SEMINÁRNÍ PRÁCE Z MATEMATIKY PETROHRADSKÝ PARADOX
TEREZA KIŠOVÁ 4.B 28.10.2016
MOTIVACE: K napsání této práce mě inspiroval název tématu. Když jsem si o petrohradském paradoxu zjistila nějaké informace tak mě velmi zaujal. Petrohradský paradox přednesl roku 1783 Daniel Bernoulli před Petrohradskou akademií věd (předchůdce dnešní Ruské akademie věd). Petrohradský paradox míchá dohromady statistiku, rozhodování a pravděpodobnost. V Petrohradě máme kasíno, které nám nabízí hru, ve které můžeme vyhrát určitý počet peněz. Naším úkolem je zjistit, jaká by bylo férové vstupné do této hry.
Petrohradský paradox Představme si, že jsme vyzváni ke hře, která spočívá v opakovaném házení mincí. Jestliže nám na první pokus padne panna, pak nám protihráč zaplatí 2 koruny a hru skončíme. Jestliže prvním hodem padne orel a druhým panna, zaplatí nám 4 koruny a hru opět ukončíme. Jestliže nejprve padne dvakrát orel a pak panna, dostaneme 8 korun a hra skončí. Pokračujeme tímto způsobem, dokud nám nepadne panna. Pokaždé, když padne orel, hra pokračuje a protihráč zdvojnásobuje částku, kterou získáme, až nám padne panna. Nyní si představme, že někdo, kdo sleduje naši hru, nám nabídne 10 korun, pokud ho necháme hrát místo sebe. Přijmeme jeho nabídku? Nebo raději odmítneme? Co kdyby nabídl 50 korun? Nebo 100 korun? Jinými slovy: jak si ceníme tuto hru? Výši výhry v této hře lze tedy zobecnit do vzorce 2n-1 , kde n je pořadí hodu, v němž padla hlava. Pravděpodobnost, že v každém jednom hodu mincí padne hlava, je 50%, tedy 0,5. Ale protože jde o sérii nezávislých náhodných pokusů, je pravděpodobnost konce hry právě po n-tém hodu rovna (1/2)n . Pravděpodobnosti a výše výhry pro prvních pět variant průběhu hry jsou v následující tabulce: Výsledky hodů Pravděpodobnost Výhra
H
1
OH
2
OOH
4
OOOH
8
OOOOH
16
Nyní nastává otázka, kolik by měl hráč zaplatit za vstup do takovéto hry. Na základě statistických principů je logické vypočítat střední hodnotu výhry, tedy nejpravděpodobněji očekávanou výši výhry. Tu můžeme spočítat jako součet všech součinů pravděpodobnosti a výhry, tedy: (1/2)+(2/4)+(4/8)+(8/16)+… Nebo vynásobíme částku, kterou můžeme získat s pravděpodobností, se kterou na tuto částku můžeme dosáhnout a všechno sečteme. Dostáváme:
Pokud hráč souhlasí s n hody mincí bez ohledu na to, zda se hlava objeví, pak je tento součet a tedy i střední hodnota výhry rovna n/2. Pokud však se bude hrát podle pravidel, tedy dokud se neobjeví hlava, pak je n nekonečno a tudíž i n/2 je nekonečno. Z toho plyne, že podle střední hodnoty je optimální cena za vstup do hry nekonečně vysoká. Takovýto závěr není ale prakticky pro nikoho přijatelný. Žádný racionální člověk totiž za vstup do takovéto hry nezaplatí nekonečnou cenu, naopak i lidé s malou averzí k riziku zaplatí jen konečnou sumu, a to ne větší než dvoucifernou a většina lidí dokonce jen jednocifernou. Je to způsobeno tím, že střední hodnota výhry je zkreslena možností astronomické výhry v mizivém procentu případů. A protože racionální lidé tento fakt intuitivně vycítí, nejsou ochotni přistoupit na cenu ve výši střední hodnoty výhry bez ohledu na subjektivní postoj k riziku. Kritici tohoto paradoxu samozřejmě namítají, že nemůžete hrát nekonečně dlouhou dobu, nemůžeme vyhrát nekonečně mnoho peněz a dokonce i když „snížíte“ počet maximálních hodů mincí z nekonečna na nějaké konečné číslo n, pak se stejně poměrně brzy dostanete do takových částek, které nikdo na světě nemá. Například po 41 hodech už byste vyhráli 240 dolarů, což je přibližně bilion dolarů (tisíc miliard dolarů). Po dalších deseti hodech byste vyhráli tisíckrát více peněz. Konečné vstupné Nekonečně mnoho dolarů vám samozřejmě nikdo na vstupném nedá. Nicméně paradox lze částečně předvést i s konečným množstvím peněz. Pro každou celodolarovou částku totiž existuje maximální počet hodů mincí, pro kterou vyjde střední hodnota taková, jakou potřebujeme. Pokud například chceme mít vstupné tisíc dolarů, řekneme, že maximální počet hodů mincí je 2000. Pak počítáme takovouto sumu: ∑k=1200012=2000⋅12=1000∑k=1200012=2000⋅12=1000 Střední hodnota pak bude 1000 dolarů. Chceme-li mít vstupné ve výši dolarů, pak řekneme, že maximální počet hodů mincí je 2D. Samozřejmě ale žádný rozumný člověk nezaplatí vstupné například tisíc dolarů, pokud má naprosto minimální šanci, že vyhraje více než tisíc dolarů.
ZÁVĚR:
Když si položíme otázku, jaká byla rychlost hry, kolik hodů za minutu byl průměr, než se vyplatily výhry či zdvojily sázky, vyslechly komentáře kibiců a upilo se na štěstí, tak dojdeme k závěru, že když jedno sezení netrvalo déle než jednu noc, tak to mohlo být maximálně několik tisíc hodů. Když vyškrtáme nedokončené hry, můžeme si soubor našich konečných her představit jako model dosti dlouhé hry. Průměrná výhra je mnohem nižší než výhra z úplné pravděpodobnosti. Zkušení hráči sázeli na průměrný výsledek asi 50 her. A to má do úplné pravděpodobnosti hodně daleko. V reálném životě nelze sázet na úplnou pravděpodobnost, každá série skončí nejpozději v polovině nekonečnosti.