ARN Advisory sustainability expertise
Memo aan
contact
Werkgroep KKDZ - Materiaal
Kasper Zom doorkiesnummer
+31 (0)20 30 109 25 e-mail
[email protected]
onderwerp
datum
Verslaglegging subgroep modellering
3.2.2012
referentie
L.S.,
Voor u ligt de rapportage van subgroep modellering, werkzaam binnen de kenniskring Duurzaamheid van Railforum, groep Materiaal. Modellering zal voor de railwereld de komende jaren zeer belangrijk zijn in haar ambitie om te blijven groeien én besparen. Het doen van een life cycle assessment (LCA) is binnen de duurzaamheid dé geaccepteerde manier om modellen op te stellen; er zijn echter uitbreidingen mogelijk op die methodiek. Dit rapport gaat zowel in op de theorie van de LCA en de benodigdheden om een goed model te maken, als ook op de praktische haalbaarheid en leerpunten tijdens een pilot binnen de subgroep modellering. Hiervoor is Ecotest gebruikt. Er bestaan echter ook andere modellen. Het rapport is deels in het Engels, aangezien delen zijn gebaseerd op Engelstalige rapporten en onderzoeksdocumenten van ARN Advisory. Het rapport omvat de volgende onderwerpen: -
Achtergrond LCA/footprint studie Aanpak en activiteiten Beschrijving Ecotest Cases Ecotest Mogelijke uitkomsten en vervolgonderzoek Leerpunten Aanbevelingen voor gebruik van modellering in de toekomst
Namens de subgroep modellering, De auteurs*, Marlies Meijer-Willems, ARN Kasper Zom, ARN * De auteurs bedanken de volgende mensen voor hun medewerking: Ton Hamberg, Jan Hoetmer (NedTrain) Marc de Vos, Emiel Vrijmoet (Alstom)
ARN Advisory B.V. | Postbus 12252, 1100 AG Amsterdam ZO | De Entree 258, 1101 EE Amsterdam ZO | Nederland Telefoon +31 (20) 66 131 81 | Fax +31 (0)20 66 131 91 |
[email protected] | www.arn.nl Rekeningnr. 656637080 | KvK Amsterdam nr. 34369718 | BTW nr. NL821653623B01
1/16
ARN Advisory sustainability expertise
1.
Theory of Life Cycle Assessment
Life Cycle Assessment (LCA) is, besides a field of study, a tool for a quantitative assessment of materials, energy flows and environmental impacts of products and processes, services, technologies or even a single event. LCA is a cradle to grave methodology; the core starting point is to follow the life cycle of a product, process or anything else, from the first phase when its raw materials are mined to the last phase when it reaches the end of its life. In this chapter, the general LCA methodology is described, in order to provide some background information. The research that is conducted for and described in this thesis is a carbon footprint, which is an LCA but restricted to one impact category. This will be described in more detail in this chapter.
1.1
Introduction to LCA
LCA finds its roots in the late 1960’s and early 1970’s when the first environmental assessments of products took place. The LCA methodology was developed with strong inspiration from the already existing substance flow analysis. Several researches based on this principle were published in the mid 1980’s; it described the resource consumption and environmental emissions for different beverage container systems [1]. Environmental awareness was, at that time, heavily influenced by the Club of Rome’s’ publication of The Limits to Growth and the first global oil crisis in 1973, and therefore the focus was mainly on resource depletion. Furthermore, the knowledge of the environmental consequences of human activities was still too undeveloped to allow a quantitative assessment of the impacts caused by emissions from the product system. The concept of environmental assessment of products led a quiet life throughout most of the 1970’s but returned to the public’s attention in the mid 1980’s. Some packaging studies were performed in Europe and the main problem was the difficulty of obtaining results and conclusions that could be reproduced. At that time, different researchers studied this topic and were somehow able to obtain opposite answers to the same questions [1]. This was the start of the development and harmonization of LCA methodology. The Society of Environmental Toxicology and Chemistry (SETAC) started work on LCA’s in 1990. It has since then been the international forum for discussion of the methodological basis of the LCA. Although the discipline was still young and under development, in 1993 the International Organization for Standardization (ISO) initiated the development of international standards [1]. Several ISO documents regarding LCA are currently available, these are ISO 14040 –14044 –14047 –14048. These standards give guidelines on the principles and conduct of LCA studies that provide an organization with information on how to reduce the overall environmental impact of its products and services [2]. In accordance with the present consensus within SETAC and in agreement with the current ISO 14040 standard, a life cycle assessment consist of the following phases, goal and scope definition, inventory analysis, impact assessment and interpretation. This is schematically represented in Figure 5.
