Home
Add Document
Sign In
Register
Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )
Home
Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )
1 Fungsi Polinomial METODE BISEKSI Solusi Persamaan Non Linier Universitas Budi Luhur Bentuk Umum : f (x) = a + = a n 0x + a1x + a x + a 3x +... a nx ...
Author:
Veronika Kurniawan
815 downloads
4607 Views
223KB Size
Report
DOWNLOAD PDF
Recommend Documents
X + 0 = X X.0 = 0 X + 1 = 1 X.1 = X
! f x ( f x! f x 0. 0! f x Kf x 0
( ) ( ) ( ) ( ) a. 0, d. 0,024 b. 0,00024 e. 0,24 c. 0,0024. x maka f (x) adalah. b. 8 x x e. 2x 2. ( 4x. f ( x) g ( x)
,8 x. 42,6 x
BAB IV PENYELESAIAN PERSAMAAN DIFERENSIAL SECARA NUMERIK
0 X
= = = : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = x = = 2 : 1
Langkah Penyelesaian Example 1) Tentukan nilai awal x 0 2) Hitung f(x 0 ) kemudian cek konvergensi f(x 0 ) 3) Tentukan fungsi f (x), kemudian hitung f
PROGRAM LINIER. x y ( x, y ) 0 1 ( 0, 1 ) 3 0 ( 3, 0 ) Titik uji (0,0): x 3y (0) 3. Benar. Sehingga titik (0,0) termasuk daerah penyelesaian
1 x 2. x pro x ±y, x, y 0. x 3 x 2 4 x 3 x 6
Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad
x ketika x mendekati 0, yakni
f(x) a (x x 0 )-t használjuk
13x2,8x1 guma 0, x 56 x 6 guma 0, x 36 x 4 guma 0, Kónusové tesnenie na vaňový prepad
Poznámka. Využití: věty o limitách, popisy intervalů: (, 0) = {x R : < x < 0} = {x R : x < 0}, (, + ) = R (otevřené i s ± )
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
- -- x X X X X X X X X X X X X X X X X X .T A A X G A N G x x x x x 3: x x x x x x x x x x x x x x x x x x :< x s x % X X X X X X X X X X
x x x x x x x x x x x x x x x
KF410 home p. KF410 home s. x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x
280mm X X X X X X X 364mm X X X X X X X 532mm X X X X X X X 700mm X X X X X X X 1036mm X x X X X X X
x x x x x x x x x x x x x x x x x x x x x x x x
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
36 y 36. log( x 4) log(3 3 x) => x x => 4x 1, x x x x x x x x x x => 25 dus x x x (2 3)
! $
%
"
# "
# #&
!
$ '
"
$
! "& ! "# ! "$
)&
! !& !
' (
!
+ ,
.
&
( "+$ & 0
#
')
) *
%
') (* (
( *
'
.
( (/ () ' () )
-/
' 1
1 23-
)4
+
!
$
' (
*
$ -$"$!
$.
.
( "+$ & 0
$ -$"$!
#$ % / -/
.
#$ %
5 (
( (/ () ' () )
$. (
7
0
6
"
0
6
"
8 "
'
5
1
( 1 23-
(
*
7
)4
8
*
95:#
+
"
5 (
(
0 8 "
+
6
"7
/
,
0
0
1
2 0
8
<
; $ 8
<
1 1
<
$ 1
1
<
' 2
5
6
" 5 " =
1
8 7
8 1
<
7
< <
<
" # )" ? *" =
<
<
<
< <
1
> <
<
< 95:# A < ( < - A ; A< A !5:# < <<
7 @< 7 < 7 7 +" 7 "7 "7
< '
8
< <
' ;
95:#
@<
!5:#
A < A 8
< <
<
3
4
6 0 ' -* B7 95:#
'
0
6
=
8
&
6 '
() -
$
'
()
C8 *
* "
2
*
* '
&
' * '
-
' () * () 20 8
1 "
7
0
$ !
9: ; -
$
-
C8 7 , * -
<
'*
+
8
9:8;
*
/+
.
9:.;
-
$ !
9: ; -
-
-
* ' -+;
'
-
* ' 7(
' () * () 20
-
-
'
-
7
'
+
8
9:8;
*
/+
*
/+
. -
9:.; -
0
-
()
7
(
$ !
9: ; -
-
-
< 0
- '*
+
8
9:8;
*
/+
*
/+
. -
9:.;
*
$ !
9: ; -
-
-
+
-
-
-
-
8
9:8;
*
/+
*
/+
. -
9:.; -
; '
'
()
,
0
$ !
9: ; -
-
-
-
-
- '
< 0
+
-
9:8;
*
/+
*
/+
. -
-
- ; -
8
9:.;
$ !
9: ; -
-
-+
-
+
-
-
-
-
8
9:8;
*
/+
*
/+
.
9:.;
-
-
-
-+
7 '
-
'
-
()
70
1
2
5 (
(
7
0
6
"
0
6
"
8 "
5 (
(
*
7
8
*
95:# = @
5
-* A<* - <)A;A<*A $ ! )
!<" >
A ,* ( = %
"
(
*A;A ,*A
(
7
8
+
0 /
6
"
"
D$#
? 3
4
5 (
)
(
*
6
8
*
"
$
5 )
(
(
$
*
6
8 95:#
(
" 5 *
)
'
(
(,
6
8 "
"
.
! " < %$ )
@?
"
?
A 4 44
! " < %$ )
;
@? ?
A 4 44
< )$
%
;
0
= @
.
-)
1 B
-) A<) ( < A;A<)A $ ! )
!<" >
A-
( = %
// A;A -
A A 4 411 D$# $ ! < B
? (
B < D$#
$ ! %$7 4 44
.@? *
". '.
$ ! < B 1*
7
.
!
< )$ % B < <, ,)
)
" 9:. ; A 4
$ ! %$72
<, D$#
$ ! < B <
< )$
%
B <
$ ! %$7 4 D$#
74 1(,
,
0
1
2
%6
3
×
Report "Penyelesaian Secara Numerik? Penyelesaian Secara Numerik Selesaikanlah persamaan nonlinier f(x) = x x -8 Solve : Misal f(x) = 0 x x 8 = 0 (x 4)(x + )"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close