ISSN : 1411-1098 Akreditasi Nomor : 401/AU2/P2MI-LIPI/04/2012
Jurnal
Sains Materi Indonesia Indonesian Journal of Materials Science Vol. 14, No. 2, Januari 2013
Pusat Teknologi Bahan Industri Nuklir Badan Tenaga Nuklir Nasional INDONESIA
ISSN : 1411-1098 Akreditasi Nomor : 401/AU2/P2MI-LIPI/04/2012
Vol. 14, No. 2, Januari 2013 Terbit tiga bulanan : Oktober, Januari, April, Juli
DEWAN KEHORMATAN HONORARY BOARD Kementerian Negara Riset dan Teknologi RI, Kementerian Pendidikan dan Kebudayaan RI, Kepala Badan Tenaga Nuklir Nasional
DEWAN PENASEHAT NASIONAL NATIONAL ADVISORY BOARD Dr. Hudi Hastowo, Prof. Dr. Aang Hanafiah R. Wangsaatmaja, BATAN, Dr. Pramudita Anggraita, BATAN, Prof. Dr. Umar Anggara Jenie, Apt.,M.Sc, Prof. Dr. N.M. Surdia, MSc, Prof. Dr. Ir. Mardjono Siswosuwarno, ITB, Prof. Dr. Soleh Kosela, Prof. Dr. M.O. Tjia, Prof. Dr. Prajoto, UGM
DEWAN PENASEHAT INTERNASIONAL INTERNATIONAL ADVISORY BOARD Prof. Dr. Rees D. Rawlings, Imperial Collage of Science, Technology and Medicine, University of London, UK
DEWAN PENGARAH STEERING BOARD Drs. Gunawan, M.Sc, Prof. Dr. Ridwan, Dr. Ir. Utama H Padmadinata, Prof. Dr. Eddy S. Siradj, Dr. Ing. Ir. Amir Partowiyatmo,Prof. Dr. Ir. Suminar S Achmadi, Dr. Ir. Rochim Suratman, Dr. Agus Hadi S.W., M.Sc
PENANGGUNG JAWAB MANAGING EDITOR Kepala Pusat Teknologi Bahan Industri Nuklir - Badan Tenaga Nuklir Nasional
DEWAN REDAKSI EDITORIAL BOARD KETUA CHAIRMAN
WAKIL KETUA Co-CHAIRMAN
Drs. Sudirman, M.Sc. BATAN
Edy Giri R. Putra, Ph.D. BATAN
STAF EDITOR EDITORIAL STAFF Dr. Aziz Khan Jahja, M.Sc. BATAN, Dr. Abu Khalid Rivai, M.Eng. BATAN, Dra. Grace Tj. Sulungbudi, M.Sc. BATAN, Dra. Mujamilah, M.Sc. BATAN, Dr. Salim Mustofa. BATAN, Dr. Iwan Sumirat. BATAN, Dr. Eng. Eniya Listiani Dewi. BPPT, Dr. Agus Haryono. LIPI, Dr. Ir. Sri Harjanto. UI, Heri Jodi, M.Eng. BATAN
REDAKTUR PELAKSANA EXECUTIVE EDITORIAL Drs. Aloma Karo Karo, Rd. Nenny Gunawati , Dra. Mirah Yulaili, Dra. Rina Ramayanti, Yualina Riastuti Partiwi Penerbit : Pusat Teknologi Bahan Industri Nuklir, BATAN Terbit Pertama Kali : Oktober 1999 Alamat Redaksi/Editorial Address : PTBIN - BATAN, Gedung 43, Kawasan Puspiptek Serpong 15314, Tangerang Telepon : (021) 75874261, 7562860 Ext. 4009 - 4010, Fax : (021) 7560926 e-mail :
[email protected], Website : http://jusami.batan.go.id
JURNAL SAINS MATERI INDONESIA Indonesian Journal of Materials Science Vol. 14, No. 2, Januari 2013
DAFTAR ISI
Kata Pengantar ..………………………………………………………………………………………...
i
1.
Yuyun Irmawati, Indriyati and Achiar Oemry, Effect of Hot Pressing Temperature on The Performance of Proton Exchange Membrane Fuel Cell Based on Gas Diffusion Electrode Carbon Paper and Carbon Cloth ................................................................................................
