NATUURKUNDE SAMENVATTING H1 T/M H4 HOOFDSTUK 1 §1.3 – PUNT EN SPIEGELPUNT Reflectie= Terugkaatsing van een lichtstraal. Breking= Bij het wisselen van stof veranderen van richting.
Het gebied om je heen dat je in een spiegel ziet, noem je het gezichtsveld. Het gezichtsveld is het grootst als je je oog zo dicht mogelijk recht voor het midden van de spiegel houdt.
§1.4 – TWEE HOEKEN Voor het terugkaatsen door een spiegel geld: Hoek van inval = hoek van terugkaatsing (∟i= ∟t)
Er zijn twee verschillende soorten terugkaatsing:
Spiegelende terugkaatsing: Tegen een glad oppervlak Diffuse terugkaatsing: Tegen een ruw oppervlak
§1.5 – HOEKEN BIJ LICHTBREKING Bij breking van glas naar lucht (een dichte stof naar een niet-dichte stof) is de hoek van inval kleiner dan de hoek van breking. Van lucht naar glas (een niet-dichte stof naar een dichte stof) is dit andersom, de hoek van inval groter dan de hoek van breking.
Bij breking van een vaste stof of vloeistof naar lucht is de brekingshoek groter dan de invalshoek: er is breking van de normaal af.
Bij breking van de normaal af verdwijnt bij een bepaalde invalshoek de gebroken straal. Er is dan totale terugkaatsing. Die invalshoek noem je de grenshoek.
Bij een vlakke (=planparallelle) plaat zoals een stuk glas zijn er twee brekingen. Daardoor verschuift de lichtstraal een beetje.
§1.6 – TOEPASSINGEN VAN LENZEN Er zijn twee verschillende lenzen: - Bolle lens: In het midden dikker dan aan de randen. (+) De hoofdas loopt door het midden. Evenwijdige lichtstralen breken af. Waar de lichtstralen bij elkaar komen, heet het brandpunt (f).
- Holle lens: In het midden dunner dan aan de randen. (-) Ook een hoofdas. Evenwijdige lichtstralen divergeren. Er is alleen een virtueel brandpunt.
§1.7 – REKENEN MET LENZEN Je kan de voorwerpsafstand, de beeldafstand en de brandpuntsafstand berekenen met de lensformule
:
Vergroting= In formule: N=
of of
Als N > 1 dan: vergroting Als N < 1 dan: verkleining Als N = 1 dan: beeld even groot als voorwerp
HOOFDSTUK 2 §2.2 – SNELHEID METEN Snelheid is de afstand die per tijdseenheid (uur, seconde) wordt afgelegd. Snelheid wordt uitgedrukt in kilometer per uur (km/h) of in meter per seconde (m/s). De snelheid veranderd bij een beweging vaak, daarom kun je beter de gemiddelde snelheid uitrekenen. Gemiddelde Snelheid = ΔS
Δs In een formule: Vgemiddeld=
V x ΔT
Δt
Je kunt dit ook in een piramide zetten, dan krijg je: Soms moet je snelheden van km/h naar m/s omrekenen of andersom. Dit doe je volgens het schema hieronder: x 3,6
km/h
m/s
: 3,6
§2.3 – KRACHT EN BEWEGING Als er op een voorwerp nettokracht wordt uitgewerkt, beweegt het. Als de nettokracht beweegt in de bewegingsrichting, versneld het voorwerp. Er is een versnelde beweging. Als de nettokracht tegenwerkt, dus de andere kant op beweegt, vertraagd het object. Er is een vertraagde beweging. Als her op het voorwerp helemaal geen nettokracht wordt uigewerkt, staat het stil of heeft het een eenparige (constante) beweging. Je kunt snelheden ook in diagrammen zetten. Dan krijg je een v,t-diagram of een s,tdiagram. Bij een eenparige beweging is de grafiek in het v,t-diagram een horizontale lijn. Bij een s,tdiagram is dit een rechte stijgende lijn. Als je de afgelegde afstand wilt berekenen in een v,t-diagram, kun je ook gewoon de oppervlakte nemen onder de grafiek.
