MODUL PERKULIAHAN STATISTIKA BISNIS
Pokok Bahasan: Distribusi Frekuensi, Penyajian Data Histogram, Polygon dan Kurva Ogive
Fakultas
Program Studi
Ekonomi dan Bisnis
Akuntansi S1
Tatap Muka
02
Kode MK
Disusun Oleh
MK84002
Zulkifli, SE., MM.
Abstract
Kompetensi
Distribusi frekuensi merupakan pemilihan data dan pengumpulan data yang memberikan gambaran keragaman data yang baik. .
Mahasiswa mampu mengumpulkan, mengolah dan menyajikan data.
Pendahuluan 2016
1
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
Pengertian Distribusi frekuensi Distribusi frekuensi adalah pengelompokan data kedalam beberapa kategori yang menunjukkan banyaknya data dalam setiap kategori, dan setiap data tidak dapat dimasukan ke dalam dua atau lebih kategori. Distribusi frekuensi adalah susunan data dalam bentuk tunggal atau kelompok menurut kelas-kelas tertentu dalam sebuah daftar. (Suharyadi, 2009 : 25).
Tujuan distribusi frekuensi ini, yaitu : a. Memudahkan dalam penyajian data, mudah dipahami, dan dibaca sebagai bahan informasi. b. Memudahkan dalam menganalisa data, menghitung data, dan membuat tabel, grafik/kurva.
Manfaat penyajian data distribusi frekuensi sebagai berikut: 1. Interval Kelas Tiap-tiap kelompok disebut interval kelas atau sering disebut interval atau kelas saja. 2. Range Selisih antara nilai tertinggi dan terendah 3. Batas Kelas Berdasarkan tabel distribusi frekuensi, Batas kelas bawah dan atas. 4. Tepi Kelas (Batas Nyata Kelas) Untuk mencari tepi kelas dapat dipakai rumus berikut ini. Tepi bawah = batas bawah – 0,5 Tepi atas = batas atas + 0,5 5. Lebar kelas Untuk mencari lebar kelas dapat dipakai rumus: Lebar kelas = tepi atas – tepi bawah, kelas pertama 6. Nilai/ Titik Tengah Untuk mencari titik tengah dapat dipakai rumus: Titik tengah = 1/2 (batas atas + batas bawah) 7. Banyak kelas 1 + (3.3 x log(n)) 8. Panjang kelas (range)/(banyak kelas)
2016
2
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
Jenis-jenis Distribusi frekuensi 1. Distribusi frekuensi kumulatif adalah suatu daftar yang memuat frekuensi -frekuensi kumulatif, jika ingin mengetahui banyaknya observasi yang ada diatas atau dibawah suatu nilai tertentu. Distribusi frekuensi kumulatif terdiri dari : a. Distribusi kumulatif kurang dari (dari atas) Adalah suatu nilai dari tepi atas lebih kecil pada masing-masing interval kelasnya. Misalnya (<60.5) b. Distribusi kumulatif lebih dari (dari bawah) Adalah suatu nilai dari tepi bawah lebih besar pada masing-masing interval kelasnya. Misalnya (>50.5) c. Distribusi frekuensi kumulatif relatif Adalah adalah nilai frekuensi untuk kelas tersebut kumulatif kurang (ditambah) atau kumulatif lebih (dikurang) dengan jumlah frekuensi pada setiap kelas dari kelas pertama. 2. Distribusi frekuensi relative adalah perbandingan daripada frekuensi masing -masing kelas dan jumlah frekuensi seluruhnya dan dinyatakan dalam persen.
