PENGARUH PERMAINAN KARTU MILENIUM ULAR ANGKA TERHADAP HASIL BELAJAR MATEMATIKA PADA MATERI OPERASI HITUNG BILANGAN (Quasi Ekperimen di SDN Cengkareng Timur 17 Pagi)
DINI INDARIASTI NIM. 103017027229
JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS ILMU TARBIYAH DAN KEGURUAN UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2011
ABSTRAK
DINI INDARIASTI, Pengaruh Permainan Kartu Milenium Ular Angka Terhadap Hasil Belajar Matematika Siswa, Skripsi, Jurusan Pendidikan Matematika, Fakultas Ilmu Tarbiyah dan Keguruan, Universitas Islam Negeri Syarif Hidayatullah Jakarta. Penelitian ini bertujuan untuk mengetahui ada tidaknya perbedaan hasil belajar matematika siswa dengan menggunakan Kartu Milenium Ular Angka, dibanding dengan siswa yang menggunakan pembelajaran Konvensional. Penelitan dilaksanakan di SDN 17 Pagi cengkareng timur dari tanggal 8 Februari sampai dengan 25 Februari tahun ajaran 2010/2011. Metode yang digunakan dalam penelitian ini adalah quasi eksperimen. Pengambilan sampel dilakukan dengan cara cluster random sampling. Instrumen yang diberikan berupa test objektif berjumlah 30 butir item soal. Hasil perhitungan uji Hipotesis diperoleh harga thitung > ttabel (2,82 > 1,67), maka hipotesis nol (Ho) ditolak, sementara Ha diterima, dengan demikian bahwa hasil belajar matematika siswa yang menggunakan Kartu Milenium Ular Angka lebih besar dari pada hasil belajar siswa yang menggunakan pembelajaran konvensional. Kata kunci : Permainan kartu Millenium Ular Angka, Hasil Belajar Matematika, Operasi Hitung Bilangan.
ABSTRACT
DINI INDARIASTI, The Effect of Games Method by Using Score Snake Millennium Card Against Outcomes of Mathematics Student Learning, The Thesis, Mathematics Education Department, Faculty of Tarbiyah and Teacher Science, State Islamic University of Syarif Hidayatullah Jakarta. This study aimed to determine whether there is differences in learning outcomes between students' mathematics using the Score Snake Millennium Card and students who use conventional learning. Research conducted at SDN 17 Morning, east cengkareng from February 8 to February 25 of the school year 2010/2011. The method used in this study was quasi experiment. Sampling was done by cluster random sampling. Instruments are provided in the form of objective test were 30 items about. The calculation results obtained by testing hypotheses tcount price> ttable (2.82> 1.67), the null hypothesis (Ho) is rejected, while Ha is received, so that mathematics learning outcomes of students who use the Score Snake Millennium Card greater than the results of student learning using conventional learning. Keywords: the Score Snake Millennium Card games, The Result of Mathematics Learning, and the Count Numbers Operation.
KATA PENGANTAR
Alhamdulillahirabbil’alamin, segala puji dan syukur penulis sembahkan kehadirat Illahi Robbi yang menguasai setiap denyut nadi kehidupan. Atas kekuasaannya-Nya, penulis bisa merampungkan penulisan skripsi ini. Shalawat dan salam semoga senantiasa tercurah kepada yang mulia, baginda Nabi besar Muhammad SAW. Dengan kehadirannya di muka bumi ini, kita mendapatkan siraman keselamatan, dengan cahaya iman dan ilmu. Semoga di akhirat kelak kita mendapatkan syafaatnya. Perjalanan
panjang
penulis
menempuh
perkuliahan,
akhirnya
alhamdulillah dapat juga terselesaikan. Skripsi ini merupakan persyaratan akhir, sebagai tugas penulis selaku seorang mahasiswa. Dalam penyusunannya sudah barang tentu melibatkan dukungan dan peran serta banyak pihak, baik dukungan dalam bentuk moril dan materil. Untuk itu penulis dari hati yang terdalam ingin menghaturkan terima kasih dan penghargaan yang setingginya kepada: 1.
Prof. Dr. Dede Rosyada, MA., Dekan Fakultas Ilmu Tarbiyah dan Keguruan UIN Syarif Hidayatullah Jakarta.
2.
Ibu Dra. Maifalinda Fatra, M.Pd., Ketua Jurusan Pendidikan Matematika yang penuh kesabaran dan keikhlasan membimbing selama masa perkuliahan.
3.
Bpk Otong Suhyanto, M.Si, Sekretaris Jurusan Pendidikan Matematika sekaligus Dosen Pembimbing II yang penuh kesabaran dan keikhlasan dalam membimbing penulis selama penyusunan skripsi ini.
4.
Bpk. Drs. HM. Ali Hamzah, M.Pd Dosen Pembimbing I yang penuh kesabaran dan keikhlasan dalam membimbing penulis selama penyusunan skripsi ini.
i
5.
Seluruh Dosen Jurusan Pendidikan Matematika UIN Syarif Hidayatullah Jakarta yang telah memberikan ilmu pengetahuan serta bimbingan kepada penulis selama mengikuti perkuliahan, semoga ilmu yang telah Bapak dan Ibu berikan mendapatkan keberkahan dari Allah SWT.
6.
Paling istimewa untuk kedua orang tuaku Ayahanda Samroni dan Ibunda Sudaryati yang telah memberikan dukungan secara moril dan materil. Ketulusan dengan penuh kasih sayang dan motivasi mereka, penulis dapat menuntut ilmu dan menyelesaikan skripsi seperti sekarang ini. Semoga Allah membalas kebaikan dan cinta yang mereka berikan kepada penulis.
7.
Kepada belahan jiwaku (Khairun Eruhsillah Kimo, SS). tak cukup kata untuk semua keikhlasan dan kesabaranmu dalam menemani hari-hari yang telah dilalui.
8.
Kepada buah hatiku (Faqih al Ghaniy), engkaulah motivasi terbesar bunda untuk menyelesaikan skripsi ini.
9.
Kepada adik-adikku yang membuat hidup lebih terasa sebagai hidup, dengan canda kita, tangis kita dan harapan-harapan kita
10.
Kepada mertuaku (alm. Bpk Ruslan Kimo dan Ibu Safera), tetaplah iringi ananda dengan doa dan kasih sayang ibu.
11.
Sahabat-sahabat sejatiku;
Indah dan Tuti (terima kasih buat semoa
dukungan dan semangatnya, semua masukan yang menginspirasikan). Sahabat seperjuanganku: Suryanih, Dofir, Ebot, Rafli, Malkan, T’ Mimin, Hadi, Hanafi, Darman dan yang lainnya yang tidak dapat disebutkan satu persatu. Terima kasih atas persahabatannya. 12.
Kepada semua teman-teman Jurusan Pendidikan Matematika Angkatan 2003, kelas A dan B. Terima kasih atas kebersamaannya, dukungan, bantuan dan motivasinya. Tiada hal terindah kecuali mengenang masa kita berjuang bersama di kampus.
ii
Akhirnya, segala kebenaran hanya milik-Nya, semoga skripsi ini membawa manfaat bagi khalayak ramai dan akademisi dan senantiasa Allah membalas jasa kebaikan mereka di atas dengan balasan yang setimpal. Aamiin Yaa Rabbal ‘Aalamiin.
Jakarta,
Februari 2011
Penulis (Dini Indariasti)
iii
DAFTAR ISI
ABSTRAK ................................................................................................................ i KATA PENGANTAR .............................................................................................. iii DAFTAR ISI ............................................................................................................. vi DAFTAR TABEL ..................................................................................................... viii DAFTAR GAMBAR ................................................................................................ ix DAFTAR LAMPIRAN ............................................................................................. x
BAB I
PENDAHULUAN A. Latar Belakang Masalah .................................................................... 1 B. Identifikasi Masalah .......................................................................... 6 C. Batasan dan Perumusan Masalah ...................................................... 7 D. Tujuan dan Manfaat Penelitian ........................................................... 8
BAB II
DESKRIPSI TEORI, KERANGKA BERFIKIR DAN HIPOTESIS PENELITIAN A. Deskripsi Teori 1. Hasil Belajar Matematika ............................................................. 9 a. Pengertian Belajar ..................................................................... 9 b. Pengertian Matematika .............................................................13 c. Pengertian Hasil Belajar............................................................17 d. Konsep Operasi Hitung Bilangan .............................................19 2. Konsep Permainan Kartu Millenium Ular Angka ........................25 a. Pengertian dan Macam-Macam Permainan ..............................25 b. Faktor-Faktor yang Mempengaruhi Permainan ........................27 c. Kelebihan Permainan ................................................................32 d. Pengertian dan Macam-Macam Permainan Kartu Millenium Ular Angka ................................................................................32 3. Permainan Kartu Millenium Ular Angka Dapat Meningkatkan Hasil Belajar Matematika .............................................................34
iv
B. Kerangka Berpikir ..............................................................................36 C. Hipotesis Penelitian ...........................................................................38
BAB III METODOLIGI PENELITIAN A. Tempat dan Waktu Penelitian ...........................................................39 B. Metode dan Desain Penelitian ...........................................................39 C. Populasi dan Teknik Pengambilan Sampel .......................................40 D. Variabel Penelitian ............................................................................41 E. Instrumen Penelitian ..........................................................................41 F. Teknik Pengumpulan Data ................................................................46 G. Teknik Analisis Data ..........................................................................47 H. Hipotesis Statistik ..............................................................................52
BAB IV HASIL PENELITIAN A. Deskripsi Data ....................................................................................53 B. Analisis Data ......................................................................................57 C. Interpretasi Hasil Penelitian ...............................................................59
BAB V KESIMPULAN DAN SARAN A. Kesimpulan ........................................................................................61 B. Saran ..................................................................................................61
DAFTAR PUSTAKA ..............................................................................................63 LAMPIRAN-LAMPIRAN
v
DAFTAR TABEL
Tabel 1 Daftar Nilai Siswa ................. ....................................................................... 5 Tabel 2 Desain Penelitian .......................................................................................... 39 Tabel 3 Klasifikasi Daya Beda .................................................................................. 45 Tabel 4 Tingkat Kesukaran ....................................................................................... 46 Tabel 5 Hasil Belajar Matematika Kelompok Eksperimen ...................................... 55 Tabel 6 Hasil Belajar Matematika Kelompok Kontrol ............................................. 56 Tabel 7 Rekapitulasi Hasil Perhitungan Uji Normalitas Dengan Uji Lilifors ........... 58 Tabel 8 Rekapitulasi Hasil Perhitungan Uji Homogenitas Dengan Uji Fisher ......... 58 Tabel 9 Rekapitulasi Hasil Perhitungan Uji Hipotesi Dengan Uji T ......................... 59
vi
DAFTAR GAMBAR
Gambar 1 Bermacam-macam Jenis Kartu Millenium Ular Angka ...........................33 Gambar 2 Susunan Kartu Millenium Ular Angka yang sudah terbentuk .................33 Gambar 3 Hubungan Hasil Belajar Matematika Dengan Permainan KartuMillenium Ular Angka .....................................................................57
vii
DAFTAR LAMPIRAN
Lampiran 1 Perpanjangan Masa Studi ......................................................................65 Lampiran 2 Surat Bimbingan Skripsi .........................................................................66 Lampiran 3 Surat Permohonan Izin Observasi ........................................................67 Lampiran 4 Rencana Pelaksanaan Pembelajaran Kelas Kontrol ...............................68 Lampiran 5 Rencana Pelaksanaan Pembelajaran Kelas Eksperimen .........................92 Lampiran 6 Kisi-kisi Instrumen Tes operasi Hitung Bilangan ..................................126 Lampiran 7 Soal Uji Coba Operasi Hitung Bilangan.................................................128 Lampiran 8 Langkah – Langkah Perhitungan Validitas Test Pilihan Ganda ...............................................................132 Lampiran 9 Langkah – Langkah Perhitungan Reliabilitas Test Pilihan Ganda ...............................................................134 Lampiran 10 Langkah – Langkah Perhitungan Daya Pembeda Soal Pilihan Ganda .........................................................135 Lampiran 11 Perhitungan Validitas Tes Pilihan Ganda .............................................136 Lampiran 12 Penghitungan Reabilitas Tes Pilihan Ganda .........................................137 Lampiran 13 Perhitungan Daya Pembeda Soal Pilihan Ganda .................................138 Lampiran 14 Perhitungan Tingkat Kesukaran Pilihan Ganda ...................................139 Lampiran 15 Distribusi Frekuensi Tes Akhir Kelompok Kontrol .............................140 Lampiran 16 Distribusi Frekuensi Tes Akhir Kelompok Eksperimen ......................142 Lampiran 17 Uji Normalitas Kelompok Kontrol .......................................................144 Lampiran 18 Uji Normalitas Kelompok Eksperimen ...............................................145 Lampiran 19 Pengujian Uji Homogenitas ..................................................................146 Lampiran 20 Penghitungan Uji Hipotesis ..................................................................147 Lampiran 21 Tabel Harga Kritik Dari r Product Moment .........................................149
viii
DAFTAR TABEL
Tabel 1 Daftar Nilai Siswa ........................................................................................5 Tabel 2 Klasifikasi Daya Beda .................................................................................. Tabel 3 Tingkat Kesukaran ....................................................................................... Tabel 4 Hasil Uji Coba Instrumen Penelitian ........................................................... Tabel 5 Distribusi Frekuensi Hasil Tes Akhir Kelompok Eksperimen ..................... Tabel 6 Distribusi Frekuensi Hasil Tes Akhir Kelompok Kontrol ........................... Tabel 7 Gambaran Hasil Belajar Matematika Siswa Kelas Kontrol dan Eksperimen ................................................................................................. Tabel 8 Hasil Uji Normalitas Tes Akhir Kelompok Eksperimen dan Kontrol ......... Tabel 9 Hasil Uji Homogenitas Tes Akhir Kelompok Eksperimen dan Kontrol
ix
1
BAB I PENDAHULUAN A. Latar Belakang Masalah Islam sangat menghargai ilmu pengetahuan dan pentingnya ilmu pengetahuan yang menekankan perlunya orang belajar membaca dan menulis. Karena menurut ajaran islam, ilmu pengetahuan merupakan kebutuhan hidup manusia yang mutlak harus dipenuhi. Dengan ilmu pengetahuan manusia akan dapat mengetahui mana yang hak dan mana yang bathil. Sebagaimana dijelaskan dalam firman Allah Swt. dalam QS. 96: 1-5 yang berbunyi:1
Bacalah dengan (menyebut) nama Tuhanmu yang Menciptakan. Dia telah menciptakan manusia dari segumpal darah.Bacalah, dan Tuhanmulah yang Maha pemurah. Yang mengajar (manusia) dengan perantaran kalam. Dia mengajar kepada manusia apa yang tidak diketahuinya. Dengan mengusai ilmu pengetahuan manusia akan mendapatkan derajat yang tinggi dan kedudukan yang mulia baik menurut pandangan Allah SWT, maupun manusia, dan hal itu dapat diperoleh dengan cara beriman kepada Allah Swt. dan memperbanyak serta memperluas ilmu pengetahuan. Sebagaimana firman Allah dalam QS. 58: 11 yang berbunyi:2
…
1
Departemen Agama Republik Indonesia, Al-Qur’an dan Terjemahannya, (Jakarta: cahaya qur’an 2006), h. 597. 2 Departemen Agama Republik Indonesia, Al-Qur’an dan..., h. 543
2
“…niscaya Allah akan meninggikan orang-orang yang beriman di antaramu dan orang-orang yang diberi ilmu pengetahuan beberapa derajat. dan Allah Maha mengetahui apa yang kamu kerjakan. Pendidikan adalah suatu proses yang mempengaruhi siswa agar dapat menyesuaikan diri sebaik mungkin terhadap lingkungannya dan dengan demikian
akan
menimbulkan
perubahan
dalam
dirinya
yang
memungkinkannya berfungsi dalam kehidupan masyarakat.3Dengan demikian pendidikan perlu diperhatikan, karena pendidikan memegang peranan yang amat penting untuk menjamin kelangsungan hidup suatu bangsa dan negara, mencerdaskan kehidupan bangsa dan untuk membentuk sumber daya manusia yang berkualitas. Melalui jalur pendidikan pula peserta didik dibentuk menjadi pribadi yang tangguh, kreatif, mandiri, dan professional pada bidangnya masing-masing kelak di masa yang akan datang. Pendidikan harus menumbuhkan berbagai kompetensi peserta didik. Keterampilan intelektual, sosial dan personal dibangun tidak hanya dengan landasan rasio dan logika saja, tetapi juga inspirasi, kreatifitas, moral, intuisi dan spiritual. Guru yang efektif perlu memahami pertumbuhan dan perkembangan siswa secara komprehensif. Pemahaman ini akan memudahkan guru untuk menilai kebutuhan murid dan merencanakan tujuan, bahan, prosedur belajar mengajar dengan tepat. Dimanapun proses pendidikan berlangsung, alasan utama kehadiran guru adalah untuk membantu siswa agar belajar sebaik-baiknya. Oleh karena itu, adalah hal esensial (pokok,dasar) bagi guru untuk memahami sepenuhnya cara dan tahapan belajar yang terjadi pada diri para siswanya. 4Dalam kegiatan belajar mengajar, anak adalah sebagai subyek dan obyek dari kegiatan pengajaran. Karena itu, inti proses pengajaran tidak lain adalah kegiatan belajar anak didik dalam mencapai suatu tujuan pengajaran. Mengajar pada hakikatnya adalah suatu proses, yaitu proses mengatur, mengorganisasi lingkungan yang ada disekitar anak didik, sehingga dapat 3
Oemar Hamalik, Proses Belajar Mengajar, (Bandung: Bumi Aksara 2001), cet. 4 h. 79 Muhibbin Syah, Psikologi Pendidikan dengan Pendekatan Baru, (Bandung: PT. Remaja Rosdakarya, 1997) cet. 3 hal. 19 4
3
menumbuhkan dan mendorong anak didik melakukan proses belajar. 5 Anak didik adalah makhluk individual. Anak didik adalah orang yang mempunyai kepribadian dengan ciri-ciri yang khas sesuai dengan perkembangan dan pertumbuhannya. Perkembangan dan pertumbuhan anak didik mempengaruhi sikap dan tingkah lakunya. Perkembangan dan pertumbuhan anak itu sendiri dipengaruhi lingkungan dimana anak hidup berdampingan dengan orang lain disekitarnya dan dengan alam lingkungan hidup lainnya.6 J. Looke berpandangan bahwa jiwa anak bagaikan tabula rasa, sebuah meja lilin yang dapat ditulis dengan apa saja bagaimana keinginan si pendidik. Tidak bedanya dengan sehelai kertas putih yang dapat ditulis dengan tinta berwarna apa saja, merah atau hitam, dan sebagainya.7 Sekolah sebagai institusi pendidikan dan miniature masyarakat perlu mengembangkan pembelajaran sesuai tuntutan era global. Sekolah dasar (SD) sebagai tahap pertama dari program pendidikan dasar 9 tahun yang dicanangkan oleh pemerintah, yang dilanjutkan dengan sekolah menengah pertama memiliki peran yang amat penting. Pada tingkat SD siswa diharapkan telah memiliki kemampuan dasar terutama kecakapan membaca, menulis, berhitung serta pengetahuan dan keterampilan dasar lainnya. Pengetahuan dasar tersebut diharapkan dapat bermanfaat bagi kehidupan sehari-hari mereka dan bekal untuk melanjutkan ke jenjang pendidikan yang lebih tinggi. Matematika merupakan mata pelajaran yang esensial yang erat kaitannya
dengan
bidang-bidang
lain
dalam
kehidupan
sehari-hari.