85 - 90
2.
Alan Maulana, Andon Insani, Irfan Hafid dan Sudirman, Sintesis dan Karakterisasi Material Fotonik SiO2 .................................................................................................................................
91 - 94
3.
Ni Luh Wulan Septiani, Dani Gustaman Syarif dan Endi Suhendi, Pengaruh Penambahan Gadolinia Doped Ceria terhadap Sifat Listrik Lanthanum Strontium Manganite-Yttria Stabilized Zirconia untuk Katode Solid Oxide Fuel Cell ...........................................................
95 - 98
4.
Sri Nurhayati, Dani Gustaman Syarif dan Andhy Setiawan, Pengaruh Suhu Sinter Terhadap Karakteristik Keramik Calsia Stabilized Zirconia dengan Penambahan Natrium Karbonat untuk Elektrolit Padat .................................................................................................................
99 - 102
5.
Lies A. Wisojodharmo, Dewi Kusuma Arti dan Eniya Listiani Dewi, Karakterisasi Grafit Matriks Polistiren sebagai Material untuk Separator Proton Exchange Membrane Fuel Cell
103 - 107
6.
Arief Ramadhan dan M. Irfan Fathurrohman, Pengaruh Asam Stearat terhadap Karakteristik Pematangan, Sifat Mekanik dan Swelling Vulkanisat Karet Alam dengan Bahan Pengisi Organoclay ..…….............................…………..…......................................................................
108 - 113
7.
Rahyani Ermawati, Wiwik Pudjiastuti, Siti Naimah, Evana Yuanita dan Agustina Arianita, Sintesis dan Karakterisasi Kemasan Jerigen Plastik Polietilen dengan Penambahan Nano Partikel TiO2 ................................................................................................................................
114 - 119
8.
Evi Triwulandari dan Muhammad Ghozali, Pembuatan Epoksi Termodifikasi Poliuretan dari Poliol Akrilik dengan Variasi Suhu dan Komposisi Poliuretan ................................................
120 - 124
9.
Emmy Ratnawati dan Arief Riyanto, Pemanfaatan Cocodiesel Berbahan Baku Kelapa sebagai Bahan Bakar Mesin Diesel Stationer ............................................................................
125 - 130
10.
Siti Wardiyati, Sari Hasnah Dewi dan Adel Fisli, Dekolorisasi Limbah Industri Batik Menggunakan Proses Fenton dan Foto Fenton ........................................................................
131 - 135
11.
Azwar Manaf dan Wisnu Ari Adi, Analisis Struktur Single Phase Sistem Ba1-xLaxMnO3 (0 < x < 0,3) ...............................................................................................................................
136 - 141
12.
Mardiyanto dan Syahfandi A., Metode Sol Gel untuk Sintesis Bahan Piezoelektrik Ramah Lingkungan Bismut Natrium Titanat .........................................................................................
142 - 146
13.
Nanik Indayaningsih, Anne Zulfia, Dedi Priadi and Evvy Kartini, Synthesis of Empty Fruit Bunches Carbon Polymer Composites as Gas Diffusion Layer for Electrode Materials .........
147 - 150
14.
Ari Handayani, Muhammad Rifai, Eko Yudho Pramono dan Mujamilah, Morfologi dan Sifat Magnetik Nano Partikel Core/Shell Fe/Oksida Fe Hasil Proses Milling Energi Tinggi pada Berbagai Medium ........................................................................................................................
151 - 155
Indeks Kata Kunci ..…………………………………………………………………………………….
156 - 156
Indeks Pengarang ..……………………………………………………………………………………..