Histogram, Polygon dan Ogive Data yang telah disusun dalam bentuk tabel distribusi frekuensi dapat disajikan dalam bentuk diagram yang disebut histogram, berikut adalah beberapa pengertian histogram. Histogram yaitu merupakan grafik dari distribusi frekuensi suatu variabel. Tampilan histogram berupa petak-petak empat persegi panjang. Sebagai sumbu horizontal (absis, sumbu x) boleh memakai tepi-tepi kelas, batas-batas kelas atau nilai-nilai variabel yang diobservasi, sedang sumbu vertical (ordinat,sumbu y) menunjukan frekuensi. Untuk distribusi bergolong/ kelompok yang menjadi absis adalah nilai tengah dari masing-masing kelas (Somantri, 2006:113). Menurut Hasan (2009:47) menyatakan histogram merupakan grafik batang dari distribusi frekuensi. Histogram adalah diagram kotak yang lebarnya menunjukkan interval kelas, sedangkan batas-batas tepi kotak merupakan tepi bawah dan tepi atas kelas, dan tingginya menunjukkan frekuensi pada kelas tersebut
2016
3
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
Polygon frekuensi merupakan grafik garis dari distribusi frekuensi. Tampilan poligon berupa garis-garis patah yang diperoleh dengan cara menghubungkan puncak dari masing-masing nilai tengah kelas (Hasan, 2009:47). Grafik ogive dibuat dari daftar sebaran “frekuensi kumulatif kurang dari” dan “frekuensi kumulatif lebih dari”. Hal ini sependapat dengan Siregar (2010:15), untuk membuat grafik ogive terlebih dahulu mencari nilai frekuensi kumulatif. Langkah-langkah membuat grafik ogive antara lain: a. Menentukan nilai frekuensi kumulatif. b. Menghitung frekuensi kumulatif positif dan negatif. Ogive adalah grafik yang digambarkan berdasarkan data yang sudah disusun dalam bentuk tabel distribusi frekuensi kumulatif. Untuk data yang disusun dalam bentuk tabel distribusi frekuensi kumulatif kurang dari, grafiknya berupa ogive positif, sedangkan untuk data yang disusun dalam bentuk tabel distribusi frekuensi kumulatif lebih dari, grafiknya berupa ogive negatif. Contoh Perhitungan penyajian data distribusi frekuensi. Tabel. 1. Daftar Hasil Ujian Statistik 80
70
65
90
85
85
70
60
75
90
70
70
55
65
85
60
85
55
60
60
Tahap pertama menyajikan distribusi frekuensi tunggal.
No
2016
4
Tabel. 2. Nilai Ujian dan Frekuensi Nilai Ujian (xi) Frekuensi (fi)
1
55
2
2
60
4
3
65
2
4
70
4
5
75
1
6
80
1
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
7
85
4
90
2
Total
20
8
Tahap kedua menyajikan interval nilai distribusi frekuensi tunggal. Tabel. 3. Interval Nilai Ujian Statistik Kelas ke
Interval Nilai Ujian (xi)
Frekuensi (fi)
1
51-60
6
2
61-70
6
3
71-80
2
81-90
6
Total
20
4
Tahap ketiga menyajikan interval nilai distribusi frekuensi kelompok.
Tabel. 4. Daftar Frekuensi sudah dikelompokan Kelas ke
Interval Nilai Ujian (xi)
Tepi Kelas
Nilai Tengah
Frekuensi (fi)
1
51-60
50.5-60.5
55.5
6
2
61-70
60.5-70.5
65.5
6
3
71-80
70.5-80.5
75.5
2
81-90
80.5-90.5
85.5
6
4
Total
20
Tahap keempat menyajikan data range, batas atas dan bawah, tepi kelas bawah dan atas, banyak kelas, panjang kelas dan lebar kelas. a. Range adalah selisih antara nilai tertinggi dan terendah = 90-55=35 b. Batas Bawah Kelas (51,61,71,81) c. Batas Atas Kelas (60,70,80,90)
2016
5
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
d.
Tepi Bawah 50.5 60.5 70.5 80.5
Tepi Kelas
e.
Tepi Atas 60.5 70.5 80.5 90.5
Banyak kelas, Jika kita lihat rangenya 35, maka kemungkinan kelasnya 4 atau 5 kelas. 1 + (3.3 x log(20)) 1+ (3.3 x 1.30) 1 + (4.29) = 5.29 = 5
f.
Panjang kelas = (range)/(banyak kelas) = 35/5 = 7
g. Lebar kelas = 60.5 – 50.5 = 10
Tahap kelima menyajikan distribusi frekuensi relative. Tabel. 5. Distribusi Frekuensi Relatif Frekuensi Relatif = 6/20 x 100% = 0.30 Kelas ke
Interval Nilai Ujian Tepi Kelas Nilai Tengah
Frekuensi (fi)
Frekuensi Relatif (fi) %
1
51-60
50.5-60.5
55.5
6
30%
2
61-70
60.5-70.5
65.5
6
30%
3
71-80
70.5-80.5
75.5
2
10%
81-90
80.5-90.5
85.5
6
30%
20
100%
4
Total Tahap keenam menyajikan distribusi frekuensi kumulatif kurang.