Als een snelheid regelmatig verandert, is de grafiek in het v,t-diagram niet horizontaal, maar nog wel een rechte lijn die stijgt. De lijn stijgt bij een versnelde beweging en daalt bij een vertraagde beweging. Ook hier kun je de afgelegde afstand berekenen door het oppervlakte onder de grafiek te nemen.
§2.4 – VERSNELLING NADER BEKEKEN De snelheidsverandering per seconde noem je de versnelling. Versnelling heeft het symbool a en de eenheid (meter per seconde kwadraat) Voor de versnelling van een beweging ZONDER beginsnelheid geldt de formule: a=
v
t
EXTRA INFORMATIE H2 Eenparige Beweging (Constante snelheid) Afstand
Gem. Snelheid =
Benodigde tijd Formule: Vg=
Δs
Seind-Sbegin = teind-tbegin
Δt
Versnelling Versnelling=
Snelheidsverschil Benodigde tijd
Formule: a=
Veind-Vbegin teind-tbegin
=
ΔV Δt
Gemiddelde Snelheid (Bij een eenparige beweging) Vg= Veind+Vbegin 2
• Eenparig versnelde beweging • Eenparige beweging • Eenparig vertraagde beweging
HOOFDSTUK 3 § 3.3 - SPANNING EN STROOMSTERKTE METEN Elk elektrisch apparaat heeft een elektrische schakeling. Dit is makkelijk te tekenen in een schema, maar daarvoor moet je wel de symbolen daarvan kennen. Al die symbolen staan op bladzijde 58 van je lesboek. § 3.4 - SPANNING EN STROOMSTERKTE METEN Bij de grootheid “Elektrische stroomsterkte” (I) hoort de eenheid “ampère” (A). De stroomsterkte meet je met een stroommeter (ook wel ampèremeter). Voor de kleinere hoeveelheden stroom is het handig om de eenheid milliampère (mA) te gebruiken. 1 A = 1000 mA. Bij de grootheid “Elektrische stroomspanning” (U) hoort de eenheid “volt” (V). De stroomsterkte meet je met een spanningsmeter (ook wel voltmeter). Een voltmeter staat parallel in een stroomkring, en schakel je dus parallel aan het apparaat waarover de spanning staat. Een ampèremeter staat in serie, en schakel je dus in serie aan het apparaat waardoor de stroom loopt die je wilt meten. § 3.5 – REKENEN MET SPANNING EN STROOMSTERKTE Bij een constante temperatuur geldt de wet van Ohm: Spanning en stroomsterkte zijn gelijk aan elkaar. In een formule is dit: Hierbij wordt U uitgedrukt in volt, I in ampère en R in Ω (Ohm). § 3.6 – WEERSTANDEN IN SERIE Bij weerstanden in een serieschakeling gelden de volgende regels: UTOTAAL= U1+U2+U3 Dus de totale stroomspanning bereken je door de stroomspanning die door ieder weerstandje heengaat bij elkaar op te tellen. ITOTAAL= I1= I2 = I3 Dat wil dus zeggen dat overal de spanning gelijk is, zowel bij weerstand 1, 2 en 3.
1
2
3
RTOTAAL= R1+R2+R3 Dit wil zeggen dat als je de weerstand van alle weerstandjes bij elkaar optelt, je de totale weerstand krijg. § 3.6 – WEERSTANDEN PARRALEL Bij weerstanden in een serieschakeling gelden de volgende regels: UTOTAAL= U1=U2=U3 Dus de totale stroomspanning is gelijk aan de stroomspanning van ieder weerstandje. ITOTAAL= I1+I2+I3 Dat wil dus zeggen dat de stroomsterkte wordt verdeeld over 3 weerstandjes, en als je dat allemaal bij elkaar optelt, krijg je de totale weerstand.