Matematika merupakan cabang ilmu pengetahuan eksak yang terorganisasi secara sistematis, berisi penalaran yang logis dan masalah-masalah yang berhubungan dengan bilangan yang diajarkan dari SD sampai SMU bahkan Perguruan Tinggi. Matematika juga merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran yang penting dalam berbagai disiplin dan memajukan daya pikir manusia. 5
Syaiful Bahri Djamarah dan Aswan Zain, Strategi Belajar Mengajar,(Jakarta: PT. Rineka Cipta, 2006), cet.3, hal.45 6 Syaiful Bahri Djamarah … hal.161 7 Oemar Hamalik, Proses … h. 100
4
Belajar matematika juga membutuhkan kemampuan bahasa, untuk bisa mengerti soal-soal atau mengerti logika, juga imajinasi dan kreativitas. Dan sekiranya dipergunakan dalam lingkungan sekolah , yaitu antara guru dan siswa maka kuncinya adalah mengambil contoh dalam hidup sehari-hari dan dibuat semenarik mungkin.8 Mengingat pentingnya peran dan fungsi matematika dalam Ilmu Pengetahuan dan Teknologi serta dalam kehidupan sehari-hari, maka pelajaran matematika perlu diberikan kepada semua peserta didik mulai dari sekolah dasar untuk dipahami dan dikuasai sebagai bekal di masa depan. Matematika yang telah diperkenalkan dan diajarkan pada tingkat SD memegang peranan penting bagi penguasaan materi matematika pada jenjang berikutnya, karena apabila kemampuan dasar matematiknya tidak kuat akan terbawa terus hingga ke jenjang berikutnya. Khusus untuk anak-anak atau siswa pendidikan kelas awal atau pendidikan dasar (SD), matematika sangat berguna sekali bagi mereka untuk mengembangkan proses berfikir mereka mulai dari hal-hal yang sederhana sampai kepada hal-hal yang rumit. Tahapan dimana anak-anak atau siswa Sekolah Dasar sudah bisa mempraktekkan matematika dalam kehidupan sehari-hari tentulah ditunjang oleh berbagai cara serta metode pembelajaran yang menyenangkan bagi anak-anak Sekolah Dasar. Hal ini sesuai dengan tingkat perkembangan anak kelas awal awa SD yang cenderung bermain sambil belajar.
8
Syarif,”Menciptakan Pembelajaran Matematika Yang Kreatif dan Menyenangkan Pada Pendidikan Kelas Awal SD”, dari http://syarifartikel.blogspot.com/2010/04/menciptakanpembelajaran-matematika.html, 4 Desember 2010
5
Berikut adalah contoh dari rendahnya hasil belajar matematika siswa untuk nilai akhir semester 1. dengan KKM 60. Table 1 Daftar Nilai Siswa No
Nilai
Frekuensi
1
10-20
5
2
21-30
6
3
31-40
6
4
41-50
6
5
51-60
9
6
61-70
5
7
71-80
2
Jumlah
39
Dari data tersebut dapat dilihat bahwa siswa yang memiliki nilai di bawah KKM berjumlah 32 siswa atau 82%. Faktor lain yang berpengaruh terhadap rendahnya hasil belajar matematika siswa, yaitu kurangnya variasi yang dalam proses belajar mengajar matematika. Hal ini mengakibatkan siswa merasa bosan dan menganggap matematika sebagai pelajaran yang tidak menyenangkan. Padahal matematika dapat diajarkan dengan menyenangkan. Matematika itu abstrak, matematika itu tidak nyata, dan tidak dapat diterapkan dalam kehidupan sehari-hari. Matematika itu khusus untuk orang pintar saja, kesan seperti itu sering kita jumpai. Oleh karena itu bila kita keliru memilih metode yang tepat, kesan seperti itu akan kian melekat dalam pikiran. Pada segi lain seorang guru harus mempunyai pendekatan dan metode pembelajaran
yang
akan
dilaksanakan
dan
memilih
metode-metode
pembelajaran yang efektif serta berusaha memberikan variasi dalam metode pembelajaran agar tidak kelihatan atau menyebabkan siswa atau peserta didik
6
jenuh. Jika hal ini diterapkan, maka dituntut sekali inisiatif guru untuk melakukan variasi dan krativitas guru.9 Metode mengajar yang digunakan guru hendaknya dapat membuat siswa aktif, berfikir kritis, dan kreatif. Metode yang dimaksud yaitu melalui permainan. Permainan memberikan kesenangan pada siswa dan dapat menunjang perkembangan siswa. Dalam permainan siswa belajar berbagai aturan, belajar bergaul, dan belajar untuk kreatif. Dalam hubungan ini, bermain merupakan karakteristik belajar siswa SD. Sebagaimana penjelasan tersebut, guru perlu menciptakan suasana bermain dalam belajar dan suasana belajar dalam bermain. Jika guru mampu menciptakan suasana belajar mengajar yang menyenangkan dan menarik, maka kesan yang buruk terhadap pelajaran matematika secara berangsur-angsur dapat dihilangkan. Berdasarkan permasalahan di atas, penulis tertarik untuk melakukan sebuah penelitian dengan menggunakan permainan kartu milenium ular angka. Adapun judul yang penulis ajukan adalah ”PENGARUH PERMAINAN KARTU MILLENIUM ULAR ANGKA TERHADAP HASIL BELAJAR MATEMATIKA PADA MATERI OPERASI HITUNG BILANGAN”.
B. Identifikasi Masalah Berdasarkan latar belakang yang telah diuraikan diatas, maka penulis mencoba mengidentifikasi masalah sebagai berikut: 1.
Apakah kurangnya variasi yang digunakan oleh guru pada saat pembelajaran matematika mengakibatkan rendahnya hasil belajar matematika siswa?
2.
Apakah metode permainan dapat menghilangkan image yang buruk terhadap pelajaran matematika dan fobia matematika?
3.
Apakah rendahnya mutu pendidikan terutama dalam mata pelajaran matematika dipengaruhi oleh metode pengajaran yang dipilih guru?
9
Syarif,”Menciptakan Pembelajaran Matematika …
7
4.
Bagaimana pengaruh permainan Kartu Millenium Ular Angka terhadap hasil belajar matematika pada materi operasi hitung bilangan?
C. Batasan dan Perumusan Masalah Agar penelitian mencapai sasaran dan tujuan yang diharapkan, maka penulis membatasi permasalahannya sebagai berikut: 1. Masalah yang diteliti dibatasi pada hasil belajar matematika siswa yang diberi permainan milenium ular angka dan yang tidak diberi permainan milenium ular angka. 2. Pengaruh yang dimaksud adalah perbedaan rata-rata hasil belajar matematika antara siswa yang diberi permainan milenium ular angka dengan siswa yang tidak diberi permainan milenium ular angka. 3. Hasil belajar matematika yang dimaksud adalah hasil tes objektif yang diberikan kepada siswa setelah siswa diajarkan materi operasi hitung bilangan. 4. Permainan Kartu Millenium Ular Angka mempunyai dua bagian. Bagian atas merupakan operasi dari penjumlahan atau pengurangan sedangkan bagian bawah berupa hasil dari operasi tersebut.. 5. Siswa yang dimaksud adalah siswa SDN Cengkareng Timur 17 Pagi kelas I 6. Materi yang diujikan adalah operasi hitung bilangan khususnya pada penjumlahan dan pengurangan. Berdasarkan pembatasan masalah yang telah diuraikan diatas, maka masalah tersebut dapat dirumuskan sebagai berikut: “Apakah permainan kartu milenium ular angka dapat memberikan pengaruh yang signifikan terhadap hasil belajar matematika pada materi operasi hitung bilangan”.
8
D.Tujuan dan Manfaat Penelitian 1. Tujuan Penelitian Adapun tujuan dilakukannya penelitian ini adalah: a. Untuk mengetahui apakah permainan kartu milenium ular angka dapat memberikan pengaruh yang signifikan terhadap hasil belajar matematika pada materi operasi hitung bilangan b
Untuk mengetahui apakah hasil belajar matematika siswa yang diberi permainan kartu milenium ular angka lebih tinggi daripada siswa yang tidak diberi permainan kartu milenium ular angka.
2. Manfaat Penelitian a
Bagi siswa: metode permainan kartu milenium ular angka diharapkan dapat meningkatkan hasil belajar matematika terutama pada penjumlahan dan pengurangan.
b
Bagi
guru:
dapat
dijadikan
masukan
dalam
mengajarkan
penjumlahan dengan menggunakan metode permainan kartu milenium ular angka sehingga dapat meningkatkan hasil belajar yang maksimal. c
Bagi sekolah: diharapkan dapat memberikan sumbangan yang berharga dalam rangka perbaikan dan peningkatan mutu pendidikan.
d
Bagi masyarakat umum: diharapkan dapat ikut berpartisipasi dalam mewujudkan tujuan pendidikan nasional.
9
BAB II DESKRIPSI TEORI, KERANGKA BERFIKIR DAN HIPOTESIS PENELITIAN
A. Deskripsi Teori 1. Hasil Belajar Matematika a. Pengertian Belajar Belajar merupakan sebuah proses yang kompleks yang terjadi pada semua orang dan berlangsung seumur hidup. Salah satu tanda bahwa seseorang telah belajar sesuatu adalah adanya perubahan tingkah laku dalam dirinya. Beberapa pakar pendidikan mendefinisikan belajar sebagai berikut:1 1) Gagne Belajar adalah perubahan disposisi atau kemampuan yang dicapai seseorang melalui aktivitas. Perubahan disposisi tersebut bukan diperoleh langsung dari proses pertumbuhan seseorang secara alamiah. 2) Travers Belajar adalah proses menghasilkan penyesuaian tingkah laku. 3) Cronbach Learning is shown by a change in behavior as a result of experience. (Belajar adalah perubahan perilaku sebagai hasil dari pengalaman). 4) Harold Spears Learning is to observe, to read, to imitate, to try something themselves, to listen, to follow direction. (Dengan kata lain, bahwa belajar adalah mengamati, membaca, meniru, mencoba sesuatu, mendengar dan mengikuti arah tertentu .) 5) Geoch Learning is change in performance as a result of practice. (Belajar adalah perubahan performan sebagai hasil latihan). 6) Morgan Learning is any relatively permanent change in behavior that is a result of past experience. (Belajar adalah perubahan perilaku yang 1
Agus Suprijono, Cooperative Learning Teori & Aplikasi Paikem, (Surabaya: Pustaka Pelajar, 2009), cet.1 hal.2
10
bersifat permanent sebagai hasil dari pengalaman). Gagne seperti yang dikutip oleh Mariana menyatakan untuk terjadinya belajar pada diri siswa diperlukan kondisi belajar, baik kondisi internal maupun kondisi eksteral. Kondisi internal merupakan peningkatan memori siswa sebagai hasil belajar terdahulu. Memori siswa yang terdahulu merupakan komponen kemampuan yang baru dan ditempatkannya bersama-sama. Kondisi eksternal meliputi aspek atau benda yang dirancang atau ditata dalam suatu pembelajaran.2 Dari beberapa definisi di atas dapat kita ambil kesimpulan belajar adalah suatu proses yang dilakukan setiap individu yang didapat melalui interaksi dengan lingkungannya. Dengan memahami kesimpulan tersebut, setidaknya belajar memiliki ciri-ciri sebagai berikut:3 1) Adanya kemampuan baru atau perubahan 2) Perubahan itu tidak berlangsung sesaat saja, melainkan menetap atau dapat disimpan. 3) Perubahan itu tidak terjadi begitu saja, melainkan harus dengan usaha. 4) Perubahan tidak semata-mata disebabkan oleh pertumbuhan fisik atau kedewasaan, tidak karena kelelahan, penyakit atau pengaruh obat-obatan. Menurut Suparno ada beberapa ciri/prinsip dalam belajar yaitu sebagai berikut:4 1) Belajar berarti mencari makna. Makna diciptakan oleh siswa dari apa yang mereka lihat, dengar, rasakan, dan alami. 2) Konstruksi makna adalah terus-menerus
2
Trianto, Model-model Pembelajaran Inovatif Berorientasi Konstruktivistik, (Surabaya: Prestasi Pustaka 2007) cet. I hal.12 3 Evelin Siregar dan Hartini Nara, Teori Belajar Dan Pembelajaran, (Jakarta: Ghalia Indonesia 2010) Cet. 1 hal.5 4 Sardiman, Interaksi dan Motivasi Belajar, (Jakarta: PT. Raja Grafindo Persada, 2004), Cet. 11, h. 37-38.