157 - 157
Synthesis of Empty Fruit Bunches Carbon Polymer Composites as Gas Material (Nanik Indayaningsih) Akreditasi LIPI Nomor : 395/D/2012 Tanggal 24 April 2012
SYNTHESIS OF EMPTY FRUIT BUNCHES CARBON POLYMER COMPOSITES AS GAS DIFFUSION LAYER FOR ELECTRODE MATERIALS Nanik Indayaningsih1,2, Anne Zulfia2, Dedi Priadi2 and Evvy Kartini3 1
Research Center For Physics-LIPI Kawasan Puspiptek Serpong 15314, Tangerang Selatan 2 Department of Metallurgy and Material, FT - UI Kampus Baru UI, Depok 16424 3 Center Technology for Nuclear Industry Materials-BATAN Kawasan Puspiptek Serpong 15314, Tangerang Selatan Recieved: 22 May 2012
Revised: 30 August 2012
Accepted: 21 November 2012
ABSTRACT SYNTHESIS OF EMPTY FRUIT BUNCHES CARBON POLYMER COMPOSITES AS GAS DIFFUSION LAYER FOR ELECTRODE MATERIALS. Empty Fruit Bunches (EFB) of oil palm has been used, for example, for biofuels, automotive components, particle board, as a carbon source. Carbon material scan be widely used for many applications, for hydrogen storage, conductive or reinforcement plastics, catalyst supports, batteries and fuel cells. In this study, EFB carbon powder has been used as a raw material to make sheets of carbon-polymer composites. The composition of the composite sheet was varied, the electrical properties of the sheets were measured to determine the potential application as a Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell (PEMFC) electrodes. Composites made with carbon composition weight % compared to the polymer are 65/35, 70/30, 75/25 and 80/20. The materials used is EFB carbon powder as a result of the pyrolysis temperature of 900 °C for 1 hour, then crushed and sieved to 200 mesh size, and the polymer was ethylene vinyl acetate. The raw materials are mixed in a solvent xylene, and printed using tape casting method, then dried at room temperature. The electrical properties were tested using a HIOKI 3522-50 LCR meter HiTESTER The measurement results show that the greater the ratio of carbon to polymer, the higher the electrical conductivity, the values are between 1.54 S/m -11.34 S/m. Morphology of the composite sheet was observed using Scanning Electron Microscope (SEM) to determine the distribution of carbon and polymer. According to the measurement of morphology and electrical conductivity, the composite is suitable for the gas diffusion layer of the PEMFC electrode. Keywords : Composite, Empty fruit bunches, Gas diffusion layer, Electrical conductivity
ABSTRAK PEMBUATAN KOMPOSIT KARBON TANDAN KOSONG KELAPA SAWIT POLIMER SEBAGAI BAHAN GAS DIFFUSION LAYER UNTUK MATERIAL ELEKTRODA . Tandan kosong kelapa sawit telah banyak dimanfaatkan, misalnya untuk biofuel, komponen otomotif, papan partikel, sebagai sumber karbon. Bahan karbon dapat digunakan secara luas untuk beberapa aplikasi, contohnya untuk penyimpan hidrogen, penguat plastik atau konduktif, catalyst supports, batteries dan fuel cells. Pada percobaan ini, serbuk karbon Tandan Kosong Kelapa Sawit (TKKS) telah digunakan sebagai bahan dasar membuat lembaran komposit karbon polimer. Komposisi bahan komposit divariasikan, sifat listrik lembaran diukur untuk mengetahui potensi aplikasinya sebagai Gas Diffusion Layer pada elektroda Proton Exchange Membrane Fuel Cell (PEMFC). Komposit dibuat dengan komposisi: % berat karbon dibanding polimer adalah 65/35, 70/30, 75/25 dan 80/20. Bahan yang digunakan adalah serbuk karbon sebagai hasil pirolisis TKKS pada suhu 900 °C selama 1 jam, lalu digerus dan diayak hingga berukuran 200 mesh dengan polimer ethylene vinyl acetate. Bahan baku dicampur dalam pelarut xylene, lalu dicetak menggunakan metode tape casting, selanjutnya dikeringkan pada suhu ruang. Sifat listrik diuji menggunakan alat LCRmeter HIOKI 3522-50 HITESTER. Hasil pengukuran menunjukkan bahwa makin besar perbandingan karbon terhadap polimer, makin tinggi konduktifitas listriknya, nilainya antara 1,54 S/m hingga 11,34 S/m. Morfologi lembaran komposit diamati menggunakan Scanning Electron Microscope (SEM) untuk mengetahui distribusi karbon dan polimernya. Sesuai hasil pengamatan morphologi dan pengukuran konduktivitas listriknya, komposit ini cocok sebagai Gas Diffusion Layer untuk PEMFC. Kata kunci: Komposit, Tandan kosong kelapa, Lapisan difusi gas, Konduktivitas listrik