2/16
ARN Advisory sustainability expertise
Figure 1: Life Cycle Assessment Framework according to ISO 14040
LCA has significantly developed over the past three decades. LCA represents a shift from pollution prevention and gateto-gate concepts – which focus on single facilities of industrial enterprises – to a view that incorporates the supply chain as well as downstream processes related to a product [3]. The methodology of LCA can be applied on any product, process, (supply) chain, production system, service or even a single event. There are numerous purposes of LCA. The ISO 14040 standard lists the following applications: identification of improvement possibilities, decision-making, choice of environmental performance indicators, and market claims. The aspect of learning is also a very important application of LCA. For example, learning about environmental issues both in general and associated with the product system studied but also learning about the relationships of the studied production system. All these applications aim at change or improvement; some in more indirect ways, such as identifying improvement possibilities or influencing market behaviour, others more indirect ways, such as decision making [4]. LCA is distinct from other environmental analytical techniques in various aspects. The most prominent characteristic features are listed below [1]: Focus on functions The object of a life cycle assessment is the fulfilment of a certain function and the product that is studied is defined by what is needed to fulfil this function. Most often LCA is an environmental assessment of a product and as such, its object is to run through all its life cycle stages from cradle to grave. This is what makes LCA very different from other environmental assessment methods (like environmental risk assessment1 or an environmental impact assessment2) which focuses on individual processes (or groups of processes) and are confined in space and time. 3 Holistic in time and space 1
An environmental risk assessment is a process of predicting whether there may be a risk of adverse effects on the environment caused by a chemical substance. Environmental exposure concentrations of a chemical are predicted and compared to predicted no-effect concentrations for different environmental compartments. 2 An environmental impact assessment is an assessment of the possible positive or negative impact that a proposed project may have on the environment, together consisting of the natural, social and economic aspects. The purpose of the assessment is to ensure that decision makers consider the resulting environmental impacts when deciding whether to proceed with a project. 3 Holism is the idea that all properties of a given system (physical, biological, chemical, social, economic, etc.) cannot be determined or explained by its individual parts alone. Instead, the system as a whole determines in an important way how the parts behave.
3/16
ARN Advisory sustainability expertise
The structure of processes, often separated from each other in time as well as in space, is referred to as a product system. A product system encompasses all processes necessary for the production of a product. A product system will often be global in the sense that it includes processes, in all stages (production, use and disposal), that can take place in any part of the world. It may also span over decades or even centuries from start of the first resource extraction processes to the last emissions from landfill of waste. All environmental impacts, which are attributed to the product system, are usually combined over both space and time. Holistic in environmental impacts The holistic nature of LCA also extends to its environmental assessment; in principle, it attempts to cover the products or service’s contributions to all environmental impacts that are considered as being of significance. In addition, impacts on the resources and sometimes the working environment can also be included as assessment parameters. Potential impacts rather than effects The impacts on the environment, described in different parameters like resource consumption or greenhouse gas (GHG) emissions. The calculated impacts for the product system are potential impacts, not guaranteed effects. Whether they result in actual impacts and effects depend on if, how, where and when the individual processes of the product system take place in the life cycle of the product. LCA is for comparisons If LCA is solely focused on one product and it’s -to some extent- fictitious product system and combined impacts (over time and space); its results can be difficult to interpret in absolute terms. LCA is developed and frequently used for comparative analysis of alternatives. LCA is for hot spot analysis LCA can be used to identify environmental hot spots in an organization or a product chain and can therefore be implemented as a decision support tool for organisations. The hot spots are the high-ranking GHG emitting processes; in other words, the main contributing processes resemble the hot spots in the system under review. By identifying hot spots in a product chain, an organisation can focus on improving those areas and can subsequently test the efficiency of improvements. Iterative procedure The general framework of LCA according to ISO 14040 (depicted in Figure 5) consists of the following phases: goal and scope definition, inventory analysis, impact assessment and interpretation. These are not consecutive phases; LCA is an iterative procedure where knowledge gathered in a ‘later’ phase may be used as feedback for an ‘earlier’ phase. This may result in a modification (improvement) of such a phase.