11
3) Belajar
bukanlah
merupakan
kegiatan
pengembangan
mengumpulkan pemikiran
fakta,
dengan
tetapi
membuat
pengertian yang baru. 4) Hasil belajar dipengaruhi oleh pengalaman subjek belajar dengan dunia fisik dan lingkungannya. 5) Hasil belajar seseorang tergantung pada apa yang telah diketahui si subjek belajar, tujuan, motivasi yang mempengaruhi proses interaksi dengan bahan yang sedang dipelajari. Menurut Wittig dalam bukunya Phychology of learning, setiap proses belajar selalu berlangsung dalam tiga tahapan yaitu Asquisition, Storage, Retrieval5 1) Asquisition (tahap perolehan/penerimaan informasi) Pada tahap ini seorang siswa mulai menerima informasi sebagai stimulus
dan
melakukan
respons
terhadapnya,
sehingga
menimbulkan pemahaman dan perilaku baru. 2) Storage (tahap penyimpanan informasi) Pada tingkatan ini seorang siswa secara otomatis akan mengalami proses penyimpanan pemahaman dan perilaku baru yang ia peroleh ketika ia menjalani proses Asquisition. Peristiwa ini sudah tentu melibatkan fungsi short term dan long teerm memori. 3) Retrieval (tahap mendapatkan kembali informasi) Pada tingkatan ini seorang siswa akan mengaktifkan kembali fungsi-fungsi sistem memorinya, misalnya ketika ia menjawab pertanyaan atau memecahkan masalah. Manusia memiliki beragam potensi, karakter, dan kebutuhan dalam belajar. Karena itu banyak tipe-tipe belajar yang dilakukan manusia. Gagne mencatat ada delapan tipe belajar, yaitu sebagai berikut belajar isyarat, belajar stimulus respons, belajar merantaikan, belajar asosiasi verbal, belajar membedakan, belajar konsep, belajar dalil, belajar 5
Muhibbin Syah, Psikologi Pendidikan Dengan Pendekatan Baru, (Bandung: PT. Remaja Rosdakarya 2004)cet. 9 hal.114
12
memecahkan masalah.6 1) Belajar Isyarat (signal learning). Menurut Gagne, ternyata tidak semua reaksi spontan manusia terhadap stimulus sebenarnya tidak menimbulkan respons. Dalam konteks inilah signal learning terjadi. 2) Belajar stimulus respons. Belajar tipe ini memberikan respons yang tepat terhadap stimulus yang diberikan. Reaksi yang tepet diberikan penguatan sehingga terbentuk perilaku tertentu. 3) Belajar merantaikan (chaining). Tipe belajar Chaining merupakan cara belajar dengan membuat gerakan-gerakan motorik, sehingga akhirnya membentuk rangkaian gerak dalam urutan tertentu. 4) Belajar asosiasi verbal (verbal association). Tipe belajar ini merupakan belajar menghubungkan suatu kata dengan suatu objek yang berupa benda, orang atau kejadian dan merangkaikan sejumlah kata dalam urutan yang tepat. 5) Belajar membedakan (diskrimination). Tipe belajar diskrimination memberikan reaksi yang berbeda-beda pada stimulus yang mempunyai kesamaan. 6) Belajar konsep (concept learning). Belajar mengklasifikasikan stimulus atau menempatkan obyek-obyek dalam kelompok tertentu yang membentuk suatu konsep. 7) Belajar dalil (rule learning). Tipe belajar rule learning merupakan tipe belajar untuk menghasilkan aturan atau kaidah yang terdiri dari penggabungan beberapa konsep. 8) Belajar memecahkan masalah (problem solving). Tipe belajar ini merupakan tipe belajar yang menggabungkan beberapa kaidah untuk memecahkan masalah, sehingga terbentuk kaidah yang lebih tinggi.
6
Evelin Siregar dan Hartini Nara, Teori Belajar …, hal.7-8
13
Jenis belajar apapun yang akan ditempuh oleh pelajar, tidak bisa dilepaskan dari faktor-faktor yang mempengaruhi belajar, yaitu:7 1) Faktor atau peubah struktur kognitif. 2) Kesiapan yang berkembang. 3) Kemampuan Intelektual 4) Faktor motivasi dan sikap 5) Faktor Kepribadian
b. Pengertian Matematika Matematika merupakan cabang mata pelajaran yang luas cakupannya dan bukan hanya sekedar bisa berhitung atau masukin rumus saja tetapi mencakup beberapa kompetensi yang menjadikan siswa tersebut dapat memahami dan mengerti tentang konsep dasar matematika. Belajar matematika juga membutuhkan kemampuan bahasa, untuk bisa mengerti soal-soal atau mengerti logika, juga imajinasi dan kreativitas. Dan sekiranya dipergunakan dalam lingkungan sekolah , yaitu antara guru dan siswa maka kuncinya adalah mengambil contoh dalam hidup sehari-hari dan dibuat semenarik mungkin. Pengertian matematika sangat sulit didefinisikan secara akurat. Seperti yang dikemukakan oleh Abraham S Lunchins dan Edith N Lunchins, “In short, the question what is mathematics? May be answered difficulty depending on when the question is answered, who answer it, and what is regarded as being included in mathematics.” 8 Kata matematika berasal dari bahasa latin mathematica, yang mulanya diambil dari perkataan Yunani, mathematike yang berarti “relating to learning”. Akar kata dari mathema yang berarti pengetahuan atau ilmu (knowledge/science) atau mathanein yang 7
Abd. Rachman Abror, Psikologi Pendidikan, (Yogyakarta: PT. Tiara Wacana Yogya 1993) cet. 4 hal.72-74 8 Erman Suherman, dkk., Strategi Pembelajaran Matematika Kontemporer, (Bandung: Jurusan Pendidikan Matematika FMIPA UPI, 2003), h. 15.
14
mengandung arti belajar atau berfikir.
Secara etimologis Tinggih
menjelaskan arti dari matematika, bahwa “Matematika adalah ilmu pengetahuan yang diperoleh dengan bernalar”. Hal senada juga diungkapkan oleh Ruseffendi ET bahwa “Matematika terbentuk sebagai hasil pemikiran manusia yang berhubungan dengan ide, proses, dan penalaran”.9 Menurut Johnson dan Myklebust, matematika adalah bahasa simbolis yang fungsi praktisnya untuk mengekspresikan hubunganhubungan kuantitatif dan keruangan sedangkan fungsi teoritisnya adalah untuk memudahkan berpikir. Lerner mengemukakan bahwa matematika di samping sebagai bahasa simbolis juga merupakan bahasa universal yang memungkinkan manusia memikirkan, mencatat, dan mengkomunikasikan ide mengenai elemen dan kuantitas.10 Pengertian matematika sangat sulit didefinsikan secara akurat. Pada umumnya orang awam hanya akrab dengan satu cabang matematika
elementer
yang
disebut
aritmatika
atau
lainnya.
Berdasarkan pengertian diatas maka dapat disimpulkan matematika adalah ilmu pengetahuan yang terdiri dari simbol , garis , titik, dan angka atau bilangan yang terstruktur dari benda – benda dan gerak yang sifatnya masih abstrak yang cara mendapatkannya diperlukan cara berpikir yang bernalar atau logik. Pada hakekatnya pembelajaran matematika adalah proses yang sengaja dirancang dengan tujuan untuk menciptakan suasana lingkungan
memungkinkan
seseorang
(sipelajar)
melaksanakan
kegiatan belajar matematika, dan proses tersebut berpusat pada guru mengajar matematika. Pembelajaran matematika harus memberikan peluang kepada siswa untuk berusaha dan mencari pengalaman tentang matematika.
9
Erman Suherman, dkk., Strategi Pembelajaran ... h.16. Mulyono Abdurrahman, Pendidikan Bagi Anak Berkesulitan Belajar,( Jakarta: Rineka Cipta 2003), cet. 2, hal. 252 10
15
Objek langsung matematika ialah fakta, keterampilan, konsep dan aturan (principal). Untuk mempelajari objek-objek langsung, ataupun untuk mempelajari topic-topik dalam matematika tidak dapat sembarangan.11 Ada urutan-urutan yang harus dilalui agar anak menguasai dengan matang suatu konsep matematika. Langkah-langkah pembentukan konsep dasar matematika dalam otak dan memori anak haruslah memperhatikan
aspek-aspek
fisiologis
dan
fungsional
otak,
kematangan emosional, gaya belajar, kepribadian, dan tahap-tahap perkembangan anak itu sendiri.12 Dalam pemilihan metode mengajar kita terikat oleh faktor-faktor luar. Kita tidak dibenarkan memilih metode yang akan digunakan itu didasarkan
hanya
karena
kita
menguasainya.
Tetapi
harus
memperhatikan tujuan akan dicapai, materi yang diajarkan, kondisi lingkungan, dan siswa sendiri.13 Ada empat pendekatan yang paling berpengaruh dalam pengajaran matematika:14 1) Urutan belajar yang bersifat perkembangan (development learning sequences) 2) Belajar tuntas (matery learning) 3) Strategi belajar ( learning strategies) 4) Pemecahan masalah (problem solving) Matematika adalah subjek ideal yang mampu mengembangkan proses berfikir anak dimulai dari usia dini, usia pendidikan kelas awal (pendidikan dasar), pendidikan menengah, pendidikan lajutan dan bahkan sampai mereka berada di bangku perkuliahan. Hal ini diberikan untuk mengetahui dan memakai prinsip matematika dalam kehidupan
11
Ruseffendi, Pengajaran Matematika Modern, (Bandung: Tarsito 1980)cet.1hal.154-155 Ariesandi Setyono, Mathemagics cara jenius belajar matematika, (Jakarta:Kompas Gramedia 2010),cet.6 hal.15 13 Ruseffendi,Pengajaran Matematika …, hal.228 14 Mulyono Abdurrahman, Pendidikan Bagi … hal.255 12
16
sehari-hari baik itu mengenai perhitungan, pengerjaan soal, pemecahan masalah kehidupan di lingkungan sekolah ataupun di lingkungan masyarakat. Urutan pengenalan matematika yang baik kepada anak-anak adalah sebagai berikut:15 1) Belajar menggunakan benda konkret/nyata 2) Belajar membuat bayangan di pikiran 3) Belajar menggunakan symbol/lambing Dalam proses mempelajari matematika ada beberapa hal penting mengapa
matematika
tersebut
harus
diajarkan,
seperti
yang
dikemukakan oleh Cornelius dan Cockroft. Cornelius
mengemukakan
lima
alasan
matematika, karena matematika merupakan:
perlunya
belajar
16
1) Sarana berpikir yang jelas dan logis. 2) Sarana untuk memecahkan masalah kehidupan sehari-hari. 3) Sarana
mengenal
pola-pola
hubungan
dan
generalisasi
pengalaman. 4) Sarana untuk mengembangkan kreatifitas. 5) Sarana untuk meningkatkan kesadaran terhadap perkembangan budaya. Menurut Cockroft, bahwa matematika perlu diajarkan kepada siswa karena: 1) Selalu digunakan dalam segi kehidupan. 2) Semua bidang studi memerlukan keterampilan matematika yang sesuai. 3) Merupakan sarana komunikasi yang kuat, singkat, dan jelas. 4) Dapat digunakan untuk menyajikan informasi dalam berbagai cara
15
Ariesandi Setyono, Mathemagics cara jenius…, hal.45 Mulyono Abdurrahman, Pendidikan Bagi…, h. 253.
16
17
5) Meningkatkan kemampuan berpikir logis, ketelitian, dan kesadaran keruangan. 6) Memberi kepuasan terhadap usaha memecahkan masalah yang menantang.
c. Pengertian Hasil Belajar Hasil belajar adalah pola-pola perbuatan, nilai-nilai, pengertianpengertian,
sikap-sikap,
apresiasi
dan
keterampilan.
Merujuk
pemikiran Gagne, hasil belajar berupa:17 1. Informasi verbal yaitu kapabilitas mengungkapkan pengetahuan dalam bentuk bahasa, baik lisan maupun tertulis. 2. Keterampilan intelektual yaitu kemampuan mempresentasikan konsep dan lambang. 3. Strategi kognitif yaitu kecakapan menyalurkan dan mengarahkan aktifitas kognitifnya sendiri. 4. Keterampilan motorik yaitu kemampuan melakukan serangkaian gerak jasmani dalam urusan dan koordinasi, sehingga terwujud otomatisme gerak jasmani. 5. Sikap adalah kemampuan menerima atau menolak objek tersebut. Abdurrahman mendefinisikan bahwa, “Hasil belajar adalah kemampuan yang diperoleh anak setelah melalui kegiatan belajar.” 18 Belajar itu sendiri merupakan suatu proses seseorang yang berusaha untuk memperoleh suatu bentuk perubahan perilaku yang relatif menetap. Dalam kegiatan belajar yang terprogram dan terkontrol atau yang disebut kegiatan pembelajaran/instruksional, tujuan belajar telah ditetapkan lebih dahulu oleh guru. Dengan demikian, anak dikatakan berhasil
dalam
belajar
jika
berhasil
mencapai
tujuan-tujuan
pembelajaran atau tujuan instruksional.
17
Agus Suprijono, Cooperative Learning Teori dan Aplikasi Paikem (Surabaya: Pustaka Pelajar, 2009)cet. 1, hal.5 18 Mulyono Abdurrahman, Pendidikan Bagi..., h. 37.
18
Berdasarkan teori Taksonomi Bloom hasil belajar dalam rangka studi dicapai melalui tiga kategori ranah antara lain:19 1. Ranah
Kognitif
penguasaan
meliputi
perubahan-perubahan
pengetahuan
dan
dalam
segi
perkembangan
keterampilan/kemampuan yang diperlukan untuk menggunakan pengetahuan tersebut. 2. Ranah Afektif meliputi perubahan-perubahan dari segi sikap mental, perasaan dan kesadaran. 3. Ranah Psikomotor meliputi perubahan-perubahan dalam segi bentuk-bentuk tindakan motorik. Ketiga ranah tersebut, menjadi objek penilaian hasil belajar. Diantara ketiga ranah itu, ranah kognitiflah yang paling banyak dinilai oleh para guru di sekolah karena berkaitan dengan kemampuan para siswa dalam menguasai isi bahan pelajaran. Hasil belajar tampak sebagai terjadinya perubahan tingkah laku pada diri siswa, yang dapat diukur dalam bentuk perubahan pengetahuan, sikap, dan keterampilan. Perubahan tersebut dapat diartikan terjadinya peningkatan dan pengembangan yang lebih baik dibandingkan dengan sebelumnya.20 Hasil belajar siswa dipengaruhi tiga faktor yakni faktor internal/faktor dari dalam diri siswa yakni kondisi jasmani dan rohani siswa seperti kemampuan, motivasi, minat, perhatian, sikap, kebiasaan belajar, ketekunan, kondisi sosial ekonomi, kondisi fisik dan psikis. Kemudian faktor eksternal/faktor yang datang dari luar diri siswa yakni kondisi lingkungan disekitar siswa. Dan yang terakhir faktor pendekatan belajar (approach to learning), yakni strategi dan metode pembelajaran.21
19
Ramayulis, Ilmu Pendidikan Islam,(Jakarta:Kalam Mulia 2004) cet.1 hal.27 Oemar Hamalik, Perencanaan Pengajaran Berdasarkan Pendekatan Sistem, (Jakarta: PT. Bumi Aksara, 2005), Cet. 4, h. 155. 21 Robertus Angkowo dan A. Kosasih, Optimalisasi Media Pembelajaran, (Jakarta: PT Grasindo, 2007), Cet.1h. 50. 20
19
Penilaian hasil belajar merupakan komponen penting dalam kegiatan pembelajaran. Upaya meningkatkan kualitas pembelajaran dapat ditempuh melalui peningkatan kualitas sistem penilaiannya. Menurut Djemari Mardapi kualitas pembelajaran dapat dilihat dari hasil penilaiannya. Sistem penilaian yang baik akan mendorong pendidik untuk menentukan strategi mengajar yang baik dan memotivasi peserta didik untuk belajar yang lebih baik.22
d. Konsep Operasi Hitung Bilangan Dalam matematika operasi diartikan sebagai “pengerjaan”. Operasi yang dimaksud adalah operasi hitung atau pengerjaan hitung. Terhadap semua bilangan dapat dilakukan operasi hitung.23 Sedangkan yang dimaksud bilangan adalah suatu idea. Sifatnya abstrak. Bilangan bukan simbol atau lambang dan bukan pula lambang bilangan.24 Salah satu subpokok bahasan dari materi/pokok bahasan operasi hitung bilangan yang diajarkan kepada siswa kelas I semester genap yaitu penjumlahan dan pengurangan. Penjumlahan dan pengurangan adalah hal dasar yang kita jumpai sehari-hari. Untuk mengajarkan penjumlahan dan pengurangan maka kita harus memastikan terlebih dahulu anak didik kita menguasai konsep dasar penjumlahan dan pengurangan untuk bilangan yang lebih kecil dari 10. Materi pokok pembelajaran yang diajarkan kepada siswa tentang penjumlahan dan pengurangan adalah sebagai berikut:25
22
Eko Putro Widoyoko, Evaluasi Program Pembelajaran, (Yogyakarta: Pustaka Pelajar 2009),cet.1 hal.29 23 ST. Negoro dan B. Harahap, Ensiklopedia Matematika, (Jakarta: Ghalia Indonesia, 1998), Cet. 5, h. 218. 24 ST. Negoro dan B. Harahap, Ensiklopedia Matematika ..., h.32 25 Tumijan dkk, Pintar Matematika Untuk Sd dan MI Kelas 1, (Jakarta: Grasindo 2010)h. 169-212
20
1.
