Lecture 3 : TEORI ANTRIAN (Queuing Theory)
Hanna Lestari, ST, M.Eng
pendahuluan • Analisis antrian pertama kali diperkenalkan oleh A.K. Erlang (1913). • Untuk mempelajari fluktuasi permintaan fasilitas telepon dan keterlambatan pelayanannya. • Saat ini analisis antrian banyak diterapkan pada bidang bisnis (bank, supermarket), industri pelayanan (mesin otomatis), transportasi (pelabuhan udara, pelabuhan laut, jasa-jasa pos) dan lain-lain.
Lanjutan… • Analisis antrian memberikan informasi probabilitas yang dinamakan operation characteristics. • Operasi ini dapat membantu pengambil keputusan dalam merancang fasilitas pelayanan antrian untuk mengatasi permintaan pelayanan yang fluktuatif secara random dan menjaga keseimbangan antara biaya pelayanan dan biaya menunggu.
Why is Queuing Analysis Important? • Capacity problems are very common in industry and one of the main drivers of process redesign – Need to balance the cost of increased capacity against the gains of increased productivity and service
• Queuing and waiting time analysis is particularly important in service systems – Large costs of waiting and of lost sales due to waiting
Prototype Example – ER at County Hospital • Patients arrive by ambulance or by their own accord • One doctor is always on duty • More and more patients seeks help longer waiting times Question: Should another MD position be instated? 4
Cost
A Cost/Capacity Tradeoff Model
Total cost Cost of service
Cost of waiting
Process capacity
5
Lanjutan • Kriteria evaluasi keputusan dari model ini adalah total expected cost. • Hubungan variable keputusan (tingkat pelayanan) dengan kriteria evaluasi ( total expected cost ) ditunjukkan pada gambar. • Terlihat bahwa total expected cost merupakan jumlah dari dua biaya yang berlainan yaitu: (1) biaya pelayanan (2) biaya menunggu. 6
Lanjutan • tingkat pelayanan yang disarankan adalah yang menyebabkan total expected cost terendah. • Namun, ini tidak berarti analisis ini dapat menentukan biaya total terendah secara tepat sebab operating characteristic yang diperoleh hanya merupakan angka rata-rata dan sehingga tidak pasti. • Dengan demikian analisis antrian bukanlah suatu teknik optimisasi melainkan hanya penyedia informasi. 7
Jenis-Jenis Biaya Biaya Pelayanan •
Suatu supermarket yang ingin menambah checkout counter perlu membiayai seluruh perlengkapan counter tambahan dan menggaji pelayan baru. Ini berarti jika tingkat pelayanan diperbaiki, biaya pelayanan akan bertambah. • Biaya pelayanan dapat juga dilihat dari sisi pandang yang lain. Jika tingkat pelayanan bertambah, waktu menganggur pelayan diperkirakan juga bertambah, yang berarti suatu kenaikan dalam opportunity cost karena tidak mengalokasikan pelayan ke kegiatan produktif yang lain. • Cara yang digunakan untuk menghitung biaya pelayanan dapat berbeda untuk kasus yang berbeda. Cara apapun yang dipakai seharusnya memberikan jumlah yang sama. 8
Jenis-Jenis Biaya Biaya Menunggu • Umumnya terdapat hubungan terbalik antara tingkat pelayanan dan waktu menunggu. Namun terkadang sulit menyatakan secara ekspilit biaya menunggu per unit waktu. • Biaya menunggu dapat diduga secara sederhana sebagai biaya kehilangan keuntungan bagi pengusaha, atau biaya turunnya produktivitas bagi pekerja. Ini berarti serupa dengan biaya pelayanan, dimana penentuannya dapat berbeda dari satu kasus ke kasus lain.
9
Formula Matematis Minimumkan € ( C ) = I Ci + W Cw • • • • •
€ ( C ) = total expected cost untuk tingkat pelayanan tertentu I = waktu nganggur pelayan yang diharapkan Ci = biaya nganggur pelayan per unit waktu W = waktu menunggu yang diharapkan untuk semua kedatangan Cw = biaya menunggu pengantri per unit waktu.