1.2
Goal and Scope Definition
For the final interpretation of the LCA results, it is essential that the decisions, which determine what kind of LCA is performed (defining the goal and scope of the study), are explicitly stated. It provides a description of the product system in terms of the system boundaries and the functional unit. In abstract terms, the functional unit can be described as the measure of performance that is delivered by a product system. In practice, a functional unit is an equivalent amount of a product, service or process function. A serious problem can occur when two (or more) products are compared. It is important to take notice of the social context, as technical functionality often differs from the social one. For example the comparison between ‘fluid’ and ‘solid’ soaps: solid soap contains less surfactants but can be less effective for washing.
4/16
ARN Advisory sustainability expertise
Technical functions and social context are very important and cannot be ignored. It can be difficult to incorporate them properly in the functional unit; but they must be considered in the interpretation of the results [5].
1.3
Life Cycle Inventory
All processes that contribute to the environmental burden are inventoried. For each process, the emissions, the mining of raw materials, the input of other products, transport movements and the output of economic products are mapped and registered into an environmental data sheet [6]. The value of LCA depends largely on the data of inventories but there is much to do with data quality. It starts with a proper mass balance of the product system; the incoming total mass should be found somewhere on the output side of the balance. The quality of mass can change, but the quantity remains the same. Disregarding Lavoisier’s law of conservation of mass makes LCA results questionable; the mass should (roughly) be in balance [5]. Furthermore, an energy balance, stating energy consumption and/or production in each step is of equal importance. It is likely that some processes have multiple outputs; it is than important to decide how the environmental burden contributes to those processes. How are the environmental flows of the process allocated to its outputs? The ISO 14040 standard suggests a stepwise procedure to answer this question [6]: 1.
Allocation (partitioning), should wherever possible be avoided by: Subdividing the process into separate processes with only one output, this can sometimes be achieved simply by refining the data collection. Expanding the study “to include the additional functions related to the co-products.” The processes to include when expanding the system are those processes that are affected by an increase or decrease in output of the particular co-product. The problem, which can result from system expansion, is the inability to address the original goal or question of the LCA.
2.
Theoretical separation of the flows “in a way which reflects the underlying physical relationships between them, i.e., they shall reflect the way in which the inputs and outputs are changed by quantitative changes in the products or functions delivered by the system.” This is a description of causal relationships that exist when the co-products can be independently varied.
3.
Partitioning of the flows “between the products and functions in a way which reflects other relationships between them. For example, input and output data might be allocated between co-products in proportion to the economic value of the products.”
Steps 2 and 3 from the ISO procedure both describe allocation of processes to the different outputs. The biggest problem with allocation are the allocation factors, how to decide which to use? The problem with allocation according to economic value (step 3) is that market prices are sometimes unknown, prices can fluctuate, inflation can occur or that the market for one of the outputs maybe does not yet exist. The physical relationships described in step two are vague; most commonly energy contents of the materials in question are used. In some inventories, the environmental flows from processes with multiple outputs are partitioned in proportion to the physical properties of mass. This is not what ISO recommends, but this can be necessary in some studies.
1.4
Impact Assessment
The impact assessment phase of LCA normally runs through four separate phases: classification, characterization, normalization and weighting. To describe the function of those phases in simple terms, the following questions can be asked [1]: Classification: ‘What is the problem for this environmental flow?’