Pengertian Nilai Tempat Penjumlahan akan lebih mudah dikerjakan jika kita tahu nilai tempatnya. Bilangan sesudah sembilan adalah 10. menurut nilai tempat, sepuluh ditunjukkan dengan angka 1 ditempat puluhan dan angka nol di tempat satuan. Dalam bahasa Indonesia nilai tempat diterangkan dengan kata 1
0
Puluhan
Satuan
Contoh: 1. 3 puluhan dan 2 satuan = 30 + 2 = 32 2. 63 = 6 puluhan + 3 satuan 3. 7 puluhan + 5 satuan = 75 2.
Penjumlahan dan pengurangan bilangan sampai 20 a. Menambahkan suatu bilangan dari bilangan lain disebut penjumlahan. Bertambah banyak artinya menjadi lebih banyak. Lambangnya ”+”. Contoh: 4 + 5 = 9 Atau perhatikan gambar dibawah ini:
+
b. Mengambil pengurangan.
suatu bilangan
=
dari bilangan lain
Berkurang artinya
menjadi
lebih
disebut sedikit.
Lambangnya ”-”. Dalam soal biasanya terlihat dari kata ”berapa sisanya” dan ”berapa selisihnya”. Contoh: 4 – 3 = 1
21
Atau perhatikan gambar di bawah ini
3.
=
Penjumlahan dan pengurangan dalam masalah sehari-hari a. Contoh soal cerita yang melibatkan penjumlahan: Ida mempunyai 2 pensil. Ida membeli lagi 3 pensil. Berapa pensil Ida sekarang? Jawab: Diketahui: Ida mempunyai 2 pensil dan membeli lagi 3 pensil Ditanya: Berapa pensil Ida sekarang? Penyelesaian: 2 + 3 = 5 Jadi jumlah pensil Ida sekarang adalah 5 buah. b. Contoh soal cerita yang melibatkan pengurangan: Ada 15 anak sedang bermain di lapangan. Karena lelah 4 anak pulang ke rumah. Berapa banyak anak yang masih di lapangan? Jawab: Diketahui: 15 anak sedang bermain di lapangan dan 4 anak pulang. Ditanya: berapa banyak anak yang masih dilapangan? Penyelesaian: 15 – 4 = 11 Jadi banyak anak yang masih di lapangan adalah 11 orang.
4.
Penjumlahan dan pengurangan dua angka a. Penjumlahan bilangan dua angka 1). Penjumlahan tanpa tekhnik menyimpan Contoh: 10 + 4 = 14 2). Penjumlahan dengan cara bersusun Contoh: 14 + 13 = 27
22
14 13 + 27 3). Penjumlahan dengan tekhnik menyimpan Contoh: 15 + 7 = 22 1 15
5 satuan + 7 satuan = 12 satuan
7+
= 1 puluhan + 2 satuan
22
disimpan
1 simpanan + 1 puluhan = 2 satuan
b. Pengurangan bilangan dua angka 1). Pengurangan tanpa tekhnik meminjam Contoh: 15 – 4 = 11 2). Pengurangan dengan cara bersusun Contoh: 22 11 – 11 3). Pengurangan dengan tekhnik meminjam Contoh: 2 15 35
15 satuan – 7 satuan = 8 satuan
17 –
2 puluhan – 1 puluhan = 1 puluhan
18
5.
Operasi hitung campur penjumlahan dan pengurangan Contoh: 24 + 45 – 39 = 30
23
24 45 + 69 39 – 30 6.
Sifat pertukaran dan pengelompokan a). Pengelompokan untuk mempermudah pejumlahan. Contoh: 2 + 3 + 9 = ... (2 + 3) + 9 = 2 + (3 + 9) 5
+9=2+
12
14 = 14 b). Pengelompokan untuk mempermudah pengurangan. Contoh: 90 – 20 – 40 = ... (90 – 20) – 40 = (90 – 40) – 20 70
- 40 =
50
- 20
30 = 30 7.
Masalah sehari-hari terkait penjumlahan dan pengurangan a). Contoh soal cerita yang melibatkan penjumlahan: Tika mempunyai 21 kue. Tika membeli lagi 8 kue. Lalu kakak memberinya 10 kue. Berapa kue Tika sekarang? Diketahui : Tika mempunyai 21 kue Tika membeli lagi 8 kue Kakak memberinya 10 kue Ditanya: Berapa kue Tika sekarang? Penyelesaian: 21 8+ 29 10 + 39 Jadi jumlah kue tika sekarang adalah 39 kue. b). Contoh soal cerita yang melibatkan pengurangan:
24
Dian membeli 50 batang pensil. Di jalan, pensil Dian terjatuh 2 batang. Sesampainya di rumah adik meminta pensilnya sebanyak 7 buah. Berapa sisa pensil Dian sekarang? Diketahui: Dian membeli 50 batang pensil Jatuh di jalan 2 batang Diminta adik 7 batang. Ditanya: Berapa sisa jumlah pensil Dian sekarang? Penyelesaian: 50 2– 48 7– 41 Jadi jumlah pensil Dian sekarang adalah 41 Pensil. c). Contoh soal cerita yang melibatkan penjumlahan dan pengurangan: Budi mempunyai 78 butir kelereng. Ia bermain dengan Tono dan menang 10 butir. Kelerengnya diminta Anto sebanyak 19 butir. Berapa butir kelereng Budi sekarang? Diketahui: Budi mempunyai 78 butir kelereng. Menang 10 butir. Diminta Anto 19 butir. Ditanya: Berapa jumlah kelereng Budi sekarang? Penyelesaian: 78 10 + 88 19 – 69 Jadi jumlah kelereng Budi sekarang adalah 69 butir.
25
2. Konsep Permainan Kartu Milenium Ular Angka a. Pengertian dan Macam-Macam Permainan Matematika, saat ini masih dianggap mata pelajaran yang paling sulit
dan
tidak
menyenangkan
oleh
sebagian
siswa.
Untuk
memecahkan masalah ini, salah satu caranya adalah menggunakan metode pembelajaran yang menyenangkan, yaitu metode permainan matematika. Pembentukan pribadi manusia menurut Berger, pada hakikatnya adalah manusia memproduksi dirinya sendiri melalui pengalaman dalam realitas social. Permainan sebagai media pembelajaran melibatkan siswa dalam proses pengalaman dan sekaligus menghayati tantangan,
mendapat
inspirasi,
terdorong
untuk
kreatif,
dan
berinteraksi dalam kegiatan dengan sesame siswa dalam melakukan permainan ini.26 Dalam kehidupan sehari-hari sangat diperhatikan akibat atau hasil dari tingkah laku seseorang, tetapi dalam permainan hal ini tidak begitu penting. Oleh karena itu, anak dapat berkonsentrasi penuh terhadap proses bermain tanpa memikirkan akibat, lalu menarik kesimpulan dari pengamatan dan penghayatan proses tersebut bermain merupakan jendela perkembangan anak. Melalui bermain, aspek perkembangan anak bisa ditumbuhkan secara optimal.27 Jadi, permainan adalah fakta yang dianalisis untuk memahami proses perilaku dalam permainan,pilihan keputusan masing-masing dalam
bertindak
atau
berkata
menjadi
pembelajaran memproduksi diri sendiri.
kesimpulan
sebagai
28
Permainan seharusnya memiliki nilai seimbang dengan belajar. Anak dapat belajar melalui permainan (learning by playing). Banyak
26
Utomo Dananjaya, Media Pembelajaran Aktif, (Bandung: Nuansa 2010)cet. 1 h.165-
166 27
Dyan R Helmi dan Saeful Zaman, 12 Permainan Untuk Meningkatkan Intelegensi Anak, (Jakarta: Visimedia 2009)cet.1 h.6 28 Utomo Dananjaya, Media Pembelajaran …,h.166
26
hal yang dapat anak pelajari dengan permainan, keseimbangan antara motorik halus dan motorik kasar sangat mempengaruhi perkembangan psikologi anak. Permainan akan memberi kesempatan untuk belajar menghadapi situasi kehidupan pribadi sekaligus belajar memecahkan masalah.29 Lancet Medical Journal baru-baru ini menyebutkan bahwa ada beberapa penelitian yang menemukan kaitan antara kecerdasan dan kegiatan bermain anak. ”Kami telah melaksanakan program kegiatan bermain untuk anak-anak kekurangan gizi di Bangladesh dan kegiatan tersebut terbukti meningkatkan intelegensi mereka sampai sembilan poin, hanya melalui kegiatan bermain,” kata Gregor dari Institute of Child Health di University College, London.30 Setiap permainan harus mempunyai empat komponen utama, yaitu:31 1) Adanya pemain (pemain-pemain) 2) Adanya lingkungan dimana para pemain berinteraksi 3) Adanya aturan-aturan main 4) Adanya tujuan-tujuan tertentu yang ingin dicapai Menurut Hetherington dan Parke ada 3 fungsi utama dari permainan, yaitu: fungsi kognitif, fungsi sosial, dan fungsi emosi.32 1) Fungsi kognitif permainan membantu perkembangan kognitif anak. Melalui permainan, anak-anak menjelajahi lingkungannya mempelajari objek-objek disekitarnya, dan belajar memecahkan masalah yang dihadapinya. 2) Fungsi sosial permainan dapat meningkatkan perkembangan sosial anak. Khususnya dalam permainan fantasi dengan 29
Aulia Fadhli, Koleksi Games Seru dan Kreatif, (Yogyakarta: Galangpres 2010),cet.1
h.21 30
Dyan R Helmi dan Saeful Zaman, 12 Permainan Untuk Meningkatkan Intelegensi Anak, (Jakarta: Visimedia 2009)cet.1 h.6 31 Arief S. Sadiman, Media Pendidikan, (Jakarta: Rajawali 1986)cet.1 h.77 32 Desmita, Psikologi Perkembangan, Bandung : PT Remaja Rosda Karya, 2005, Cet. 1, h. 141-142.
27
memerankan suatu peran, anak belajar memahami orang lain dan peran-peran yang akan ia mainkan dikemudian hari setelah tumbuh menjadi orang dewasa. 3) Fungsi
emosi
permainan
memungkinkan
anak
untuk
memecahkan sebagian dari masalah emosionalnya, belajar mengatasi kegelisahan dan konflik batin Ada beberapa teori permainan yang dikemukakan oleh para tokoh ilmuan, yaitu:33 1) Teori rekreasi. Teori ini berasal dari Schaller dan Lazarus yang berpendapat bahwa permainan merupakan kesibukan untuk menenangkan pikiran atau beristirahat. 2) Teori penglepasan. Teori ini berasal dari Herbert Spencer yang mengatakan bahwa dalam diri anak terdapat kelebihan tenaga. Kelebihan tenaga itu harus dipergunakan, paling tidak harus dilepaskan dalam kegiatan bermain-main. Dengan demikian dapat tercapai keseimbangan di dalam dirinya. 3) Teori atavistis. Teori ini berasal dari Stanley Hall yang berpendapat bahwa di dalam perkembangannya, anak melalui seluruh taraf kehidupan umat manusia. Dalam permainan timbul bentuk-bentuk kelakuan seperti bentuk kehidupan yang pernah dialami nenek-moyang. 4) Teori biologi. Teori ini berasal dari Karl Gros yang selanjutnya dikembangkan oleh Dr. Maria Montessori, pendidik kenamaan bangsa Italia berpendapat bahwa permainan merupakan tugas biologis (hidup atau hayat). b. Faktor-Faktor yang Mempengaruhi Permainan Ada 5 faktor yang mempengaruhi permainan anak, antara lain yaitu: kesehatan, perkembangan motorik, intelegensi, jenis kelamin, lingkungan, status sosial ekonomi, jumlah waktu bebas dan peralatan bermain.34 1) Kesehatan Semakin sehat anak semakin banyak energinya untuk bermain aktif, seperti permainan dan olahraga. 2) Perkembangan motorik 33
Zulkifli L., Psikologi Perkembangan, (Bandung: PT Remaja Rosdakarya, 2005), Cet. 5,
h. 39-40. 34
Elizabeth B. Hurlock, Perkembangan Anak, (Erlangga) hal.327
28
Permainan anak pada setiap usia melibatkan koordinasi motorik. Apa saja yang akan dilakukan dan waktu bermainnya bergantung pada perkembangan motor mereka. Pengendalian motorik yang baik memungkinkan anak terlibat dalam permainan aktif. 3) Intelegensi Pada setiap usia, anak yang pandai lebih aktif ketimang yang kurang pandai, dan permainan mereka lebih menunjukkan kecerdikan. Anak yang pandai menunjukkan keseimbangan perhatian
bermain
yang
lebih
besar,
termasuk
upaya
menyeimbangkan factor fisik dan intelektual yang nyata. 4) Jenis kelamin Pada awal masa kanak-kanan, anak laki-laki menunjukkan perhatian pada berbagai jenis permainan yang lebih banyak ketimbang anak perempuan tetapi sebaliknya terjadi pada akhir masa kanak-kanak. 5) Lingkungan Anak yang dibesarkan di lingkungan yang kurang menyediakan peralatan,
waktu,
dan
ruang
bermain
bagi
anak
akan
menimbulkan aktivitas bermain anak yang berkurang. 6) Status sosial ekonomi Anak yang dibesarkan di lingkungan keluarga yang sosial ekonominya tinggi, lebih banyak tersedia alat-alat permainan yang lengkap dibandingkan dengan anak-anak yang dibesarkan dikeluarga yang status ekonominya rendah. 7) Jumlah Waktu Bebas Jumlah waktu bermain terutama bergantung pada status ekonomi keluarga.