147
Jurnal Sains Materi Indonesia Indonesian Journal of Materials Science
INTRODUCTION The Proton Exchange Membrane Fuel Cell (PEMFC) is becoming center of attention as an alternative power source for automotive and stationary applications, since it is capable of producing high power densities under rapid change in load [1-3]. It is a new energy generating and renewable which is environmental friendly is alternative energy source that needs to be developed to overcome the energy crisis and reduce the impact of global warming. The fuel cell produces electrical energy from the electrochemical reaction between hydrogen gas and oxygen gas. A PEMFC consists of components of the electrolyte or the proton exchange membrane and GDE that composed of sheets of Gas Diffusion Layer (GDL) and Catalyst Layer (CL), see Figure 1. GDL is part of the fuel cell electrode is one of the main components in PEMFCs. The GDL plays a key role on reactant gas diffusion and water management in PEMFCs, that have several functions: a) to diffusion of hydrogen (anode) and oxygen gas (cathode), b) as a catalytic support, and c) as a conductive medium of electrons movement [4]. GDL is a layer of material, which is usually a composite material, consisting of carbon dab polymeric materials. A single-layer GDL is typically carbon-based product, including woven carbon cloth [5], non-woven carbon paper [6], carbon felt, carbon nano tubes [7], and carbon foam. These carbon materials requires a production process that relatively complicated, thus affecting the selling price. Research on the manufacture of carbon from oil palm empty fruit bunches have been done with a relatively simple process, and potentially replace charcoal products commercially, because carbon is porous and conductive properties, as specified by the electrode material for PEMFC [8]. Carbon-based GDL is widely used because (i) it is stable in acid environment, (ii) provides high gas permeability and good electronic conductivity, (iii) is elastic on compression, and (iv) controls porous structure of a dual-layer GDL [3, 9]. Carbon-fiber paper or cloth has been typically employed as a substrate for the GDL in PEM fuel cells. Conventionally, carbon fibers are graphitized at high
Vol. 14, No. 2, Januari 2013, hal : 147 - 150 ISSN : 1411-1098
temperature (>2000 °C) to enhance electronic conductivity and mechanical strength, and impregnated with thermoset resin to manufacture carbon papers. Carbon cloths are produced by spinning and weaving of carbon yarns, followed by carbonization or graphitization [10, 11]. More details for carbon-fiber products and processing can be found in Reference [10]. Modification of carbon-fiber cloth by phenolic resin before carbonization [12] improved fuel cell polarization behavior without significant ohmic and mass transfer losses. In this research, composites for GDL was made of carbon materials and polymers with different compositions to determine the effect of carbon content on its electrical properties. Carbon is made from palm oil waste, such EBFS through pyrolysis process, and has been observed morphology and electrical conductivity
EXPERIMENTAL METHOD Carbon-polymer composite materials for applications as PEMFC Gas Diffusion Layer has been made of the carbon material, which is the result of the pyrolysis of oil palm empty fruit bunches at a temperature of 900 °C for 1 hour, carbon powder 200 mesh size. The polymer used is ethyl vinyl acetate and a plasticizer poly ethylene glycol 30%. Composites are made varying the composition of the carbon and polymer are 65%:35%, 70%:30%, 75%:25% and 80%:20%. Ingredients are mixed in xylene medium at a temperature of 55 °C for 1 hour followed at a temperature of 124 °C for 30 minutes, then printed using tape casting technique, and dried at room temperature. Electrical conductivity is determined using HIOKI 3522-50 LCR-meter HiTESTER, and morphology is observed by Scanning Electron Microscope (SEM) JEOL JSM-6390 Series.