5/16
ARN Advisory sustainability expertise
Characterization: ‘How big is the problem?’ Normalization: ‘Is that much?’ Weighing: ‘Is it important?’ Turning the outcome of the life cycle inventory analysis into a life cycle impact assessment starts with classification. Classification is a valuation method based on an index for impacts of pollutants and/or resources. Several different valuation methods are available; some use indicators that have a focus more closely to the emission; like radiative forcing as category indicator for climate change. Others use indicators that focus more on the effects, like temperature rise or sea level rise as category indicators for climate change [7]. This means, that depending on the chosen method, all substances are sorted into classes according to the effect they have on the environment. Certain substances can be included in more than one class. For example, NO x is found to be toxic, acidifying and causing eutrophication [8]. During the characterization, all substances within each class are aggregated to produce an effect score. Before adding up the effect scores, a characterization factor must be applied to some substances as they may have a more intense effect than others may have. For instance, Global Warming Potential (GWP) is a characterisation factor for greenhouse gasses related to the impact category ‘climate change’. Every GHG has a different GWP [7]. After characterization, normalization takes place; this step is necessary in order to gain a better understanding of the relative size of an effect. Each effect calculated for the life cycle of a product is benchmarked against the known total effect for this class. For example, the Eco-indicator method normalizes the effects caused by the average European citizen during a certain year. In this way the relative contribution from, for instance, material production to each already existing effect is made clear [8]. However, no final judgment can be made, as not all effects are considered to be of equal importance. In the evaluation phase, the normalized effect scores are multiplied by a weighting factor representing the relative importance of the effect. [8]. Weighing is highly debated, as it is a normative choice. It can be based, for instance, on monetary values like willingness to pay or damage costs. It is also possible to determine weighing factor by a (expert or non-expert) panel using different stakeholders to determine which effect is more important or severe. It is, however, also possible to perform an impact assessment and result with a single indicator. For instance, IPCC 2007 is such an impact assessment method. The data coming from the inventory analysis is transformed into one impact category: climate change, which is expressed in kilograms (kg) CO 2 equivalents. This method will be elaborated upon in more detail, as it will be used in this LCA.
1.5
IPCC 2007
The characterisation of different gaseous emissions according to their GWP and the aggregation of different emissions in the impact category ‘climate change’ is a frequently used method in life cycle impact assessments. The impact assessment method IPCC 2007 is the successor of IPCC 2001. The data which results from the inventory analysis are the GHG emissions to the air, expressed in kg. Characterisation factors for GHG emissions are based on the GWP resulting from the model developed by the International Panel for Climate Change (IPCC). GWPs are relative to the impact of CO 2: they are an index for estimating relative global warming contribution due to atmospheric emission of a kg of a particular GHG compared to the emissions of a kg of CO 2. Different time horizons are available for each GHG emission to the air: 20-, 100- and 500 years. The choice of time horizon can have substantial impacts on the result; for instance, CH4 has a shorter retention time in the atmosphere than CO 2. If the effect of the emissions will be studied in a time horizon of 20 years, the GWP of CH4 becomes 72 instead of the 21 for a
6/16
ARN Advisory sustainability expertise
100-year time horizon [9, 10, 11]. The GWPs for the 100-year time horizons are the most widely used and commonly accepted, and will be used in this LCA.
1.6
Data Interpretation
In the interpretation phase of LCA, the results are interpreted along the lines of the defined goal and in accordance with the limitations defined by the scope of the study [1]. Life cycle interpretation occurs at every stage of the LCA; for example, when two alternative products are compared and one shows a higher consumption of each material and resource, then an interpretation purely on the inventory can be conclusive. However, comparing them across impact categories, particularly when the two alternatives include trade-offs, will also add valuable information and insights. These results may show, for instance, that one product has more CO 2 emissions which contributes to climate change, while the other has higher pesticide use which contributes to toxicological impact [6]. Several types of analysis can be performed for additional information, but also to test the robustness of the results. Contribution analysis results in the relative contribution per process in a list of processes. A process, which is used more than once, may have a small contribution in each instance, but the total contribution of all instances can be significant. The outcomes of this analysis can be used to focus the sensitivity analysis on the variables or flows having the greatest influence on the LCA result. In the sensitivity analysis, these variables or flows are deliberately changed in order to test the robustness of the results [12].