Dit wil zeggen dat als je de weerstand van alle weerstandjes bij elkaar optelt (wel via de manier hier boven), en het verder uitrekent volgens de manier hierboven, je de totale weerstand krijg. Je kunt de stroomsterkte aanpassen met een schuifweerstand. Een schuifweerstand kun je ook schakelen als spanningsader.
HOOFDSTUK 4 § 4.2 – VAN BRON NAAR ONTVANGER Geluid heeft een tussenstof nodig om zich te verplaatsen. Deze tussenstof kan gasvormig, vloeibaar of vast zijn. Meestal is dit lucht. Geluid verplaatst zich in alle mogelijke richtingen. Stemgeluid maak je met je stembanden, je mond en je lippen. Een geluidsbron brengt de lucht eromheen in trilling, deze trilling verspreid zich door de lucht, en die lucht kan dan ook weer andere voorwerpen in trilling brengen. Een trilling is een heen en weer gaande beweging om een evenwichtsstand. Geluid kan zich dus niet verplaatsen door het luchtledige (=vacuüm), en dan hoor je dus ook niets. De snelheid van geluid in lucht is 340 m/s, dit is alleen bij lucht zo. Bij andere stoffen gaat lucht sneller, of juist langzamer. Geluidstrillingen kunnen worden teruggekaatst. Deze echowerking heeft verschillende toepassingen.
§ 4.3 – TRILLINGEN NADER BEKEKEN & § 4.4 – TRILLINGEN METEN Oscilloscoop → Maakt trillingen zichtbaar. Trillingsgenerator → Maakt trillingen.
Division
Amplitude Eén trilling
Toonhoogte= Frequentie Frequentie is het aantal trillingen per seconde. f=
(T= tijd van één trilling)
Geluiden kunnen in toonhoogte (=frequentie) verschillen. Hoe hoger de frequentie, hoe hoger de toon van het geluid. De eenheid van frequentie is 1/s = hertz (Hz)
Een trilling die een volledige trilling per seconde uitvoert heeft een frequentie van 1 Hz. Een goed menselijk gehoor kan horen van 20 Hz tot 20.000 Hz.
De amplitude van een trilling is de grootste afwijking van de evenwichtsstand. Hoe sterker (harder) het geluid, hoe groter de amplitude. § 4.5 – HARD EN ZACHT, LAAG EN HOOG Het menselijk gehoor is het gevoeligst voor trillingen met een frequentie van 500 Hz tot 8.000 Hz. Dit is ook ongeveer het bereik van onze stem. De kwaliteit van het gehoor wordt weergegeven in een audiogram.
dB is de eenheid voor geluidssterkte. dB(A) is de eenheid voor luidheid, die is aangepast aan de mens (geeft aan hoe hard dat geluid voor het menselijk gehoor is). Iedere toonhoogte is even schadelijk.
Hoe groter de afstand tussen de geluidsbron en de ontvanger, hoe kleiner de luidheid. De hardheid van een stof bepaald of die stof geluid absorbeert of terugkaatst.
Als de geluidssterkte verdubbelt, verdubbeld het aantal decibel met +3 dB.
Er zijn twee manieren om geluidshinder op te lossen:
Duurzame oplossingen: Doen iets aan de bron van het geluidsoverlast. Niet-duurzame oplossingen: Doen iets aan de ontvanger van het geluidsoverlast.
§ 4.6 – OPNEMEN EN WEERGEVEN VAN GELUID
Een magneet trekt ijzeren en nikkelen voorwerpen aan. Een magneet is bij zijn polen het sterkst. Gelijknamige polen stoten elkaar af, ongelijknamige polen trekken elkaar aan. Een spijker met daaromheen een spoel waar stroom doorheen gaat, wordt een elektromagneet. Hoe groter de stroomsterkte, hoe sterker de elektromagneet.