Apabila
tugas
rumah
tangga
atau
pekerjaan
menghabiskan waktu luang mereka, anak terlalu lelah untuk melakukan kegiatan yang membutuhkan tenaga yang besar. 8) Peralatan bermain
29
Peralatan
bermain
yang
dimiliki
anak
mempengaruhi
permainannya. Permainan adalah salah satu bentuk aktivitas sosial yang dominan pada awal masa anak-anak. Permainan juga mempunyai arti yang sangat penting bagi perkembangan kehidupan anak-anak. Pada dasarnya, semua jenis permainan mempunyai tujuan yang sama, yaitu bermain dengan menyenangkan, yang membedakan adalah pengaruh atau efek dari jenis permainan tersebut. Ada dua jenis permainan yaitu:35 1) Kategori permainan Aktif a. Permainan Olahraga (sport) b. Permainan perkelahian (body contact) 2) Kategori permainan Pasif a. Permainan Mekanis b. Permainan Fantasi Terdapat bukti bahwa bermain menimbulkan pengaruh lainnya bagi penyesuaian pribadi dan sosial anak yang terlalu penting untuk diabaikan begitu saja. Pengaruh bermain bagi perkembangan anak antara lain: perkembangan fisik, dorongan berkomunikasi, penyaluran bagi energi emosional yang terpendam, penyaluran bagi kebutuhan dan keinginan, sumber belajar, rangsangan bagi kreatifitas, perkembangan wawasan diri, belajar bermasyarakat, standar moral, belajar bermain sesuai dengan peran jenis kelamin, perkembangan ciri kepribadian yang diinginkan.36 1) Perkembangan fisik, Bermain aktif penting bagi anak untuk mengembangkan otot dan melatih seluruh bagian tubuhnya. Bermain juga berfungsi sebagai penyaluran tenaga yang berlebihan yang bila terpendam terus akan membuat anak tegang, gelisah dan mudah tersinggung. 35 36
Aulia Fadhli, Koleksi Games …, h.22-23 Elizabeth B. Hurlock, Perkembangan Anak …,h. 323
30
2) Dorongan berkomunikasi, Agar dapat bermain dengan baik bersama yang lain, anak harus belajar berkomunikasi. Dalam arti, mereka dapat mengerti dan sebaliknya
mereka
harus
belajar
mengerti
apa
yang
dikomunikasikan anak lain. 3) Penyaluran bagi energi emosional yang terpendam, Bermain merupakan sarana bagi anak untuk menyalurkan ketegangan yang disebabkan oleh pembatasan lingkungan terhadap perilaku mereka. 4) Penyaluran bagi kebutuhan dan keinginan, Kebutuhan dan keinginan yang tidak dapat dipenuhi dengan cara lain seringkali dapat dipenuhi dengan bermain. Anak yang tidak mampu mencapai peran pemimpin dalam kehidupan nyata mungkin akan memperoleh pemenuhan keinginan itu dengan menjadi pemimpin tentara mainan. 5) Sumber belajar, Bermain memberi kesempatan untuk mempelajari berbagai hal yang tidak diperoleh anak dari belajar di rumah atau sekolah. 6) Rangsangan bagi kreatifitas, Melalui eksperimen dalam bermain, anak-anak menentukan bahwa merancang sesuatu yang baru dan berbeda dapat menimbulkan kepuasan. Selanjutnya mereka dapat mengalihkan minat kreatifnya ke situasi di luar dunia bermain. 7) Perkembangan wawasan diri, Dengan
bermain
anak
mengetahui
tingkat
kemampuannya
dibandingkan dengan temannya bermain. Ini memungkinkan mereka untuk mengembangkan konsep dirinya dengan lebih pasti dn nyata. 8) Belajar bermasyarakat,
31
Dengan bermain bersama anak lain,mereka belajar bagaimana membentuk hubungan sosial dan bagaimana menghadapi dan memecahkan masalah yang timbul dalam hubungan tersebut. 9) Standar moral, Walaupun anak belajar di rumah dan di sekolah tentang apa saja yang dianggap baik dan buruk oleh kelompok, tidak ada pemaksaan standar moral paling teguh selain dalam kelompok bermain. 10) Belajar bermain sesuai dengan peran jenis kelamin, Anak belajar di rumah dan di sekolah mengenai apa saja peran jenis kelamin yang disetujui. Akan tetapi, mereka segera menyadari bahwa mereka juga harus menerimanya bila ingin menjadi anggota kelompok bermain. 11) Perkembangan ciri kepribadian yang diinginkan. Dari hubungan dengan anggota kelompok teman sebaya dalam bermain, anak belajar bekerja sama, murah hati, jujur, sportif, dan disukai orang. Ada beberapa teori permainan yang dikemukakan oleh para tokoh ilmuan, yaitu:37 1) Groos membuat formulasi mengenai teori latihan. Menurut Groos permainan harus dipandang sebagai latihan fungsi-fungsi yang sangat penting dalam kehidupan dewasa nanti. 2) Hall memandang permainan berdasarkan teori rekapitulasi, yaitu sebagai ulangan bentuk-bentuk aktivitas yang dalam perkembangan jenis manusia pernah memegang peranan yang dominan. 3) Schaller berpendapat bahwa permainan memberikan ”kelonggaran” setelah seseorang melakukan tugasnya. 4) Spencer menandaskan bahwa permainan merupakan kemungkinan penyaluran bagi manusia untuk melepaskan sisa-sisa energi. 5) Ljublinskaja memandang permainan sebagai pencerminan realitas, sebagai bentuk awal memperoleh pengetahuan.
37
Siti Rahayu Haditomo, Psikologi Perkembangan, (Gajah Mada University Press 2004),cet.15, h.132-133
32
c. Kelebihan Permainan Pada dasarnya metode permainan sama seperti metode-metode lainnya yang memiliki kelebihan dan kekurangan dalam proses belajar mengajar. Kelebihan dari metode permainan, yaitu:38 1) Permainan adalah sesuatu yang menyenangkan untuk dilakukan 2) Permainan memungkinkan adanya partisipasi aktif dari siswa untuk belajar, 3) Permainan dapat memberikan umpan balik langsung, 4) Permainan memungkinkan penerapan konsep-konsep atau peranperan kedalam situasi dan peranan yang sebenarnya dalam masyarakat, 5) Permainan bersifat luwes, artinya permainan dapat dipakai untuk memperaktifkan
keterampilan
membaca
dan
berhitung
sederhana, mengajarkan sistem sosial dan sistem ekonomi, membantu siswa/ warga belajar meningkatkan kemampuan komunikatifnya, membantu siswa/ warga belajar yang sulit belajar dengan metode tradisional, 6) Permainan dapat dengan mudah dibuat dan diperbanyak, 7) Permainan dapat meningkatkan keterampilan dan kecerdasan, 8) Permainan membuka minat dan peran bagi anak untuk memasuki dunia dewasa.
d. Pengertian dan Macam-Macam Permainan Kartu Milenium Ular Angka Permainan edukatif merupakan sebuah bentuk kegiatan mendidik yang dilakukan dengan menggunakan cara atau alat yang bersifat mendidik. Permainan edukatif bermanfaat untuk meningkatkan kemampuan berbahasa, berfikir, serta bergaul dengan lingkungannya.
38
Arief S. Sudiman , et. al., Media…, h. 78-81.
33
Mainan edukatif kartu milenium ular angka diciptakan oleh Ir. Agus Nggermanto seorang alumni ITB. Kartu ini terdiri dari empat level: Dasar 1, Dasar 2, perkalian taktis 11, dan kuadrat taktis. Permainan Kartu Milenium Ular Angka selain dapat melatih konsentrasi, juga dapat meningkatkan kemampuan dalam hal kecermatan, ketelitian terhadap bentuk, figur, dan tanda-tanda yang dapat
mempengaruhi
peningkatan
kemampuan
prestasi
dalam
membaca, tata bahasa, dan berhitung.
Gambar 1. Bermacam-macam Jenis Kartu Milenium Ular Angka
Gambar 2. Susunan Kartu Milenium Ular Angka yang sudah terbentuk
34
Prosedur penggunaan kartu permainan Kartu Milenium Ular Angka Penjumlahan dan Pengurangan pada saat pembelajaran matematika di kelas pada materi operasi hitung bilangan yaitu:39 1) Guru membagikan kartu permainan Kartu Milenium Ular Angka kepada siswa, satu kartu untuk dua siswa. 2) Guru mendemonstrasikan cara menggunakan Kartu Milenium Ular Angka yaitu: a) Kocok terlebih kartu Milenium Ular Angka, b) Bagi kartu menjadi dua bagian dengan jumlah yang sama besar. c) Sisakan satu kartu sebagai kunci untuk memulai permainan, d) Sebelum melakukan permainan diadakan suten untuk mengetahui pemain yang berhak untuk bermain terlebih dahulu, e) Pemain awal mencari jawaban yang betul dari kunci. Begitu seterusnya. 3) Kemudian masing-masing siswa diminta mempraktekkan dan mencoba. 4) Setelah siswa mengerti cara menggunakan kartu Milenium Ular Angka.Guru mengadakan permainan Kartu Milenium ular Angka adu kecepatan antara siswa untuk memotivasi siswa belajar penjumlahan
3.
Permainan Kartu Millenium Ular Angka Dapat Meningkatkan Hasil Belajar Matematika Pada tahapan usia anak Sekolah Dasar yang dipikirkan oleh anak masih terbatas pada benda-benda konkret yang dapat dilihat dan diraba. Benda-benda yang tidak jelas/abstrak, masih sulit dipikirkan olah anak. Oleh karena itu kesulitan pada pembelajaran matematika dikarenakan adanya upaya untuk mengajarkan kepada anak yang masih berada pada tahapan operasi konkret dengan materi yang abstrak.
39
Agus Nggermanto, APIQ Aritmetika Plus Inteligensi Quantum, (Bandung: OASE Media 2008)cet.1 h. 143
35
Jean Piaget seorang pakar psikologi kognitif dan psikologi anak, telah mengklasifikasikan perkembangan kognitif anak menjadi empat tahapan yaitu:40 a. Tahap sensory-motor yakni perkembangan ranah kognitif yang terjadi pada usia 0-2 tahun b. Tahap pre-operational (operasional awal), yakni perkembangan ranah kognitif yang terjadi pada usia 2 sampai 7 tahun c. Tahap concret-operasional (operasinal konkret), yakni terjadi pada usia 7 sampai 11 d. Tahap formal-operasional (operasi formal), yakni perkembangan ranah kognitif yang terjadi pada usia 11 tahun ke atas. Dasar penguasaan konsep matematika harus kuat sejak usia dini dan setiap proses belajar harus dilalui dengan baik sehingga pemahaman anak cukup mantap dan mendalam. Guru sebagai salah satu faktor yang menentukan keberhasilan proses belajar mengajar harus kreatif, harus pandai membuat perencanaan mengajar yang baik. Materi yang abstrak yang dapat menghambat proses belajar anak, harus diatasi dengan menggunakan metode yang dapat mempermudah anak untuk belajar. Guru dalam hal ini dapat menggunakan permainan sebagai solusinya. Untuk mengajarkan materi operasi hitung bilangan, guru dapat menggunakan permainan Kartu Millenium Ular Angka saat pembelajaran di kelas. Belajar dengan menggunakan permainan Kartu Millenium Ular Angka banyak manfaatnya yaitu dapat melatih konsentrasi siswa, mengaktifkan siswa dalam berfikir, mengembangkan kreativitas dan keterampilan siswa, serta menumbuhkan rasa percaya diri karena siswa bisa mengoreksi sendiri permainan mereka. Dengan konsep pembelajaran matematika “bermain sambil belajar” telah terbukti berhasil dalam mengembangkan kemampuan siswa secara intelegensi dan emosional. Para pakar teori kognitif sepakat bahwa permainan dapat meningkatkan kemampuan kognitif. Dengan begitu, permainan Kartu Millenium Ular 40
Karso, Materi Pokok Pendidikan Matematika I, (Jakarta: UT, 2005), Cet. I h. 1.4.
36
Angka ini dapat mempengaruhi dan meningkatkan hasil belajar matematika siswa.
B. Kerangka Berfikir Pada dasarnya matematika adalah sesuatu yang menyenangkan untuk dipelajari, karena Matematika berhubungan dengan simbol-simbol, garis-garis, titik, dan angka-angka atau bilangan-bilangan. Akan tetapi kenyataannya matematika adalah pelajaran yang sulit dan susah dipahami, hal ini terbukti dari hasil belajar matematika siswa yang rendah. Ada banyak faktor yang menyebabkan pelajaran Matematika dianggap sulit dan susah untuk dipahami oleh siswa, salah satunya adalah proses pembelajaran matematika itu sendiri. Misalnya cara guru mengajarkan pelajaran matematika yang kurang bervariasi, terlalu monoton, kurang kreatif, terlalu formil dan konvensional. Pembelajaran akan lebih bermakna bila guru mampu menciptakan kondisi belajar yang dapat membangun kreativitas berfikir siswa untuk memahami dan menguasai matematika. Untuk dapat menjadikan Matematika sebagai pelajaran yang menyenangkan dan menarik perlu dilakukan perubahan dalam proses pembelajarannya yaitu dengan menggunakan metode yang dapat mengaktifkan siswa dan kreatif yaitu melalui permainan. Untuk dapat menjadikan Matematika sebagai pelajaran yang menyenangkan dan menarik perlu dilakukan perubahan dalam proses pembelajarannya yaitu dengan menggunakan metode yang dapat mengaktifkan siswa dan kreatif yaitu melalui permainan. Secara psikologis dan pedagogis, ada nilai-nilai yang sangat berharga yang anak dapatkan dalam bermain, diantaranya:41 1. Anak memperoleh perasaan senang, puas, bangga, 2. Anak dapat mengembangkan sikap percaya diri, tanggung jawab, dan kooperatif (mau bekerja sama), 41
Syamsu Yusuf, Psikologi Perkembangan Anak dan Remaja, (Bandung: PT. Remaja Rosdakarya, 2004), Cet. 5, h. 172.
37
3. Anak dapat mengembangkan daya fantasi, atau kreativitas 4. Anak dapat mengnenal aturan, atau norma yang berlaku dalam kelompok serta belajar untuk menaatinya, 5. Anak dapat memahami bahwa baik dirinya maupun orang lain, samasama mempunyai kelebihan dan kekurangan, 6. Anak dapat mengembangkan sikap sportif, tenggang rasa, atau toleran terhadap orang lain. Salah satu permainan yang dapat digunakan yaitu permainan Kartu Milenium Ular Angka. Permainan Kartu Milenium Ular Angka ini adalah salah satu permainan yang dapat digunakan dalam proses pembelajaran matematika. Permainan yang bermanfaat bagi siswa karena dapat merangsang berfikir siswa dan mengembangkan kreativitas dan keterampilan siswa dalam memecahkan permasalahan terutama dalam berhitung, melatih konsentrasi, mengaktifkan siswa, serta menumbuhkan rasa percaya diri karena siswa bisa mengoreksi sendiri permainan mereka berdasarkan pola yang ada. Oleh karena itu, pemberian kartu milenium ular angka diduga berpengaruh terhadap hasil belajar siswa. Dari penjelasan di atas mengenai permainan Kartu Millenium Ular Angka dan hasil belajar matematika dapat ditunjukkan dengan bagan sebagai berikut:
38
Permainan Fungsional Permainan Konstruktif Permainan Permainan Dramatik Permainan dengan aturan
Hasil Belajar Faktor dari dalam Faktor yang mempengaruhi
Faktor dari luar Faktor pendekatan belajar
Metode permainan
Permainan KMUA
Perkalian dan Pembagian
Operasi Hitung Bilangan
Gambar 3. Hubungan Hasil Belajar Matematika Dengan Permainan Kartu Millenium Ular Angka
C. Hipotesis Penelitian Berdasarkan kerangka berfikir yang telah dikemukakan diatas, maka penulis membuat hipotesis penelitian sebagai berikut:hasil belajar matematika siswa yang diberi permainan kartu milenium ular angka lebih tinggi daripada hasil belajar matematika siswa yang diberi media konvensional.
39
BAB III METODOLOGI PENELITIAN
A. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di SDN Cengkareng Timur 17 Pagi yang berlokasi di Jalan Angsana Raya Rt.007/012 Kelurahan Cengkareng Timur Kecamatan Cengkareng Jakarta Barat kode pos 11730 kelas I. Waktu penelitian dilaksanakan pada semester genap yaitu pada tanggal 8 – 25 Februari tahun 2011.