7/16
ARN Advisory sustainability expertise
2.
Ecotest
Ecotest is a “decision support tool” that can be used by those who need to base (sustainability) decisions on facts about the actual practice of business processes. Ecotest quantifies the impact of the chain on the key indicators, and in that manner tests the relationship between: Ecology (CO2 footprint / LCA) Recycling and recovery of raw materials Economy (cost)
Figure 2. Ecotest Ecotest is a tool that uses the LCA methodology in such a way, that it is useful for continuously optimising the chain in the future. It is a practical tool based on real- life information from the chain. When using Ecotest, it is possible to weigh (compare) various scenarios against each other, while taking various options for the scenarios into account. Ecotest starts as an impact assessment of the different of the different scenarios, in which only the greenhouse gas emissions are compared.
2.1
Case: Ecotest End-of-Life Vehicle Recycling
Recycling of End-of-Life Vehicles (ELVs) is a complex process: composition of vehicles changes constantly, waste treatment technology is steadily improving. Furthermore, the depletion of the Earths’ resources and economic and legislative considerations are important and developing aspects. The focus of this Ecotest is the processing of Auto Shredder Residue (ASR). ASR is the general description for the residual waste of the shredder after metal separation. Each scenario includes the depollution of the ELV and spare parts trading at the Authorised Treatment Facility (ATF) and the shredding of the hulk.
The following scenarios are tested with Ecotest: 1. The Automotive Shredder Residu is sent to the landfill site4 2. The Automotive Shredder Residu is treated at a Waste to Energy (WtE) plant 3. The Automotive Shredder Residu is treated in the Post Shredder Technology (PST) plant from ARN 4
The landfill scenario is forbidden by Dutch law. However, it is useful to have a full understanding of this scenario.
8/16
ARN Advisory sustainability expertise
1 Landfill ASR
2 End-of-Life Vehicle
ATF
Shredder
WtE ASR
3 Material & product recycling
Material recycling (metals)
PST ASR
Figure 3. Three scenario’s for the processing of auto shredder residue
The results of the first phase, the impact assessment in which only the GHG emissions are compared, are illustrated below. What becomes clear is that ELV recycling results in avoided GHG emissions. The largest contributor to the avoidance of GHG emissions is the recycling of metals. An average passenger car consists of approximately 70% metal and ASR is between 20-30%5.
Figure 4. Impact assessment scenarios ELV recycling The Ecotest analysis is more than one indicator; the recycling and recovery percentages and the economics of each scenario are also considered. The analysis is presented as shown below.
5
Depending on if tyres and glass are processed separately.
9/16
ARN Advisory sustainability expertise
Figure 5. Ecotest scenarios ELV recycling From the dashboard above, clear information can be presented about the different scenarios. Such information is crucial when making decisions based on evidence and quantifiable data. In the case of ELV recycling in the European Union, the recycling & recovery percentage is a crucial number for Member State compliance with European Commission Directives. While the 2015 95% target might be a reason to opt for the PST scenario, the environmental gain from PST compared to an efficient waste incinerator is actually not that big. If the recycling & recovery targets were any different, the choice might have been to go for more incineration with energy recovery. For now, it is clear that the incineration route of ASR will exceed the maximum subquota of 10% energy recovery. Of course, the validity all depends on the assumptions made and the sensitivity of the assumptions on the overall outcomes. Ecotest can make these sensitivities transparent. Sensitivity analysis of assumptions In order to give certain validity to the numbers of the impact assessment, it is very important to perform sensitivity analyses on critical assumptions. In the following example, the assumption that a reused vehicle part (like an engine or alternator) would have the same life span as the ‘adopting’ car is critically assessed. This assumption is debatable; it highly depends on the age and quality of the car and of the part. In order to test the impact of this assumption, the life span of the reused part is reduced to 30% (e.g. the reused part has an extended life of 30%). This reduced extended life has a negative impact on the avoided emissions of the several scenarios.