HOOFDSTUK 5 Het vermogen van een elektrisch apparaat geeft aan hoeveel elektrische energie dat apparaat per seconde omzet. Energie = Apparaat krijgt = apparaat aan E= J= Symbool grootheid: Eenheden algemeen: Elektrische energie:
Vermogen Apparaat kan
x
P W
x x
Tijd x
Energie E joule (J) wattseconde (Ws) kilowattuur (kWh)
Tijd T s
Vermogen P watt (W) joule/seconde (J/s) kilowatt (kW)
Het elektrisch vermogen van een apparaat is de hoeveelheid elektrische energie die dat apparaat per seconde omzet. Hiervoor geldt: Vermogen = Stroomsterkte P= W=
Spanning U V
Energie berekenen:
x x x
I A
Vermogen berekenen:
E
P
Pxt
UxI
1 kWh = 3600 kJ, dus 1 W = 3600000 J Het rendement geeft aan hoeveel procent van de energieomzetting nuttige energie oplevert.
Gloeilampen hebben een laag rendement, omdat ze behalve licht ook warmte produceren. Spaarlampen hebben een hoog rendement, want deze gebruiken de meeste energie voor licht. In een elektrische installatie of schakeling bestaat gevaar voor kortsluiting en overbelasting. In beide gevallen is er ook brandgevaar, dat komt doordat de stroomsterkte te groot wordt. Bij kortsluiting is de weerstand in een stroomkring te klein. Overbelasting ontstaat wanneer het totale vermogen van de ingeschakelde apparaten groter is dan het toegestane vermogen. Zekeringen beveiligen schakelingen en installaties tegen kortsluiting en overbelasting. Energiecentrales die op fossiele brandstoffen werken, kunnen luchtverontreiniging veroorzaken. De problemen met afval en veiligheid bij kernenergie zijn nog groot. De ontwikkeling naar duurzame energie bronnen (bronnen die niet schadelijk zijn voor het milieu) is volop gaande. Er komen enorme hoeveelheden ongewenste stoffen met het huishoudelijk afval in het milieu. Dit kun je voor een deel voorkomen door dit afval gescheiden in te leveren (in bijvoorbeeld de milieustraat).
HOOFDSTUK 6 §6.3 – KRACHTEN OP DE FIETS Er zijn twee verschillende soorten krachten: Meewerkende krachten en tegenwerkende krachten. Meewerkende krachten op de fiets zijn bijvoorbeeld stuwkracht, wind mee en zwaartekracht (bij de helling af). Tegenwerkende krachten zijn wrijving, zwaartekracht (bij een helling op) en remkracht (bij remmen). Op een glijdend voorwerp en op een rollend voorwerp werkt wrijving, Deze hangt af van de massa van het voorwerp en de soort ondergrond. De wrijving op aarde op een bewegend voorwerp noem je de luchtweerstand. Luchtweerstand hangt af van grootte, snelheid en stroomlijn van het bewegende voorwerp. Wrijving werkt tegen de beweging in. §6.4 – REMMEN In het verkeer moet je rekening houden met een reactietijd van (minimaal) 1 seconde. In die tijd wordt de reactieafstand afgelegd. De reactietijd wordt beïnvloed door verschillende dingen: -
Alcohol Leeftijd Medicijnen Drugs Concentratie Vermoeidheid
De remweg is de afstand die je aflegt vanaf het moment dat je reageert (vanaf het moment dat je de rem indrukt) tot dat je stilstaat. Ook deze kan worden beïnvloed door verschillende dingen: -
Banden en weg (wrijving) Weersomstandigheden Massa Beginsnelheid Rem-eigenschappen/conditie Remkracht Luchtweerstand
De stopafstand is de reactieafstand en de remweg bij elkaar opgeteld. De stopafstand bepaald de toegestane maximumsnelheid.
§6.5 – VEILIGHEID VOOR ALLES De kracht die je tijdens het remmen, en dus ook tijdens een botsing ondervindt, hangt af van: -
De remweg: kleine remweg geeft grote kracht. De (lichaams)massa: grote massa geeft grote kracht. De snelheid: grote snelheid geeft grote kracht.