B. Metode dan Desain Penelitian Metode Penelitian yang digunakan adalah kuasi eksperimen. Penelitian kuasi eksperimen dapat diartikan sebagai penelitian yang mendekati eksperimen atau eksperimen semu.1 Penelitian yang mendekati percobaan sungguhan dimana tidak memungkinkan peneliti mengadakan kontrol semua variabel yang relevan kecuali beberapa dari variabel-variabel tersebut Desain penelitian yang digunakan adalah sebagai berikut:2
Tabel 2. Desain penelitian Kelompok Perlakuan Tes Akhir
1
( R )E
X1
Y
( R )K
X2
Y
Sukardi, Metodologi Penelitian Pendidikan Kompetensi dan Praktiknya, (Jakarta: Bumi Aksara, 2005),, h.16. 2 Sukardi, Metodologi Penelitian … h.185
40
Keterangan: ( R )E = Kelompok eksperimen ( R )K = Kelompok kontrol X1
= Perlakuan yang diberikan pada kelompok eksperimen
X2
= Perlakuan yang diberikan kepada kelompok kontrol
Y
= Tes akhir
Setelah memberikan perlakuan yang berbeda pada kedua kelompok, yaitu kelompok eksperimen diajarkan dengan menggunakan permainan Kartu Millenium Ular Angka sedangkan kelompok kontrol tidak menggunakan permainan Kartu Millenium Ular Angka. Maka diberikan tes akhir dengan soal yang sama. Kemudian tes hasil kedua kelompok tersebut dianalisis. Dengan demikian dari tes hasil belajar tersebut dapat dibuktikan apakah hasil belajar matematika kelompok eksperimen lebih tinggi daripada kelompok kontrol.
C. Populasi dan Teknik Pengambilan Sampel Populasi adalah semua anggota kelompok yang tinggal bersama dalam suatu tempat dan secara terencana menjadi target kesimpulan dari hasil akhir suatu penelitian.3 Populasi dapat dibedakan menjadi dua macam yaitu populasi target dan populasi terjangkau. 1. Populasi Target Populasi target adalah populasi yang direncanakan dalam penelitian. Populasi target dalam penelitian ini yaitu seluruh siswa SDN Cengkareng Timur 17 Pagi yang ada pada semester genap tahun ajaran 2010/2011. 2. Populasi Terjangkau Populasi terjangkau adalah populasi yang dapat ditemui. Populasi terjangkau dalam penelitian ini yaitu siswa SDN Cengkareng Timur 17 Pagi kelas I yang ada pada semester genap tahun ajaran 2010/2011. 3
Sukardi, Metodologi Penelitian ..., h. 53.
41
Sebagian dari jumlah populasi yang dipilih untuk sumber data disebut sampel.4 Teknik pengambilan sampel dilakukan dengan cluster random sampling, yaitu teknik memilih sampel secara acak.5 Teknik ini dikatakan secara kebetulan karena peneliti dengan sengaja memilih sampel yang ditemui pada tempat, waktu dan cara yang telah ditentukan. Dengan menggunakan teknik ini sampel yang diperoleh sebanyak 66 orang siswa.
D. Variabel Penelitian Variabel penelitian adalah objek penelitian atau apa yang menjadi titik perhatian suatu penelitian.6 1. Variabel Bebas (X) Variabel
bebas
(independent
variabel)
adalah
variabel
yang
mempengaruhi atau variabel penyebab. Variabel bebas dalam penelitian ini adalah permainan kartu milenium ular angka. 2. Variabel Terikat (Y) Variabel terikat (dependent variabel) adalah variabel yang dipengaruhi atau variabel akibat. Variabel terikat dalam penelitian ini adalah hasil belajar matematika.
E. Instrumen Penelitian Yang dimaksud dengan instrumen pada suatu penelitian adalah alat pada waktu penelitian menggunakan suatu metode.7 Instrumen tes yang digunakan dalam penelitian ini berupa soal pilihan ganda sebanyak 30 soal dengan 3 pilihan jawaban. Setiap nomor yang benar diberi nilai 1 dan setiap nomor yang salah diberi nilai 0. Tes ini diberikan setelah dilakukan proses belajar mengajar pada materi operasi hitung bilangan.
4
Sukardi, Metodologi Penelitian…, h. 54. Sukardi, Metodologi Penelitian…, h. 63. 6 Suharsimi Arikunto, Prosedur Penelitian Suatu Pendekatan Praktek, (Jakarta: PT Rineka Cipta, 2002), Cet 12, h. 96-97. 7 Suharsimi Arikunto, Prosedur Penelitian..., h. 126. 5
42
Keberhasilan mengungkapkan hasil dan proses belajar siswa sangat bergantung pada kualitas alat penilaian yang digunakan, disamping faktor lain yang mempengaruhinya. Misalnya cara pelaksanaannya, kondisi siswa, dan keadaan lingkungan. Suatu alat penilaian dikatakan berkualitas baik apabila memenuhi beberapa kriteria yaitu validitas, reliabilitas, daya pembeda, dan indeks kesukaran.
1. Pengujian Validitas Suatu instrumen dikatakan valid apabila instrumen tersebut dapat mengukur apa yang seharusnya diukur. Dalam penelitian ini jenis validitas yang digunakan adalah validitas isi (content validity) yaitu mengukur tujuan khusus tertentu yang sejajar dengan materi atau isi pelajaran yang diberikan. Pengujian validitas yang digunakan menggunakan teknik Korelasi Poin Biserial (Point Biserial Correlation). Rumus untuk mencari Angka Indeks Korelasi Poin Biserial (rpbi) adalah:8
rpbi
8
M p Mt SDt
p q
Anas Sudijono, Pengantar Statistik Pendidikan, (Jakarta: PT Raja Grafindo Persada, 2005), Cet. 15, h. 258.
43
Keterangan: rpbi =
Angka Indeks Korelasi Poin Biserial
Mp =
Nilai rata-rata yang dicapai oleh peserta tes yang menjawab betul, yang sedang dicari korelasinya dengan tes secara keseluruhan
Mt =
Nilai rata-rata yang berhasil dicapai oleh seluruh peserta tes
SDt =
Deviasi standar total
p
Proporsi peserta tes yang menjawab betul terhadap butir soal
=
yang
sedang
dicari
korelasinya
dengan
tes
secara
keseluruhan q
=
Proporsi peserta tes yang menjawab salah terhadap butir soal yang
sedang dicari korelasinya dengan tes secara
keseluruhan.
Dari hasil perhitungan uji validitas instrument tes, maka dari 30 soal diperoleh 22 butir soal yang valid yaitu butir soal nomor 1, 3, 4, 6. 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30, dan 8 butir soal yang tidak valid yaitu butir soal nomor 2, 5, 7, 13, 17, 21, 24, 25.
2. Pengujian Reliabilitas Suatu instrumen penelitian disebut reliabel apabila instrumen tersebut konsisten dalam memberikan penilaian atas apa yang diukur. Pengujian reliabilitas menggunakan rumus K-R. 20:9 2 n X 2 ( X ) 2 k S pq 2 r11 , dimana S S2 n(n 1) k 1
9
Suharsimi Arikunto, Dasar-Dasar Evaluasi Pembelajaran, (Jakarta: Bumi Aksara, 2005), Cet. 5, h. 100-101.
44
Keterangan : r11
=
Reliabilitas tes secara keseluruhan
p
=
Proporsi subjek yang menjawab item dengan benar
q
=
Proporsi subjek yang menjawab item dengan salah, (q = 1-p)
pq =
Jumlah hasil perkalian antara p dan q
k
=
Banyaknya butir soal
S
=
Standar deviasi dari tes (standar deviasi adalah akar varians)
n
=
Jumlah responden
Perhitungan reliabilitas dilakukan terhadap 22 soal yang valid. Dari hasil perhitungan diperoleh nilai reliabilitas sebesar 0,891, maka instrumen tes tersebut dapat dikatakan mempunyai tingkat reliabilitas sangat tinggi.
3. Daya Pembeda Daya pembeda sebuah butir soal adalah kemampuan butir soal itu untuk membedakan antara siswa yang pandai/berkemampuan tinggi dengan siswa yang berkemampuan rendah. Rumus untuk menentukan daya pembeda soal yaitu:10
DP
10
JB A JBB JS A JS B
_______, Evaluasi Pembelajaran Matematika, (Bandung: Jurusan Pendidikan Fisika FMIPA UPI, 2003), h. 159.
45
Keterangan: JBA = Jumlah siswa kelompok atas yang menjawab soal dengan benar JBB = Jumlah siswa kelompok bawah yang menjawab soal dengan benar JSA = Jumlah siswa kelompok atas JSB = Jumlah siswa kelompok bawah
Adapun Kriteria daya beda dapat dilihat pada tabel berikut Tabel 3 Klasifikasi Daya Beda Klasifikasi Daya Beda
Indeks Daya Beda
DP < 0,00
Sangat Jelek
0,00 < D < 0,20
Jelek
0,20 < D < 0,40
Cukup
0,40 < D < 0,70
Baik
0,70 < D < 1,00
Baik sekali
Berdasarkan kriteria indeks daya pembeda soal, diperoleh 3 soal sangat baik,4 soal baik, 15 soal cukup, 5 soal jelek dan 3 soal sangat jelek
4. Indeks Kesukaran Untuk mengetahui apakah soal itu sukar, sedang, atau mudah maka soal diuji taraf kesukarannya terlebih dahulu. Rumus untuk menentukan indeks kesukaran soal yaitu:11 IK
11
JBA JBB JS A JS B
_______, Evaluasi Pembelajaran…, h. 170.
46
Keterangan: IK
= Indeks kesukaran
JBA = Banyaknya siswa yang menjawab soal dengan benar kelompok atas JBB = Banyaknya siswa yang menjawab soal dengan benar kelompok bawah JSA = Jumlah siswa kelompok atas JSB = Jumlah siswa kelompok bawah Berdasarkan kriteria indeks kesukaran soal, maka diperoleh 6 soal mudah, dan 24 soal sedang. Kriteria tingkat kesukaran dapat dilihat pada tabel 3: Tabel 4 Tingkat Kesukaran Tingkat Kesukaran
Nilai I
Sukar
0,00 – 0,25
Sedang
0,26 – 0,75
Mudah
0,76 – 1,00
F. Teknik Pengumpulan Data Cara yang penulis lakukan dalam pengumpulan data adalah dengan menggunakan tes sebagai instrumen penelitian. Tes merupakan alat/prosedur yang digunakan untuk mengetahui/mengukur sesuatu, dengan cara dan aturanaturan yang sudah ditentukan.12 Jenis tes yang akan digunakan adalah tes obyektif. Tes ini akan diberikan kepada siswa setelah siswa selesai mempelajari suatu materi atau satu pokok bahasan yang sudah diberi perlakuan.
12
Suharsimi Arikunto, Dasar-Dasar Evaluasi Pembelajaran, (Jakarta: Bumi Aksara, 2005), Cet. 5, h. 53.
47
Prosedur yang dilakukan dalam mengumpulkan data adalah sebagai berikut: 1. Melakukan observasi langsung untuk menentukan kelompok yang akan dijadikan kelompok eksperimen dan kelompok kontrol. 2. Sebelum memberi tes, diberikan perlakuan yang berbeda terhadap kedua kelompok
dengan
mengajarkan
materi
yang
sama.
Kelompok
eksperimen diajarkan dengan permainan Kartu Milenium Ular Angka dan kelompok kontrol tidak diajarkan dengan permainan Kartu Milenium Ular Angka.. 3. Memberikan tes berupa soal-soal penjumlahan pada kedua kelompok tersebut dengan soal-soal yang sama. 4. Menilai hasil tes. Hasil tes yang diperoleh dari kelompok eksperimen dan kelompok kontrol adalah hasil belajar matematika siswa yang diberi permainan Kartu Milenium Ular Angka dan yang tidak diberi permainan Kartu Milenium Ular Angka.
G. Tekhnik Analisis Data Setelah data terkumpul, kemudian data tersebut dianalisis. Tahap analisis data yang dilakukan dengan menggunakan uji prasyarat analisis yaitu uji normalitas dan uji homogenitas. 1. Uji Prasyarat Analisis a. Uji Normalitas Uji normalitas data ini dilakukan untuk mengetahui apakah sampel yang diteliti berdistribusi normal atau tidak. Uji kenormalan yang digunakan adalah uji Liliefors. Langkah-langkah untuk melakukan uji liliefors adalah sebagai berikut:13 1) Tentukan rumusan hipotesis 2) Urutkan data dari yang terkecil hingga terbesar 3) Hitung nilai Zi dari masing-masing data dengan rumus:
13
Sudjana, Metoda Statistika, (Bandung: Tarsito, 1996), Cet. 6, h. 466.
48
Zi
Xi X S
Keterangan: Zi =
Skor baku
Xi =
Skor data
X =
Nilai rata-rata
S =
Simpangan baku
4) Tentukan besar peluang untuk masing-masing nilai Zi berdasarkan tabel Zi sebut saja F (Zi), dengan aturan: Jika Zi > 0, maka F (Zi) = 0,5 + nilai tabel Jika Zi < 0, maka F (Zi) = 1 – (0,5 + nilai tabel) 5) Selanjutnya hitung proporsi Z1, Z2,..., Zn yang lebih kecil atau sama dengan Z1. Jika proporsi dinyatakan dengan S(Zi), maka:
S ( Zi )
BanyaknyaZ1 , Z 2 ,..., Z n yang Z1 n
6) Hitung selisih F(Zi) dan S(Zi), kemudian tentukan nilai mutlaknya 7) Ambil nilai maksimum dari nilai-nilai mutlak selisih tersebut 8) Berikan interpretasi Lhitung dengan membandingkannya dengan Ltabel. Ltabel adalah nilai yang diambil dari tabel nilai kritis uji liliefors 9) Tentukan kriteria pengujiannya: Jika Lhitung < Ltabel maka H0 diterima Jika Lhitung > Ltabel maka H0 ditolak
49
b. Uji Homogenitas Uji homogenitas dilakukan untuk mengetahui kesamaan varians antara dua keadaan atau populasi. Uji homogenitas yang digunakan adalah uji homogenitas dua varians atau uji Fisher. Rumus yang digunakan adalah:14
n fX 2 ( fX ) 2 S12 2 , dengan S F 2 n(n 1) S2 Keterangan: S12 = Varians terbesar S 22 = Varians terkecil
Langkah-langkah untuk melakukan uji Fisher adalah sebagai berikut: 1) Tentukan rumusan hipotesis Ho = Data Memiliki Varians homogen Ha = Data tidak memiliki varians homogen 2) Bagi data menjadi dua kelompok 3) Tentukan simpangan baku dari masing-masing kelompok 4) Tentukan Fhitung dengan rumus:
Fhitung
S12 Variansterbesar S 22 Variansterkecil
5) Tentukan taraf nyata yang akan digunakan, db pembilang dan db penyebut 6) Tentukan Ftabel Untuk mencari nilai Ftabel lihat dalam tabel nilai kritis distribusi F, tetapi jika tidak ada nilai Ftabel yang diinginkan maka gunakan interpolasi. Rumus untuk mencari Ftabel adalah F()(db pembilang/db penyebut) 14
Sudjana, Metoda..., h. 249.
50
7) Tentukan kriteria pengujian: a) Jika Fhitung < Ftabel, maka H0 diterima yang berarti varians kedua populasi homogen b) Jika Fhitung > Ftabel , maka H0 ditolak yang berarti varians kedua populasi tidak homogen 2. Uji Hipotesis Penelitian Setelah
dilakukan
pengujian
persyaratan
analisis
dengan
menggunakan uji normalitas dan uji homogenitas, selanjutnya dilakukan uji hipotesis dengan menggunakan rumus uji-t.15 Langkah-langkah pengujian hipotesis yaitu: a. Tentukan rumusan hipotesis b. Tentukan uji statistik 1) Jika varians populasi homogen
t hitung
XE XK Sg
1 1 nE nK
, dimana S g
2) Jika varians populasi heterogen
t hitung
15
XE XK S E2 S K2 nE nK
Sudjana, Metoda..., h. 239.