10/16
ARN Advisory sustainability expertise
Figure 6. Sensitivity analysis reused parts The second sensitivity analysis is performed to compare the Dutch WtE plants to the neighbouring countries Germany, Belgium and France. The activities in the recycling chain, previous to the ASR treatment, can be considered equal to other European countries. It is therefore very insightful to use the PST plant of ARN as a reference and compare the different European WtE efficiencies. It is important to note that the differences between these countries have two reasons. In Germany, the overall efficiency is relatively lower which is caused by old WtE plants in the eastern part of Germany. New plants in Germany have a high efficiency. Furthermore, while all Dutch and German WtE plants are operated with energy recovery, this is not the case in Belgium and France. In these countries, it is estimated that between 70-80% of the WtE plants are operated with energy recovery.
Figure 7. Sensitivity analysis European Waste to Energy efficiency
11/16
ARN Advisory sustainability expertise
2.2
Case: Ecotest vergelijking traditionele elektromotoren & motoren met permanente magneten in de railsector
Aanleiding Tijdens het leven van een trein komt het voor dat de aandrijving dient te worden vervangen. Dit kan gebeuren bij het verhelpen van een storing, het uitvoeren van revisie of onderhoud, maar ook bij het moderniseren van een serie vanwege een beter energieverbruik of vanwege strengere regels. Moderne elektromotoren zijn weliswaar veel zuiniger, maar in de motoren wordt veelal gebruik gemaakt van zeer sterke permanente magneten voor het opwekken van een magnetisch veld. Deze permanente magneten bestaan voor een groot deel uit zeldzame aardsoorten als samarium (samarium-kobalt magneten) en neodymium (neodymium-ijzer-boor magneten). Deze zeldzame aardsoorten (rare earth elements of REE) worden momenteel vooral gedolven in China. Bij het delven en verwerken van de erts komen o.a. radioactieve stoffen vrij, zogenaamde “leachings”. De beschikbaarheid van vele zeldzame aardsoorten is onzeker op de middellange termijn. Zeker de mogelijkheid om in de toekomst te beschikken over voldoende voorraden aan neodymium wordt zwaar betwijfeld. Reden om in deze case te kijken naar de voordelen van de vervanging van een elektromotor tijdens de levensduur van een trein, maar daarbij ook effecten van grondstofbehoud mee te wegen en de risico’s van een tekort aan bepaalde grondstoffen. Scenario en afbakening Bekeken wordt wat de gevolgen zijn op het gebied van CO 2-besparing, kosten en grondstofgebruik van het wisselen van een traditionele elektromotor voor een exemplaar met permanente magneten. Er wordt gekeken naar VIRM2/3 materiaal, aangezien hiervoor veel informatie beschikbaar moet zijn. Er wordt gericht gekeken naar het productieproces van de motoren en het gebruik ervan. Onder gebruik vallen ook revisie, onderhoud en het wisselen van motoren. Inventarisatie De inventarisatie begint met de exacte definitie van het systeem en de systeemgrenzen. Dit is nodig omdat anders onnodige factoren worden meegenomen, of juist cruciale zaken worden weggelaten. Denk aan de analyse van een fabriek; neem je ook de autorit van de werknemer naar zijn werk mee? Een weergave zou er zo uit kunnen zien.
Figuur 8. Scenario voor het wisselen van een motor tijdens de levensduur van een trein Op basis van de systeemdefinitie kan worden begonnen met het opstellen van een procesmodel. Dit wordt voor Ecotest gedaan obv specialistische software genaamd Simapro, waarmee LCA’s en CO2-footprints nauwkeurig kunnen worden berekend. Afhankelijk van de mate van gebruik binnen de organisatie en het belang wat aan zulke gegevens wordt gehecht, kan het nuttig zijn om software aan te schaffen en werknemers te trainen in het gebruik hiervan.
12/16
ARN Advisory sustainability expertise
Op basis van het procesmodel wordt een data uitvraag gedaan. Voor dit scenario, rekening houdend met de hierboven beschreven systeemgrenzen, dient te de nodige data bekend te zijn. Met het verkrijgen van data kan het beste zo vroeg mogelijk begonnen worden, aangezien de doorlooptijd van deze fase vaak afhangt van de snelheid van data uitvraag.
