TIF 21101 APPLIED MATH 1 (MATEMATIKA TERAPAN 1) Week 3 SET THEORY (Continued) 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY OBJECTIVES: 1. Subset and superset relation 2. Cardinality & Power of Set 3. Algebra Law of Sets 4. Inclusion 5. Cartesian Product
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Subset & superset relation We use the symbols of: ⊆ ⊇
is a subset of is a superset of
We also use these symbols ⊂ ⊃
is a proper subset of is a proper superset of
Why they are different? 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY They maen…… S⊆T means that every element of S is also an element of T. S⊇T means T⊆S. S⊂T means that S⊆T but 2014/2015
M. Ilyas Hadikusuma, M.Eng
. Matematika Terapan 1
SET THEORY Examples: • A = {x | x is a positive integer ≤ 8} set A contains: 1, 2, 3, 4, 5, 6, 7, 8 • B = {x | x is a positive even integer < 10} set B contains: 2, 4, 6, 8 • C = {2, 6, 8, 4} •
Subset Relationships A⊆A A⊄B A⊄C B⊂A B⊆B B⊂C C⊄A C⊄BC⊆C
2014/2015
Prove them !!!
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Cardinality and The Power of Sets |S|, (read “the cardinality of S”), is a measure of how many different elements S has. E.g., |∅|=0,
|{1,2,3}| = 3, |{a,b}| = 2,
|{{1,2,3},{4,5}}| = …… P(S); (read “the power set of a set S”) , is the set of all subsets that can be created from given set S. E.g. P({a,b}) = {∅, {a}, {b}, {a,b}}. 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Example: A = {a, b, c}
where |A| = 3
P (A) = {{a, b}, {a, c}, {b, c}, {a}, {b}, {c}, A, φ} and |P (A)| = 8
In general, if |A| = n, then |P (A) | = 2n How about if the set of S is not finite ? So we say S infinite. Ex. B = {x | x is a point on a line}, can you difine them?? 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Langkah-langkah menggambar diagram venn 1. Daftarlah setiap anggota dari masing-masing himpunan 2. Tentukan mana anggota himpunan yang dimiliki secara bersama-sama 3. Letakkan anggota himpunan yang dimiliki bersama ditengah-tengah 4. Buatlah lingkaran sebanyak himpunan yang ada yang melingkupi anggota bersama tadi 5. Lingkaran yang dibuat tadi ditandai dengan nama-nama himpunan 6. Selanjutnya lengkapilah anggota himpunan yang tertulis didalam lingkaran sesuai dengan daftar anggota himpunan itu 7. Buatlah segiempat yang memuat lingkaran-lingkaran itu, dimana segiempat ini menyatakan himpunan semestanya dan lengkapilah anggotanya apabila belum lengkap 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Diketahui : S = { x | 10 < x ≤ 20, x ∈ B } M = { x | x > 15, x ∈ S } N = { x | x > 12, x ∈ S } Gambarlah diagram vennya
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Jawab :
S = { x | 10 < x ≤ 20, x ∈ B } = { 11,12,13,14,15,16,17,18,19,20 }
M = { x | x > 15, x ∈ S } = { 16,17,18,19,20} N = { x | x > 12, x ∈ S } = { 13,14,15,16,17,18,19,20} M ∩ N = { 16,17,18,19,20 } Diagram Vennya adalah sbb:
S N 11 12 2014/2015
16 18 13
17 19
20
M
14 15 M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Algebra Law of Sets
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Set’s Inclusion and Exclusion For A and B, Let A and B be any finite sets. Then :
A ∪ B = A + B – A ∩ B Inclusion
Exclusion
In other words, to find the number n(A ∪ B) of elements in the union A ∪ B, we add n(A) and n(B) and then we subtract n(A ∩ B); that is, we “include” n(A) and n(B), and we “exclude” n(A ∩ B). This follows from the fact that, when we add n(A) and n(B), we have counted the elements of A ∩ B twice. This principle holds for any number of sets. 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Set’s Inclusion and Exclusion For A and B, Let A and B be any finite sets. Then :
A ∪ B = A + B – A ∩ B Inclusion
Exclusion
In other words, to find the number n(A ∪ B) of elements in the union A ∪ B, we add n(A) and n(B) and then we subtract n(A ∩ B); that is, we “include” n(A) and n(B), and we “exclude” n(A ∩ B). This follows from the fact that, when we add n(A) and n(B), we have counted the elements of A ∩ B twice. This principle holds for any number of sets. 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
SET THEORY Inclusion and Exclusion of Sets For A and B, Let A and B be any finite sets. Then :
A ∪ B = A + B – A ∩ B Inclusion
Exclusion
In other words, to find the number n(A ∪ B) of elements in the union A ∪ B, we add n(A) and n(B) and then we subtract n(A ∩ B); that is, we “include” n(A) and n(B), and we “exclude” n(A ∩ B). This follows from the fact that, when we add n(A) and n(B), we have counted the elements of A ∩ B twice. This principle holds for any number of sets. 2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
Inclusion-Exclusion Principle • How many elements are in A∪B? |A∪B| = |A| + |B| − |A∩B| • Example: {2,3,5}∪{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
Contoh: Dari 60 siswa terdapat 20 orang suka bakso, 46 orang suka siomay dan 5 orang tidak suka keduanya. a. Ada berapa orang siswa yang suka bakso dan siomay? b. Ada berapa orang siswa yang hanya suka bakso? c. Ada berapa orang siswa yang hanya suka siomay? Jawab: N(S) = 60 Misalnya : A = {siswa suka bakso} B = {siswa suka siomay}
n(A) = 20 n(B) = 46
(A ∩B)c = {tidak suka keduanya} n((A ∩B)c) = 5 Maka A ∩B = {suka keduanya} n(A ∩B) = x n(S) = (20 – x)+x+(46-x)+5 {siswa suka bakso saja} = 20 - x 60 = 71 - x X = 71 – 60 = 11 a. Yang suka keduanya adalah x Perhatikan Diagram Venn berikut = 11 orang S b. Yang suka bakso saja adalah 20-x = 20-11= 9 orang A x B 20 - x 46 - x c. Yang suka siomay saja adalah 2014/2015 M. Ilyas Hadikusuma, M.Eng Matematika Terapan 1 46-x = 46-11= 35 orang 5
{siswa suka siomay saja} = 46 - x
SET THEORY Berapa banyaknya bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5?
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1
Cartesian Products of Sets • For sets A, B, their Cartesian product A×B :≡ {(a, b) | a∈A ∧ b∈B }. • E.g. {a,b}×{1,2} = {(a,1),(a,2),(b,1),(b,2)} • Note that for finite A, B, |A×B|=|A||B|. • Note that the Cartesian product is not commutative: A×B ≠ B×A.
2014/2015
M. Ilyas Hadikusuma, M.Eng
Matematika Terapan 1