(n E 1) S E2 (n K 1) S K2 (n E n K 2)
51
Keterangan: X E = Rata-rata hasil belajar siswa yang diberi permainan tali PAS X K = Rata-rata hasil belajar siswa yang tidak diberi permainan tali PAS
nE = Jumlah sampel pada kelompok eksperimen nK = Jumlah sampel pada kelompok kontrol S E2 = Varians kelompok eksperimen S K2 = Varians kelompok kontrol
Sg = Varians gabungan c. Tentukan taraf signifikasi dan derajat kebebasan Taraf signifikasi yang digunakan dalam penelitian ini adalah = 0,05 dengan rumus db = nE + nK – 2 d. Tentukan ttabel Untuk mencari nilai ttabel lihat dalam distribusi t, tetapi jika tidak ada nilai ttabel yang diinginkan maka gunakan interpolasi. Rumus untuk mencari ttabel = t(1- )( n
E
+ nK – 2)
a. Tentukan kriteria pengujian 1) Jika thitung < ttabel, maka H0 diterima 2) Jika thitung > ttabel, maka H0 ditolak
52
H. Hipotesis Statistik Hipotesis yang akan digunakan dalam penelitian ini adalah: µ1 < µ2 µ1 > µ2 Keterangan: µ1 : Rata-rata hasil belajar matematika siswa yang diberi permainan kartu millennium ular angka µ2 : Rata-rata hasil belajar matematika siswa yang diberi metode konvensional
53
BAB IV PEMBAHASAN HASIL PENELITIAN
A. Deskripsi Data 1. Langkah Pelaksanaan Penelitian Penelitian ini dilaksanakan selama 8 kali pertemuan. Sampel yang diambil sebanyak 66 orang siswa, 32 orang siswa sebagai kelompok eksperimen dan 34 orang siswa sebagai kelompok kontrol. Kedua kelompok tersebut diajarkan materi/pokok bahasan yang sama yaitu operasi hitung bilangan, khususnya penjumlahan dan pengurangan. Akan tetapi kedua kelas itu diberi perlakuan yang berbeda, kelompok eksperimen pembelajarannya dengan menggunakan permainan kartu millennium ular angka sedangkan kelompok kontrol dengan pembelajaran konvensional. Setelah diberikan perlakuan, kedua kelompok itu diberi tes akhir berupa soal pilihan ganda dengan 3 pilihan jawaban, setiap nomor yang benar diberi nilai 1 dan yang salah diberi nilai 0. Sebelum tes itu diberikan, dilakukan uji coba soal. Soal yang diuji coba sebanyak 30 soal, dilakukan diluar kelompok eksperimen dan kelompok kontrol. Ternyata setelah dilakukan uji validitas terhadap soal uji coba terdapat 8 soal yang tidak memenuhi syarat. Jadi jumlah soal yang valid sebanyak 22 soal. Kemudian dilakukan uji reliabilitas soal dari jumlah soal yang valid tersebut. Dari hasil perhitungan didapat bahwa koefisien reliabilitas sebesar 0,891 maka soal tersebut reliabel dengan kategori tinggi. Adapun rincian butir soal yang dipakai setelah diujicobakan adalah sebagai berikut
54
No. Soal 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30
Validitas
Indeks Kesukaran
Daya Beda
Ket.
Valid Invalid Valid Valid Invalid Valid Invalid Valid Valid Valid Valid Valid Invalid Valid Valid Valid Invalid Valid Valid Valid Invalid Valid Valid Invalid Invalid Valid Valid Valid Valid Valid
Sedang Sedang Sedang Sedang Sedang Sedang Sedang Mudah Sedang Mudah Sedang Mudah Sedang Mudah Mudah Sedang Sedang Sedang Sedang Sedang Sedang Sedang Sedang Sedang Sedang Sedang Sedang Sedang Sedang Mudah
Cukup Sangat Jelek Cukup Cukup Jelek Cukup Jelek Cukup Cukup Cukup Baik Cukup Jelek Cukup Cukup Cukup Jelek Cukup Cukup Cukup Sangat Jelek Baik Sangat Baik Jelek Sangat Jelek Sangat Baik Baik Sangat Baik Baik Cukup
Dipakai Tdk Dipakai Dipakai Dipakai Tdk Dipakai Dipakai Tdk Dipakai Dipakai Dipakai Dipakai Dipakai Dipakai Tdk Dipakai Dipakai Dipakai Dipakai Tdk Dipakai Dipakai Dipakai Dipakai Tdk Dipakai Dipakai Dipakai Tdk Dipakai Tdk Dipakai Dipakai Dipakai Dipakai Dipakai Dipakai
2. Penyajian Data a. Hasil Belajar Matematika Siswa Yang Diberi Permainan Kartu Milenium Ular Angka Data hasil belajar kelompok siswa yang pembelajarannya dengan menggunakan permainan kartu millennium ular angka diperoleh dengan rentangan nilai 23 sampai dengan nilai 82 dengan mean sebesar 58,25, median sebesar 61,1, modus sebesar 40,4, varians
55
sebesar 274,71, dan standar deviasi sebesar 16,57 dengan jumlah sampel sebanyak 32 orang siswa. Penyajian data dalam bentuk distribusi frekuensi, histogram dan poligon dapat dilihat pada tabel dan gambar dibawah ini: Tabel 5 Hasil Belajar Matematika Kelompok Eksperimen Nilai
fkb
fka
Tb – Ta
23 – 32
32
3
33 – 42
29
43 – 52
Frekuensi
Titik Tengah (X)
Absolut
Relatif (%)
22,5 – 32,5
27,5
3
9,375
7
32,5 – 42,5
37,5
4
12,5
25
10
42,5 – 52,5
47,5
3
9,375
53 – 62
22
17
52,5 – 62,5
57,5
7
21,875
63 – 72
15
25
62,5 – 72,5
67,5
8
25
73 – 82
7
32
72,5 – 82,5
77,5
7
21,875
f = 32
100
Jumlah
10
frekuensi
8 6 4 2 0 22,5
32,5
42,5
52,5 62,5 nilai
72,5
82,5
Gambar 4. Hasil Belajar Matematika Kelompok Eksperimen
56
b. Hasil Belajar Matematika Siswa Yang Tidak Diberi Permainan Kartu Millenium Ular Angka Data hasil belajar kelompok siswa yang diajarkan dengan tidak menggunakan permainan kartu millenium ular angka dan hanya diberikan dengan pembelajaran konvensional saja diperoleh dengan rentangan nilai 18 sampai dengan nilai 77 dengan mean sebesar 46,94, median sebesar 45, modus sebesar 40,4, varians sebesar 282,6, dan standar deviasi sebesar 16,81 dengan jumlah sampel sebanyak 34 orang siswa. Penyajian data dalam bentuk distribusi frekuensi, histogram dan poligon dapat dilihat pada tabel dan gambar di bawah ini: Tabel 6 Hasil Belajar Matematika Kelompok Kontrol
Nilai
fkb
fka
Tb – Ta
Frekuensi
Titik Tengah (X)
Absolut
Relatif (%)
18 – 27
34
5
17,5 – 27,5
22,5
5
14,7
28 – 37
29
11
27,5 – 37,5
32,5
6
17,65
38 – 47
23
19
37,5 – 47,5
42,5
8
23,53
48 – 57
15
22
47,5 – 57,5
52,5
3
8,82
58 – 67
12
28
57,5 – 67,5
62,5
6
17,65
68 – 77
6
34
67,5 – 77,5
72,5
6
17,65
f = 34
100
Jumlah
57
10
frekuensi
8 6 4 2 0 17,5
27,5
37,5
47,5 57,5 nilai
67,5
77,5
Gambar 5. Hasil Belajar Matematika Kelompok Kontrol B.Analisis Data 1. Pengujian Prasyarat Analisis Berdasarkan persyaratan analisis, maka sebelum dilakukan pengujian hipotesis perlu dilakukan pengujian terlebih dahulu terhadap data hasil penelitian. Uji prasyarat analisis yang perlu dipenuhi adalah: a. Uji Normalitas Uji normalitas data ini dilakukan untuk mengetahui apakah sampel yang diteliti berasal dari populasi yang berdistribusi normal atau tidak Uji normalitas yang dipakai adalah uji Liliefors. Dari hasil pengujian
untuk
kelompok
eksperimen
diperoleh
nilai
Lhitung = 0,0771. Dari tabel harga kritis uji Liliefors didapat harga Ltabel untuk n = 32 pada taraf signifikan = 0,05 adalah 0,157. Sedangkan untuk kelompok kontrol nilai Lhitung = 0,1368 didapat harga Ltabel untuk n = 34 yaitu 0,151. Karena Lhitung pada kedua kelompok kurang dari Ltabel, maka dapat disimpulkan bahwa data berasal dari populasi populasi yang berdistribusi normal. Untuk lebih jelasnya dapat dilihat pada tabel dibawah ini:
58
Tabel 7 Rekapitulasi Hasil Perhitungan Uji Normalitas Dengan Uji Liliefors Kelompok
Sampel
Lhitung
Ltabel
Kesimpulan
Eksperimen Kontrol
32 34
0,0771 0,1368
0,156 0,151
Terima H0 Terima H0
b. Uji Homogenitas Uji homogenitas atau uji kesamaan dua varians populasi dilakukan dengan uji Fisher. Dari hasil pengujian diperoleh Fhitung = 1,03 dan Ftabel = 1,83 pada taraf signifikan = 0,05 untuk dk pembilang = 33 dan dk penyebut = 31. Karena Fhitung < Ftabel ini artinya H0 diterima sehingga dapat disimpulkan bahwa kedua data memiliki varians yang homogen. Untuk lebih jelasnya dapat dilihat pada tabel dibawah ini:
Tabel 8 Rekapitulasi Hasil Perhitungan Uji Homogenitas Dengan Uji Fisher Kelompok
Varians
Eksperimen
274,71
Kontrol
282,6
Fhitung
Ftabel
Kesimpulan
1,03
1,83
Terima H0
2. Pengujian Hipotesis Penelitian Setelah uji prasyarat, maka kedua kelompok berdistribusi normal dan homogen. Pengujian selanjutnya dilakukan dengan uji-t. Dari data hasil
penelitian
diperoleh
rata-rata
untuk
kelompok
eksperimen
X E 58 ,25 dengan varians ( S E2 ) = 274,71 dan kelompok kontrol
diperoleh X K = 46,94 dengan varians ( S K2 ) = 282,6
59
Nilai yang dipilih adalah 0,05. Pengujian yang digunakan adalah uji satu arah dengan db = 64. Dengan menggunakan interpolasi didapat nilai ttabel = t(0,95)(64) = 1,669. Kriteria pengujian adalah terima H0 jika thitung < ttabel dan tolak Ho jika thitung > ttabel. Dari hasil analisis data dengan menggunakan statistik uji-t, diperoleh harga thitung = 2,82. Karena thitung > ttabel (thitung berada di daerah penolakan H0) maka H0 ditolak. Dengan demikian dapat disimpulkan bahwa rata-rata hasil belajar matematika siswa yang diberi permainan kartu milenium ular angka lebih tinggi dari pada rata-rata hasil belajar matematika siswa yang tidak diberi permainan kartu millenium ular angka. Untuk lebih jelasnya dapat dilihat pada tabel dibawah ini: Tabel 9 Rekapitulasi Hasil Perhitungan Uji Hipotesis Dengan Uji-t Kelompok
Sampel
Mean
Eksperimen
32
58,25
Kontrol
34
thitung
ttabel
Kesimpulan
2,82
1,669
Tolak H0
46,94
B. Interpretasi Hasil Penelitian Dari pengolahan data terlihat bahwa kelompok eksperimen dan kelompok kontrol berasal dari populasi berdistribusi normal dan varians populasinya sama (kedua kelompok homogen). Dan dari perhitungan uji hipotesis dengan uji-t diperoleh thitung = 2,82 sedangkan ttabel pada taraf signifikasi 5% dan db = 64. Nilai t(0,95)(64) dicari dengan menggunakan interpolasi didapat 1,669. Dengan demikian sesuai dengan kriteria pengujiannya adalah terima H0 jika thitung < ttabel dan tolak H0 jika thitung > ttabel.
60
Karena hasil perhitungan data di atas menunjukkan bahwa nilai thitung berada diluar daerah penerimaan H0 atau thitung > ttabel, maka H0 ditolak. Penolakan H0 tersebut menunjukkan bahwa terdapat pengaruh yang signifikan terhadap hasil belajar matematika siswa yaitu rata-rata hasil belajar matematika siswa yang diberi permainan kartu millennium ular angka lebih tinggi daripada rata-rata hasil belajar matematika siswa yang tidak diberi permainan kartu millennium ular angka.
BAB V KESIMPULAN DAN SARAN
A. Kesimpulan Berdasarkan analisis data dan pengujian hipotesis yang telah dilakukan, dapat disimpulkan bahwa nilai rata-rata hasil belajar matematika siswa yang diberi permainan Kartu Millenium Ular Angka lebih tinggi daripada nilai rata-rata hasil belajar matematika siswa yang tidak diberi permainan Kartu Millenium Ular Angka.
B. Saran Berdasarkan kesimpulan di atas dan pengalaman dalam proses belajar mengajar yang terjadi selama penelitian, maka penulis dapat memberikan saran-saran sebagai berikut: 1. Dalam proses belajar mengajar, untuk memperoleh hasil belajar matematika yang maksimal khususnya pada siswa Sekolah Dasar guru hendaknya dapat menggunakan metode mengajar yang bervariasi dan dapat menciptakan suasana belajar yang menyenangkan serta dapat membangun keaktifan siswa. 2. Guru dapat menggunakan permainan Kartu Millenium Ular Angka saat mengajarkan materi operasi hitung bilangan sehingga mempermudah dan membantu siswa dalam memahami dan menguasai pelajaran. 3. Permainan Kartu Millenium Ular Angka sangat efektif jika digunakan oleh guru saat pembelajaran matematika terutama pada siswa Sekolah Dasar.
61
4. Saat menggunakan permainan Kartu Millenium Ular Angka pada pembelajaran
matematika,
Guru
hendaknya
menjelaskan
cara
menggunakan kartu permainan Kartu Millenium Ular Angka. 5. Sekolah hendaknya menyediakan sarana dan prasarana yang dapat menunjang proses belajar mengajar.
62
63
DAFTAR PUSTAKA
Abdurrahman, Mulyono. Pendidikan Bagi Anak Berkesulitan Belajar, Jakarta: Rineka Cipta 2003. Abror, Abd. Rachman. Psikologi Pendidikan, Yogyakarta: PT. Tiara Wacana Yogya 1993. Angkowo, Robertus. dan A. Kosasih, Optimalisasi Media Pembelajaran, Jakarta: PT Grasindo, 2007. Arikunto, Suharsimi. Dasar-Dasar Evaluasi Pembelajaran, Jakarta: Bumi Aksara, 2005. Arikunto, Suharsimi. Prosedur Penelitian Suatu Pendekatan Praktek, Jakarta: PT Rineka Cipta, 2002. Bahri Djamarah, Syaiful, dan Aswan Zain, Strategi Belajar Mengajar, Jakarta: PT. Rineka Cipta, 2006. Dananjaya, Utomo. Media Pembelajaran Aktif, Bandung: Nuansa 2010. Departemen Agama Republik Indonesia, Al-Qur’an dan Terjemahannya, (Jakarta: cahaya qur’an 2006. Desmita, Psikologi Perkembangan, Bandung : PT Remaja Rosda Karya, 2005. Fadli, Aulia. Koleksi Games Seru dan Kreatif, Yogyakarta: Galangpres 2010. Haditomo, Siti Rahayu. Psikologi Perkembangan, Gajah Mada University Press 2004. Hamalik, Oemar. Perencanaan Pengajaran Berdasarkan Pendekatan Sistem, Jakarta: PT. Bumi Aksara, 2005. Hamalik, Oemar. Proses Belajar Mengajar, Bandung: Bumi Aksara 2001. Helmi, Dyan R. dan Saeful Zaman, 12 Permainan Untuk Meningkatkan Intelegensi Anak, Jakarta: Visimedia 2009 Hurlock, Elizabeth B. Perkembangan Anak, Erlangga. Karso, Materi Pokok Pendidikan Matematika I, Jakarta: UT, 2005. Nggermanto, Agus. APIQ Aritmetika Plus Inteligensi Quantum, Bandung: OASE Media 2008. Ramayulis, Ilmu Pendidikan Islam Padang: Kalam Mulia 2002. Ruseffendi, Pengajaran Matematika Modern, Bandung: Tarsito 1980. Sadiman, Arief S. Media Pendidikan, Jakarta: Rajawali 1986. Sardiman, Interaksi dan Motivasi Belajar, Jakarta: PT. Raja Grafindo Persada, 2004. Setyono, Ariesandi. Mathemagics cara jenius belajar matematika, Jakarta:Kompas Gramedia 2010 Siregar, Evelin. dan Hartini Nara, Teori Belajar Dan Pembelajaran, Jakarta: Ghalia Indonesia 2010. ST. Negoro dan B. Harahap, Ensiklopedia Matematika, Jakarta: Ghalia Indonesia, 1998.