1.
Productie
Elektromotoren Overzicht materiaalsamenstelling incl. de samenstelling van de permanente magneten [totaal gewicht en materialen als % van totaal] Massa [kg], vermogen [W] en andere technische specificaties van de motoren Proces Energieverbruik voor productie en assemblage van 1 motor [kWh]
2. Gebruik Definitie van gemiddelde gebruiksfase Levensduur [jr] Aantal onderhoudsbeurten [#] Wisseldelen die worden gebruikt bij onderhoud Materiaalsamenstelling en specificatie van wisseldelen [totaal gewicht en materialen als % van totaal] Gebruiksprofiel over levensduur (incl. zaken als regeneratief remmen, etc) Activiteiten bij volledige revisie van motor Onderdelenwissels [#] Manuren [u] Transport [km] Beschrijving van revisielocatie Het vergaren van data, en vooral de juiste data, kost erg veel tijd. Vaak moet van verschillende personen, over verschillende onderwerpen zeer gedetailleerde informatie worden opgevraagd. Voor het doen van één enkel onderzoek is dat vaak teveel gevraagd. Toch is het aan te raden om deze informatie te gaan verzamelen om die te gebruiken in een beslismodel waar voortdurend de organisatie kan worden verbeterd. Zo leidt een eenmalige data-inventarisatie tot een blijvend inzicht in de organisatie en de prestaties.
13/16
ARN Advisory sustainability expertise
Analyse Na de inventarisatie van data en het “vullen” van het procesmodel kunnen de daadwerkelijke analyses worden uitgevoerd. In dit geval zijn analyses gebaseerd op werkelijke data niet uitgevoerd, aangezien de benodigde data om het moment van de deadline nog niet aanwezig was. Een visuele uitkomst van de gegevens, met fictieve data, kan in zo’n geval de keuzes weergeven die een directie of management team dient te maken: -
-
Wat is de total operating cost voor beide systemen? Aankoop en afschrijving Besparing op energie Wat is de totale CO2-besparing over de levensduur? Welke risico’s lopen we op grondstofgebied en hoeveel grondstoffen kunnen we terugwinnen?
Figuur 9. Mogelijke uitkomst van Ecotest case gebaseerd op fictieve data
14/16
ARN Advisory sustainability expertise
3.
Modelleren in de railsector
Vervolgonderzoek nav de resultaten Vanuit deze korte studie blijkt het nut van het soort tools zoals dat hier is gebruikt. Reële uitkomsten binnen de sector zullen zeker hun aftrek vinden, maar wel is gebleken dat de “wat” vraag niet altijd helder is gedefinieerd. Voor het doen van zulke onderzoeken en het modelleren van complexe systemen is het cruciaal om exact te weten wat de belangrijke parameters zijn waarop dient te worden gestuurd. Pas dan is het immers mogelijk om in het onderliggende model “aan de knoppen te draaien” om zo verschillende situaties te testen en systemen te optimaliseren. Leerpunten Tijdens deze korte studie is gebleken dat informatie niet of niet tijdig kon worden verkregen. Dit is een bekend fenomeen bij dergelijke complexe studies. Bedrijven en instanties die transparantie willen verkrijgen in hun processen en systemen en hiervoor een dergelijke tool willen inzetten, dienen in sommige gevallen nog een slag te maken in het verzamelen, organiseren en beschikbaar maken van bepaalde data. Vaak is die wel aanwezig, maar lastig verkrijgbaar. Verder geldt dat ook de doorlooptijd vaak lang kan zijn, en dat dus ruime tijd moet worden uitgetrokken voor het definiëren en uitvragen van data. Dit is zeker cruciaal op het moment dat het ook om grensoverschrijdende projecten gaat met een multicultureel aspect. Het correct vastleggen van de klantvraag en behoefte aan informatie is dé succesfactor van een dergelijk project. Enkele aanbevelingen naar aanleiding van deze studie 1.
2. 3.