RESULTS AND DISCUSSION
Composite morphology was observed using Scanning Electron Microscope (SEM) is shown in Figure 2 and Figure 3, which indicates that the carbon polymer composites is quite homogeneous, observed on the top surface, bottom surface and cross section of one side. Pores are scattered fairly evenly throughout the body of the composite, the surface pore over more O2 of the bottom surface, it is likely due to the speed of the (a) Cathode Catalyst liquid polymer settles by gravity is greater than the speed (b) Exchange 2H+ Proton Membrane of freezing liquid polymer. (c) Catalyst Anode Layer The pores diameter between of 1m to 30 m, H2 and thick composite approximately is 85 m. Data mapping looks deployment carbon material (pink), (a): Cathode Catalyst Layer polymer (green) and pores (black) is quite homogeneous. (b): Proton Exchange Membrane Materials with composition 90/10 was made as well, but (c): Anode Catalyst Layer after drying, the raw materials are not fused so that the Figure 1. Component of Proton Exchange Membrane composite sheet is not formed. Fuel Cell
148
Synthesis of Empty Fruit Bunches Carbon Polymer Composites as Gas Material (Nanik Indayaningsih) 14.000 E lectrica l C o n du ctiv ity , (S/m )
(a)
12.000 80/20
10.000 8.000
75/25
6.000
70/30
4.000 65/35
2.000 0.000 0.1
10
1000
100000
Frequency, (Hz) Figure 4. Electrical conductivity of composite material sin the varying compositions
(b)
However, the electrical properties of carbon materials still can be improved so that the quality of the composite have better electrical properties as the base material for roton Exchange Membrane Fuel Cell (PEMFC) electrodes
CONCLUSION Figure 2. GDL sheet morphology with composition for carbon: polymer = 80:20, (a). The upper surface and (b). Bottom. (a)
According to the measurement of morphology and electrical conductivity, the composite is suitable for the gas diffusion layer of the Proton Exchange Membrane Fuel Cell (PEMFC) electrode. However, the electrical properties of carbon could be enhanced in order to achieve the required properties as a base electrode PEMFC.
ACKNOWLEDGMENT The authors would like to express gratitude for the support of funds from the program PKPP 2012, and the facilities provided by the Research Center for Physics-LIPI (b)
REFERENCES [1]. [2]. [3].
[4]. Figure 3. Mapping (a). The upper surface and (b). Cross section
Electrical conductivity of the composite has been measured at frequencies 1-100000 Hz, shown in Figure 4, which indicates that the carbon content affects the electrical conductivity of the composites. The more the carbon content, the higher electrical conductivity of composite, the average value was 11.34 S/m, 9.09 S/m, 5.71 S/m and 1.54 S/m, respectively for the composition of 65 % : 35 %, 70 %: 30 %, 75 % : 25 % and 80 % : 20 %.
[5].
[6]. [7]. [8].
COSTAMAGNA P., SRINIVASAN S., Journal of Power Sources, 102 (2001), 242-252 PERRY M.L., FULLER T.F., Journal of the Electrochemical Society, 149 (2002) S59-867 SEHKYU PARK, JONG-WON LEE, BRANKO N. POPOV, International Journal of Hydrogen Energy, 37 (2012) 5850-5865 [4] LISTER, S. and G. Mc.LEAN, Jurnal of Power Source, 130 (2004) 61-76 ESCRIBANO, S., BLACHOT, J.F., ETHEVE, J., MORIN, A., MOSDALE, R., Jurnal of Power Sources, 156 (2006) 8-13 HAN, M., XU, J.H., CHAN, S.H., JIANG, S.P., Electrochimica Acta, 53 (2008) 5361-5367 KANNAN, A.M., KANAGALA, P., VEEDU, V., Jurnal of Power Sources, 192 (2009) 297-303 NANIK INDAYANINGSIH,ANNE ZULFIA, DEDI PRIADI, SUNIT HENDRANA, Journal Advanced Materials Research, 277 (2011) 137-142 149
Jurnal Sains Materi Indonesia Indonesian Journal of Materials Science
[9]. PARK S, POPOV BN, Fuel 2011, 90 (2011) 436-440 [10]. MATHIAS M, ROTH J, LEHNERT W, Diffusion Media Materials and Characterization, New York, John Wiley and Sons, (2003)
150
Vol. 14, No. 2, Januari 2013, hal : 147 - 150 ISSN : 1411-1098
[11]. KO TH, LIAO YK, LIU CH, Energy and Fuels, 22 (2008) 4092-4097 [12]. LIAO YK, KO TH, LIU CH, Energy and Fuels, 22 (2008) 3351-3354