beam) dapat memakai banyak metode, antara lain : “Persamaan Differensial Balok” “Moment Area Method” “Unit Load Method or Virtual Work”
Kekakuan dan Fleksibilitas
Kekakuan (Stiffness) adalah gaya (force) yang diperlukan untuk menghasilkan “unit displacement”.
gaya satuan panjang
(ton/m,kN/mm, kg/cm)
Fleksibilitas (Flexibility) adalah perpindahan (displacement) yang dihasilkan oleh “unit force”.
panjang satuan gaya
(m/ton,mm/kN, cm/kg)
Kekakuan dan Fleksibilitas (lanjut)
A
D
A = gaya/force D = displacement
1
f
D=f A
A=kD
f = fleksibilitas
k
1
k = kekakuan
1 k f
atau
1 f k
Kekakuan dan Fleksibilitas (lanjut) Contoh :
Struktur balok kantilever menerima beban terpusat A1 dan momen lentur A2 pada ujung kantilever seperti ditunjukkan pada gambar di atas. Hitung matriks kekakuan [K] dan matriks fleksibilitas [F] dari struktur tersebut?
Kekakuan dan Fleksibilitas (lanjut)
A1
12 EI 6 EI D D2 1 3 2 L L
A2
6 EI 4 EI D D2 1 2 L L
12 EI A1 L3 6 EI A2 L2
A k D
6 EI L2 D1 4 EI D 2 L
Kekakuan dan Fleksibilitas (lanjut) L3 L2 D1 A1 A2 3EI 2 EI L2 L D2 A1 A2 2 EI EI L3 D1 3EI 2 D2 L 2 EI
D f A
L2 2 EI A1 L A2 EI
Kekakuan dan Fleksibilitas (lanjut) L3 f k 3EI 2 L 2 EI
L2 2 EI L EI
(4 3)
f k
6 L 6 L
1 f k 0
12 EI L3 6 EI 2 L
6 EI L2 4 EI L
(2 L 2 L) (3 4)
0 1
Sehingga dapat dibuktikan bahwa :
f k 1
atau
k f
1
Equivalent Joint Loads
Pada metode matriks, pengaruh beban luar yang bekerja pada batang (member loads) dapat diekivalensikan dengan beban pada node/joint yang mempunyai pengaruh sama seperti beban aslinya. Konsep tersebut dikenal sebagai “equivalent joint loads”.
Equivalent Joint Loads
(lanjut)
Formulasi Analisis Struktur dengan Matriks
Metode yang dikenal sampai saat ini adalah : Metode Kekakuan (Metode Perpindahan) Metode Fleksibilitas (Metode Gaya) Metode Kekakuan : perpindahan (displacement) sebagai unknown value (variabel yang tidak diketahui) dan dicari terlebih dahulu. Metode Fleksibilitas : gaya (forces) sebagai unknown value dan dicari terlebih dahulu.
Metode Kekakuan Langsung (Direct Stiffness Method)
Metode ini sangat cocok dan banyak digunakan dalam analisis struktur berbasis program komputer (SAP2000, StaadPRO, ANSYS dan sebagainya). Asumsi dasar yang digunakan : 1. Bahan struktur berperilaku “linear - elastic” 2. Displacement struktur relatif kecil dibanding dimensi/geometrik struktur 3. Interaksi pengaruh gaya aksial dan lentur diabaikan 4. Elemen/batang struktur bersifat “prismatic & homogeneous”.
Prosedur Analisis 1.
2. 3.
4.
Semua kekakuan elemen dievaluasi sesuai dengan hubungan antara “gaya” dan “deformasi” (dalam koordinat LOKAL). Matriks kekakuan elemen ditransformasikan ke koordinat GLOBAL. Matriks kekakuan elemen-elemen struktur (dalam koordinat global) digabungkan menjadi matriks kekakuan seluruh struktur (dengan mempertimbangkan kompatibilitas). Berdasarkan pembebanan yang ada, disusun vektor/matriks gaya.
Prosedur Analisis (lanjut) 5.
6.
7.
Kondisi batas pada perletakan diperhitungkan, dan dilakukan “static condensation” untuk memperoleh matriks kekakuan struktur tereduksi (partition matrix). Matriks kekakuan struktur yang tereduksi tersebut memberikan persamaan kesetimbangan struktur, yang solusinya akan menghasilkan “displacement” setiap node/joint, kemudian gaya-gaya (reaksi perletakan) dapat diperoleh kemudian. Setelah reaksi perletakan diketahui, gaya-gaya dalam dapat dihitung untuk setiap elemen (gaya ujung batang).
Aplikasi Metode Kekakuan Langsung
Struktur Aksial (1D) Struktur Balok (2D) Struktur Rangka Bidang (2D) Struktur Rangka Ruang (3D) Struktur Portal Bidang (3D) Struktur Portal Ruang (3D) Struktur Balok Silang (Grid)
Pustaka
Alkaff, M.F., 2004, Matlab 6 untuk Teknik Sipil, CV. Maxikom, Palembang. Brebbia, C.A., & Ferrante, A.J., 1978, Computational Methods for The Solution of Engineering Problems, Pentech Press, London. Dipohusodo, I., 2001, Analisa Struktur, jilid-1, Penerbit Gramedia, Jakarta. Ghali, A., & Neville, A.M., 1990, Structural Analysis, Chapman and Hall, London, edisi terjemahan oleh Wira MSCE, Analisa Struktur, Gabungan Metode Klasik dan Matriks, edisi kedua, Penerbit Erlangga, Jakarta. Puspantoro., B, 1990, Teori dan Analisa Balok Grid, Penerbit Andi Offset, Yogyakarta. Supartono, F.X., & Teddy Boen, 1984. Analisa Struktur Dengan Metode Matriks, cetakan ketiga, UI Press, Jakarta. Suhendro, B., 2002, Analisis Struktur dengan Matriks, Beta Offset, Yogyakarta. Wang, C.K., 1985, Pengantar Analisis Struktur dengan Cara Matriks untuk Struktur Rangka, Edisi kedua, Erlangga, Jakarta. Weaver, W dan Gere, J.M., 1989, Matrix Analysis of Framed Structures, Van Nostrand Reinhold Company Inc, edisi terjemahan Analisa Matriks untuk Struktur Rangka, cetakan kedua, Penerbit Erlangga, Jakarta.
Terima kasih atas perhatian dan sukses buat studinya!