Stippel een duidelijk beleid uit op het gebied van duurzaamheid met duidelijke meetwaarden. Duurzaamheid is niet anders dan Finance of Operations in de zin dat op basis van bepaalde doelen en aan de hand van performance indicatoren een proces wordt gerund. Te vaak blijkt nog dat bedrijven en instanties duurzaamheid niet duidelijk omschrijven en daardoor verzanden in goedbedoelde initiatieven als duurzame koffie en A-label bedrijfsauto’s. Uiteraard ligt de echte impact in het ingrijpen in het primaire proces. Start met het opstellen van een datamodel voor de railsector, eventueel op te splitsen in een model voor materiaal, infrastructuur en overige operatie. Door data structureel te gaan verzamelen zal inzicht vergroten en informatie in de toekomst voor onderzoeken makkelijker bereikbaar en beschikbaar zijn. Onderzoek de mogelijkheden van de verschillende softwarepakketten: a. Er zijn specialistische pakketten voor LCA-studies, waaronder GaBi, Simapro en umberto b. Ook bestaan er ‘customized’ modellen in verschillende industrieën die werken op basis van een LCAberekening zonder dat het nodig is de berekening zelf in detail uit te voeren. Ook hier bestaan weer specialistische modellen voor bepaalde sectoren. Voorbeeld hiervan in de woningbouw is EcoQuantum, in de weg- en waterbouw bestaat DuboCalc. Daarnaast zijn er generalistische modellen als Ecotest, die in vele situaties kunnen worden ingezet. Deze worden geïmplementeerd bij de klant met een eigen database en datamodel. Uiteindelijk zijn alle modellen wel op dezelfde principes gebaseerd en is een zogenaamde ‘peer review’ van de bereikte resultaten altijd aan te raden om de juistheid van de uitkomsten te staven.
15/16
ARN Advisory sustainability expertise
4.
Referenties
1.
Westkämper, E. (2000). Life Cycle Management and Assessment: Approaches and Visions Towards Sustainable Manufacturing, CIRP Annals – Manufacturing Technology, 49(2), 501 – 526. 2. Environmental management – the ISO family of International Standards. (2009). International Organization for Standardization, p. 1 – 11. 3. Hunkeler, D. & Rebitzer, G. (2005). The Future of Life Cycle Assessment, International Journal of Life Cycle Assessment, 10(5), 305 – 308. 4. Tillman, A.M. (2002). Significance of decision-making for LCA methodology, Environmental Impact Assessment Review, 20, 113 – 123. 5. Krozer, J. & Vis, J.C. (1998). How to get LCA in the right direction? Journal of Cleaner Production, 6, 53 – 61. 6. Rebitzer, G., Ekvall, T., Frishknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B.P. & Pennington, D.W. (2004). Life cycle assessment Part1: Framework, goal and scope definition, inventory analysis and applications, Environment International, 30, 701 – 720. 7. Lecture “Life Cycle Impact Assessment”, Heijungs, R., Course Advanced Life Cycle Assessment, Delft Technical University, November 19th 2010 8. Life Cycle Assessment – Impact Assessment. Retrieved 24th December 2010, www.pre.nl, 9. Frischknecht, R., Jungbluth, N., Althaus, H. J., Bauer, C., Doka, G., Dones, R., Hishier, R., Hellweg, S., Humbert, S., Köllner, T., Loerincik, Y., Margni, M. & Nemecek, T. (2007). Implementation of Life Cycle Impact Assessment Methods. Swiss Centre for Life Cycle Inventories. 10. Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener-Sleeswijk, A., Suh, S., Udo de Haes, H. A., de Bruijn, H., van Duin, R. & Huijbregts, M. A. J. (2001). Life Cycle Assessment, An operational guide to the ISO Standards. Ministry of Housing, Spatial Planning and the Environment (VROM) and Centre of Environmental Science – Leiden University (CML). 11. Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T, Bindoff, N. L., Chen, Z., Chidthaisong, A., Gregory, J. M., Hegeri, G. C., Heimann, M., Hewitson, B., Hoskins, B. J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T. F., Whetton, P., Wood, R. A. & Wratt, D. (2007). Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 12. Guinée, J.B. (2002). Handbook on Life Cycle Assessment, Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht, The Netherlands.
16/16