Sudijono, Anas. Pengantar Statistik Pendidikan, Jakarta: PT Raja Grafindo Persada, 2005. Sudjana, Metoda Statistika, Bandung: Tarsito, 1996. Suherman, Erman. dkk., Strategi Pembelajaran Matematika Kontemporer, Bandung: Jurusan Pendidikan Matematika FMIPA UPI, 2003. Sukardi, Metodologi Penelitian Pendidikan Kompetensi dan Praktiknya, Jakarta: Bumi Aksara, 2005. Suprijono, Agus. Cooperative Learning Teori dan Aplikasi Paikem (Surabaya: Pustaka Pelajar, 2009. Syah, Muhibbin. Psikologi Pendidikan Dengan Pendekatan Baru, (Bandung: PT. Remaja Rosdakarya 2004. Syarif,”Menciptakan Pembelajaran Matematika Yang Kreatif dan Menyenangkan Pada Pendidikan Kelas Awal SD”, dari http://syarifartikel.blogspot.com/2010/04/menciptakan-pembelajaranmatematika.html, 4 Desember 2010. Trianto, Model-model Pembelajaran Inovatif Berorientasi Konstruktivistik, Surabaya: Prestasi Pustaka 2007. Tumijan dkk, Pintar Matematika Untuk Sd dan MI Kelas 1, Jakarta: Grasindo 2010. Widoyoko, Eko Putro. Evaluasi Program Pembelajaran, Yogyakarta: Pustaka Pelajar 2009. Yusuf, Syamsu. Psikologi Perkembangan Anak dan Remaja, Bandung: PT. Remaja Rosdakarya, 2004. Zulkifli L., Psikologi Perkembangan, Bandung: PT Remaja Rosdakarya, 2005.
140
Lampiran 15
Distribusi Frekuensi Tes Akhir Kelompok Kontrol
1. Banyak data (n) = 34 2. Distribusi nilai = 18 23
23
23
27
32
32
32
32
36
36 41
41
41
41
41
41
45
45
50
50 50
59
59
59
64
64
68
68
73
73 73
77
3. Jangkauan = data terbesar – data terkecil = 77 – 18 = 59 4. Banyak kelas = 1 + 3.3 log n = 1 + 3.3 log 34 = 6.05 6 (dibulatkan ke bawah) 5. Panjang interval =
59 = 9.83 10 (dibulatkan ke atas) 6
6. Mean =
X
fX 1596 46,94 f 34
7. Median
1 2 n fkb 17 11 Me Tbme I 37.5 10 37.5 7.5 45 fa 8 8. Modus fk a 2 Mo Tb mo I 37 .5 10 40 .4 25 f a f b
9. Varians n fX 2 fX
2
SE 2
nn 1
3484244 1596 282,6 3434 1 2
141
10. Standar Deviasi n fX 2 fX
3484244 1596 = 16.81 3434 1
2
SE
2
nn 1
=
Nilai
fkb
fka
Tb – Ta
18 – 27
34
5
28 – 37
29
11
38 – 47
23
48 – 57
Frekuensi
Titik Tengah (X)
Absolut
f(%)
17,5 – 27,5
22,5
5
14,7
27,5 – 37,5
32,5
6
17,65
19
37,5 – 47,5
42,5
8
23,53
15
22
47,5 – 57,5
52,5
3
8,82
58 – 67
12
28
57,5 – 67,5
62,5
6
17,65
68 – 77
6
34
67,5 – 77,5
72,5
6
17,65
f = 34
100
Jumlah
No
X
f
X2
fX
fX2
1
18
1
324
18
324
2
23
3
529
69
1587
3
27
1
729
27
729
4
32
4
1024
128
4096
5
36
2
1296
72
2592
6
41
6
1681
246
10086
7
45
2
2025
90
4050
8
50
3
2500
150
7500
9
59
4
3481
236
13924
10
64
2
4096
128
8192
11
68
2
4624
136
9248
12
73
3
5329
219
15987
13
77
1
5929
77
5929
f = 34
fX = 1596 (fX)2 = 2547216
142
Lampiran 16
Distribusi Frekuensi Tes Akhir Kelompok Eksperimen
1) Banyak data (n) = 32 2) Jangkauan = data terbesar – data terkecil = 82 – 23 = 59 3) Banyak kelas = 1 + 3.3 log 32 = 1 + 3.3 log 32 = 5.97 6 (dibulatkan ke bawah) 4) Panjang interval =
59 = 9.83 10(dibulatkan ke atas) 6
5) Mean =
X
fX 1864 58.25 f 32
6) Median
1 2 n fkb 16 10 Me Tbme I 52.5 10 61.1 fa 7 7) Modus fk a 1 Mo Tb mo I 62 .5 10 40 .4 1 1 f a f b
8) Varians n fX 2 fX
2
SE 2
32117094 1864 274.71 3232 1 2
nn 1
9) Standar Deviasi n fX 2 fX
2
SE
nn 1
32117094 1864 = 16.57 3232 1 2
=
143
Nilai
fkb
fka
Tb – Ta
23 – 32
32
3
33 – 42
29
43 – 52
Frekuensi
Titik Tengah (X)
Absolut
f (%)
22,5 – 32,5
27,5
3
9,375
7
32,5 – 42,5
37,5
4
12,5
25
10
42,5 – 52,5
47,5
3
9,375
53 – 62
22
17
52,5 – 62,5
57,5
7
21,875
63 – 72
15
25
62,5 – 72,5
67,5
8
25
73 – 82
7
32
72,5 – 82,5
77,5
7
21,875
f = 32
100
Jumlah
No
X
f
X2
fX
fX2
1
23
3
529
69
1587
2
36
1
1296
36
1296
3
41
3
1681
123
5043
4
50
3
2500
150
7500
5
59
7
3481
413
24367
6
64
3
4096
192
12288
7
68
5
4624
340
23120
8
73
2
5329
146
10658
9
77
3
5929
231
17787
10
82
2
6724
164
13448
f = 32
fX = 1864 2
(fX) = 3474496
fX2 = 112466
126
Lampiran 6
Kisi-Kisi Instrumen Tes Operasi Hitung Bilangan ( Penjumlahan dan Pengurangan ) Standar Kompetensi Indikator Kompetensi Dasar Melakukan - Menentuk 1. Siswa dapat penjumlaha an nilai melakukan pemisahan n dan tempat tempat penguranga puluhan n bilangan dan sampai dua satuan. angka dalam pemecahan - Melakuka 1. Siswa dapat n menghitung penjumla penjumlahan. han dan 2. Siswa dapat penguran menghitung gan pengurangan bilangan dua angka -
Menggun 1. Siswa dapat akan sifat menggunakan sifat operasi campuran pertukara penjumlahan dan n dan pengurangan. pengelom 2. Siswa dapat pokan menggunakan sifat pengelompokan pada penjumlahan untuk mempermudah perhitungan 3. Siswa dapat menggunakan sifat pengelompokkan pada pengurangan untuk mempermudah perhitungan. 6. Siswa dapat menghitung tiga bilangan berturutturut
Nomor Butir Soal 1, 4, 7
Jumlah 3
10, 13
2
16, 19, 22
3
2,5,25, 28
4
8, 11, 14
3
17, 20
2
23,26,29
3
127
Menyelesaik 1. Siswa dapat an masalah memecahkan masalah yang sehari-hari yang melibatkan melibatkan penjumlahan penjumlahan dan 2. Siswa dapat pengurangan memecahkan masalah bilangan dua sehari-hari yang angka. melibatkan pengurangan 3. Siswa dapat memecahkan masalah sehari-hari yang melibatkan penjumlahan dan pengurangan Jumlah
3,6,9,12
4
15,18,21, 24
4
27, 30
2
30
134
Lampiran 9 Langkah-langkah Perhitungan Reliabilitas Test Pilihan Ganda Contoh perhitungan Reliabilitas item soal nomor 1 Menentukan nilai p
=
banyak siswa yang menjawab benar soal nomor 1 Jumlah seluruh siswa
=
20 30
= 0,67 Menentukan nilai q
=1–p = 1- 0,67 = 0,33
Menentukan nilai
pq
= Jumlah hasil perkalian antara p dan q = 4,48
Menentukan nilai SDt
= standar deviasi dari skor total =
X N
2
X N
2
6865 423 30 302
2
=
= 5,479 Menentukan nilai k
= banyaknya item soal yaitu 22
Menentukan nilai r11
2 k S pq = S2 k 1 2 22 5,479 4,48 = 5,4792 22 1
= 0,891 Berdasarkan kriteria reliabilitas, nilai r11 = 0,834 berada diantara kisaran nilai 0,80 – 1,00, maka test bentuk pilihan ganda tersebut memiliki reliabilitas sangat tinggi.
146
Lampiran 19
Perhitungan Uji Homogenitas
Uji homogenitas antara kelompok eksperimen dengan kelompok kontrol dilakukan dengan uji Fisher, adapun langkah-langkahnya sebagai berikut: Ho : Data memiliki varians homogen Ha : Data memiliki varians homogen 1. Jumlah sample ne = 32 nk = 34 2. Derajat kebebasan Db 1 (pembilang) = ne – 1 = 32 – 1 =31 Db 2 (penyebut) = nk – 1 = 34 – 1 = 33 Rumus Uji Fisher Fhitung =
S12 S 22
dengan S 2
n fx2 ( fx) 2 n(n 1)
3. Menentukan criteria pengujian Jika Fhitung < Ftabel maka terima ho Jika Fhitung > Ftabel maka terima ha 4. Menentukan Ftabel Dari tabel distribusi F diperoleh nilai F(0,05)(33/31) =1,83 Uji homogenitas nilai test akhir kelompok kontrol dan kelompok eksperimen Diketahui : Varians Eksperimen : 274,71 Varians Kontrol : 282,6 Fhitung :
282 ,6 1,03 274 ,71
Ftabel = 1,83 Karena Fhitung < Ftabel (1,03 < 1,83), maka Ho diterima. Sehingga dapat disimpulkan bahwa nilai tes kelompok kontrol dan eksperimen memiliki varians yang homogen.
Uji normalitas kelompok Eksperimen No 1 2 3 4 5 6 7 8 9 10
fk 3 4 7 10 17 20 25 27 30 32
fX 69 36 123 150 413 192 340 146 231 164 1864
Rata – rata = 58.25
n = 32 Z
X f 23 3 36 1 41 3 50 3 59 7 64 3 68 5 73 2 77 3 82 2 Jumlah
X2 529 1296 1681 2500 3481 4096 4624 5329 5929 6724
fX2 1587 1296 5043 7500 24367 12288 23120 10658 17787 13448 112466
Zi -2.13 -1,34 -1.04 -0.49 0.04 0.35 0.59 0.89 1.13 1.43
Varians = 274.71
Zt 0.4834 0.4099 0.3508 0.1879 0.0160 0.1368 0.2224 0.3133 0.3708 0.4236
F(Zi) 0.0166 0.0901 0.1492 0.3121 0.516 0.6368 0.7224 0.8133 0.8708 0.9236
S(Zi) 0.0937 0.125 0.2187 0.3125 0.5312 0.625 0.7812 0.8437 0.9375 1.0000
F(Zi)-S(Zi) -0.0771 -0.0349 -0.0695 -0.0004 -0.0152 0.0118 -0.0588 -0.0304 -0.0667 -0.0764
Simpangan baku = 16.57
X X 23 58 .25 2.13 S 16 .57
S (Z )
fk 3 0.0937 n 32
Lo = 0.0771 Lt
0.886 32
0.156
Karena Lo Lt (0.0771 0.156) maka dapat disimpulkan bahwa sample kelas eksperimen berdistribusi normal
F(Zi)-S(Zi) 0.0771 0.0349 0.0695 0.0004 0.0152 0.0118 0.0588 0.0304 0.0667 0.0764
Uji normalitas kelompok Kontrol No 1 2 3 4 5 6 7 8 9 10 11 12 13
fk 1 4 5 9 11 17 19 22 26 28 30 33 34
fX 18 69 27 128 72 246 90 150 236 128 136 219 77 1596
Rata – rata = 46.94
n = 34 Z
X f 18 1 23 3 27 1 32 4 36 2 41 6 45 2 50 3 59 4 64 2 68 2 73 3 77 1 Jumlah
X2 324 529 729 1024 1296 1681 2025 2500 3481 4096 4624 5329 5929
fX2 324 1587 729 4096 2592 10086 4050 7500 13924 8192 9248 15987 5929 84244
Zi -1.72 -1.42 -1.19 -0.89 -0.65 -0.35 -0.11 0.18 0.72 1.01 1.25 1.55 1.79
Varians = 282,6
Zt 0.4573 0.4222 0.3830 0.3133 0.2422 0.1368 0.0438 0.0714 0.2642 0.3438 0.3944 0.4394 0.4633
F(Zi) 0.0427 0.0778 0.117 0.1867 0.2578 0.3632 0.4562 0.5714 0.7642 0.8438 0.8944 0.9706 1.0000
S(Zi) 0.0294 0.1176 0.1471 0.2647 0.3235 0.5000 0.5588 0.6471 0.7647 0.8235 0.8823 0.9706 1.0000
F(Zi)-S(Zi) 0.0133 -0.0398 -0.0301 -0.078 -0.0657 -0.1368 -0.1026 -0.0757 -0.0005 0.0203 0.0121 0.0312 0.0367
Simpangan baku = 16.81
X X 41 46 ,94 0.35 S 16 .81
Lo = 0.1368 Lt
0.886 n
0.886 34
0.151
Karena Lo Lt (0.1368 0.151) maka dapat disimpulkan bahwa sample kelas kontrol berdistribusi normal
F(Zi)-S(Zi) 0.0133 0.0398 0.0301 0.078 0.0657 0.1368 0.1026 0.0757 0.0005 0.0203 0.0121 0.0312 0.0367
136
Lampiran 11
Langkah-Langkah Perhitungan Tingkat Kesukaran Test Pilihan Ganda
Contoh perhitungan tingkat kesukaran untuk soal nomor 1 adalah sebagai berikut :
Menentukan nilai B
= banyaknya siswa yang menjawab soal nomor 1 dengan benar
Jumlah siswa (JS)
= 30
Menentukan IK
= Indeks/Tingkat Kesukaran IK
=
B JS
=
20 30
= 0,67
Berdasarkan klasisifikasi indeks kesukaran, nilai IK = 0,67 berada diantara kisaran 0,30 < IK < 0,70 : (soal sedang), maka soal nomor 1 memiliki tingkat kesukaran soal ”sedang ”
Untuk soal nomor 2 dan seterusnya, perhitungan tingkat kesukarannya sama dengan perhitungan tingkat kesukaran pada soal nomor 1
132
Lampiran 8
Langkah-Langkah Perhitungan Validitas Test Pilihan Ganda
Contoh mencari validitas item soal nomor 1 : Menentukan nilai p
=
banyak siswa yang menjawab benar soal nomor 1 Jumlah seluruh siswa
=
20 30
= 0,67 Menentukan nilai q
=1–p = 1- 0,67 = 0,33
Menentukan nilai Mp
= rata-rata skor siswa yang menjawab benar soal
nomor 1
25 24 24 18 22 20 24 17 11 21 25 21 15 25 20 19 18 27 =
19 22 20 417 20
= 20,85 Menentukan nilai Mt
= rata-rata skor total =
567 30
= 18,90 Menentukan nilai SDt
= standar deviasi dari skor total =
X N
2
X N
11573 567 30 30 2
2
=
2
133
= 5,34 Menentukan nilai rpbi
= koefisien korelasi poin biserial =
Mp Mt SDt
p q
= = 0,52 Mencari rtabel, dengan dk = n -2 = 30 – 2 = 28 dan tingkat signifikansi sebesar 5%,diperoleh nilai rtabel = 0,374 Langkah selanjutnya adalah, konsultasikan nilai rpbi = 0,52 dengan nilai rtabel = 0,374,karena rpbi
0,374) maka soal nomor 1 valid. Untuk nomor 2 dan seterusnya perhitungannya sama dengan perhitungan validitas pada soal nomor 1.
134