De kracht op iemand tijdens het remmen en tijdens het botsen is: -
Omgekeerd evenredig aan de remweg Evenredig aan de (lichaams)massa Evenredig aan het kwadraat van de snelheid
Massa (kg) Remweg (cm) Snelheid (km/h) Kracht (N) 50 10 80 125.000 50 2 80 625.000 100 10 40 62.500 De massa blijft eerst hetzelfde: x 1. De remweg wordt 5 keer zo klein: : 5. De snelheid blijft ook hetzelfde: x 1. De kracht: 125.000 x 1 x 12 x 5 = 625.000. Vervolgens wordt de massa twee keer zo veel: x 2. De remweg blijft hetzelfde: x 1. De snelheid wordt twee keer zo klein: x 2. De kracht: 125.000 x 2 x 1 x 22 = 62.500. Traagheid is de weerstand tegen snelheidsverandering. Er zijn verschillende dingen die helpen de remweg te vergroten tijdens het botsen: -
Airbag Kreukelzone Helm Gordels Bumper (Kooiconstructie)
Door de hierboven genoemde dingen wordt de kracht op het lichaam verkleind.
OVERZICHT GROOTHEDEN H1
H2
H3
H4
H5
H6 Algemeen Module Krachten
H8
Grootheid Brandpuntsafstand Voorwerpsafstand Beeldafstand Vergroting Sterkte Snelheid Afstand Tijd Versnelling Kracht Spanning Stroomsterkte Weerstand Frequentie Trillingstijd Geluidssterkte Luidheid Energie Vermogen Rendement Massa Wrijvingskracht Temperatuur Dichtheid Zwaartekracht Lengte/arm Massa Gravitatiewaarde Moment Veerkracht Uitrekking Veerconstante Zwaartekracht Opwaartse kracht Massa Dichtheid Druk Oppervlakte Hoogte (vloeistofkolom) Volume
Symbool f v b N S v s t a F U I R f T (L) (L) E P η m Fw T ρ Fz r m g M Fv uC Fz Fopw m ρ p A hV
Eenheid meter meter meter dioptrie meter/seconde meter seconde meter/seconde2 Newton Volt Ampére Ohm Hertz Seconde Decibel Decibel (A) Joule Watt gram Newton Kelvin g/cm3 Newton meter kilogram Newton/kilogram Newtonmeter Newton meter Newton/meter Newton Newton gram g/cm3 of kg/m3 Pascal Meter2 Meter Meter3
Symbool m m m D m/s m s m/s2 N V A Ω Hz s dB dB(A) J W g N K g/cm3 N m kg N/kg Nm N m N/m N N g g/cm3 of kg/m3 N/m2 of Pa m2 m m3
BELANGRIJKE FORMULES HOOFDSTUK 1 Wet van terugkaatsing
∟i= ∟t Hoek van inval = hoek van terugkaatsing
Lenzenformule
Sterkte van een lens HOOFDSTUK 2 Gemiddelde snelheid
Versnelling
HOOFDSTUK 3 Vermogen
P=UxI
Energie
E=Pxt
Wet van ohm Serieschakeling
Utotaal = U1 + U2 + … Itotaal = I1 = I2 = I… Rtotaal = R1 + R2 + R…
Parralelschakeling
Utotaal = U1 = U2 = … Itotaal = I1 + I2 + I…
HOOFDSTUK 4 Afstand Frequentie
s = vgeluid x t
HOOFDSTUK 5 Vermogen
P=UxI
Energie
E=Pxt
Rendement
Rendement
HOOFDSTUK 6 Reactieafstand
s = vbegin x treactie
Stopafstand
sstop = sreactie + Srem
HOOFDSTUK 7 Atoombouw
Aantal protonen = atoomnummer Aantal elektronen = aantal protonen Aantal neutronen = atoommassa – atoomnummer
HOOFDSTUK 8 Druk
Wet van archimedes
Fopwaarts = ρvloeistof x Vvloeistof x g
Dichtheid Gaswet
C=pxV