Tabel. 6. Distribusi Frekuensi kumulatif kurang Kelas ke
Nilai Tepi Atas
Frekuensi kumulatif kurang dari
1
< 60.5
6
2
< 70.5
12
3 4
< 80.5
14
< 90.5
20
Tahap ketujuh menyajikan distribusi frekuensi kumulatif lebih. 2016
6
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
Tabel. 7. Distribusi Frekuensi kumulatif lebih Kelas ke
Nilai Tepi Bawah
Frekuensi kumulatif lebih dari
1
> 50.5
20
2
> 60.5
14
3
> 70.5
12
4
> 80.5
6
Tahap kedelapan menyajikan Histogram.
Frekuensi
Histogram 7 6 5 4 3 2 1 0
6
6
6
2
51-60
61-70
Frekuensi
71-80
81-90
Nilai Ujian
Histogram adalah merupakan bagian dari grafik batang di mana skala horisontal mewakili nilainilai data kelas dan skala vertikal mewakili nilai frekuensinya. Histogram dibuat setelah tabel distribusi frekuensi data pengamatan dibuat. Untuk memberikan gambaran nilai yang terbesar dengan frekuensinya. Sebaliknya dapat pula mengamati nilai terkecil dengan frekuensi. Tahap kesembilan menyajikan kurva poligon. Poligon frekuensi 7 6
6
6
6
Frekuensi
5 4 3 2
2
1 0 51-60
61-70
71-80
81-90
Poligon Frekuensi menggunakan segmen garis yang terhubung ke titik yang terletak tepat di atas nilai-nilai titik tengah kelas. Ketinggian dari titik-titik sesuai dengan frekuensi kelas, dan
2016
7
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
segmen garis diperluas ke kanan dan kiri sehingga grafik dimulai dan berakhir pada sumbu horizontal Tahap kesepuluh menyajikan kurva ogive. Ogive (Kumulatif Kurang dari)
Ogive adalah grafik garis yang menggambarkan frekuensi kumulatif, seperti daftar distribusi frekuensi kumulatif. Perhatikan bahwa batas-batas kelas dihubungkan oleh segmen garis yang dimulai dari batas bawah kelas pertama dan berakhir pada batas atas dari kelas terakhir. Ogive berguna untuk menentukan jumlah nilai di bawah nilai tertentu. Sebagai contoh, pada gambar berikut menunjukkan bahwa 20 mahasiswa mendapatkan nilai kurang dari 90.5.
Ogive (Kumulatif Lebih dari)
Ogive adalah grafik garis yang menggambarkan frekuensi kumulatif, seperti daftar distribusi frekuensi kumulatif. Perhatikan bahwa batas-batas kelas dihubungkan oleh segmen garis yang dimulai dari batas bawah kelas pertama dan berakhir pada batas atas dari kelas terakhir. Ogive 2016
8
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id
berguna untuk menentukan jumlah nilai di bawah nilai tertentu. Sebagai contoh, pada gambar berikut menunjukkan bahwa 6 mahasiswa mendapatkan nilai lebih dari 80.5
Daftar Pustaka Hasan, M. Iqbal. 2009. Pokok – Pokok Materi Statistika 1 (Statistik Deskriptif). Bumi Aksara. Jakarta. Suharyadi dan Purwanto SK. 2009. Statistika Untuk Ekonomi dan Keuangan Modern. Buku 1. Salemba Empat. Jakarta. Siregar,Syofian. 2010. Statistika Deskriptif untuk Penelitian Dilengkapi Perhitungan Manual dan Aplikasi SPSS Versi 17. Rajawali Pers. Jakarta. Somantri, Ating dan Sambas Ali Muhidin. 2006. Aplikasi statistika dalam Penelitian. Pustaka Ceria. Bandung
2016
9
Statistik Bisnis
Pusat Bahan Ajar dan eLearning
Zulkifli, SE., MM.
http://www.mercubuana.ac.id