10
Examples of Real World Queuing Systems? • Commercial Queuing Systems – Commercial organizations serving external customers – Ex. Dentist, bank, ATM, gas stations, plumber, garage …
• Transportation service systems – Vehicles are customers or servers – Ex. Vehicles waiting at toll stations and traffic lights, trucks or ships waiting to be loaded, taxi cabs, fire engines, elevators, buses …
• Business-internal service systems – Customers receiving service are internal to the organization providing the service – Ex. Inspection stations, conveyor belts, computer support …
• Social service systems – Ex. Judicial process, the ER at a hospital, waiting lists for organ transplants or student dorm rooms … 11
Components of a Basic Queuing Process Input Source
Calling Population
The Queuing System
Jobs
Service Mechanism
Queue
Served Jobs
leave the system
Queue Discipline
Arrival Process Queue Configuration
Service Process 12
Components of a Basic Queuing Process The calling population – The population from which customers/jobs originate – The size can be finite or infinite (the latter is most common) – Can be homogeneous (only one type of customers/ jobs) or heterogeneous (several different kinds of customers/jobs)
The Arrival Process – Determines how, when and where customer/jobs arrive to the system – Important characteristic is the customers’/jobs’ interarrival times – To correctly specify the arrival process requires data collection of interarrival times and statistical analysis. 13
Components of a Basic Queuing Process The queue configuration – Specifies the number of queues • Single or multiple lines to a number of service stations – Their location – Their effect on customer behavior • Balking and reneging – Their maximum size (# of jobs the queue can hold) • Distinction between infinite and finite capacity
14
Example – Two Queue Configurations Multiple Queues Servers
Single Queue Servers
15
Notes… • Components of a Queuing System: A queuing system is characterised by three Components: • - Arrival process • - Service mechanism • - Queue discipline.
Components of a Queuing System • Arrival Process : Kedatangan Entitas • Service Mechanism : Jumlah Server yang tersedia • Queue Discipline : Aturan yang dibuat oleh server Contoh : • FIFO – Customers are served on a first-in first-out basis. • LIFO - Customers are served in a last-in first-out manner. • Priority - Customers are served in order of their importance on the basis of their service requirements.
Multiple v.s. Single Customer Queue Configuration Multiple Line Advantages 1. The service provided can be differentiated – Ex. Supermarket express lanes
2. Labor specialization possible 3. Customer has more flexibility 4. Balking behavior may be deterred – Several medium-length lines are less intimidating than one very long line
Single Line Advantages 1. Guarantees fairness – FIFO applied to all arrivals
2. No customer anxiety regarding choice of queue 3. Avoids “cutting in” problems 4. The most efficient set up for minimizing time in the queue 5. Jockeying (line switching) is avoided
18
Operating Characteristics • Ciri-ciri operasi antrian yang akan dipelajari adalah: Pn = probabilitas (n) pengantri dalam sistem L = rata-rata banyaknya pengantri dalam sistem Lq = rata-rata banyaknya pengantri dalam antrian W = rata-rata waktu menunggu dalam sistem (antri + pelayanan) Po atau I = proporsi waktu nganggur pelayan (tidak ada pengantri)
lanjutan • Ciri-ciri operasi menjelaskan bekerjanya sistem dalam bentuk ukuran-ukuran : • misalnya rata-rata waktu menunggu, waktu nganggur pelayanan dan lain-lain. • Namun ukuran prestasi sistem sesungguhnya hanya input dalam suatu kerangka konsep yang lebih luas.
Struktur Dasar proses Antrian • Satu Saluran Satu tahap
• Banyak Saluran Satu Tahap
Con’t… • Satu Saluran Banyak tahap
• Banyak Saluran Banyak tahap
Asumsi Asumsi Teori Antrian 1. 2. 3. 4. 5. 6. 7. 8.
Distribusi Kedatangan Distribusi Waktu Pelayanan Disiplin Antri Sistem Antri Steady State dan Transient Tingkat Kedatangan dan tingkat pelayanan Proses Kelahiran Murni dan kematian murni Model kelahiran Murni Model kematian murni
1
Distribusi Kedatangan
• Model antrian adalah model probabilistik (Stokastik) • Unsur-unsur tertentu proses antrian yang dimasukkan dalam model adalah variabel random • Variabel random digambarkan dengan distribusi probabilitas. Baik kedatangan maupun waktu pelayanan dalam proses antrian.
Con’t… • Asumsi yang digunakan dalam distribusi kedatangan (banyaknya kedatangan per unit waktu) adalah distribusi poisson. • RUMUS distribusi poisson :
Con’t • Distribusi poisson adalah distribusi diskrit dengan ratarata sama dengan varians. • Jika banyaknya kedatangan per satuan waktu mengikuti distribusi poisson dengan ratarata tingkat kedatangan λ , • maka waktu antar kedatangan (inter arrival time) akan mengikuti distribusi exponensial negatif dengan rata-rata 1/λ
2
Distribusi Waktu Pelayanan
• Waktu Pelayanan dalam proses antrian, bisa sesuai dengan salah satu bentuk distribusi probabilitas • Jika waktu pelayanan mengikuti distribusi eksponensial negatif, maka tingkat pelayanan mengikuti distribusi poisson.
Rumus Umum Density Function Probabilitas eksponensial negatif
3
Disiplin Antri
• Suatu tingkah laku pengantri yang dapat mempengaruhi aturan pelayanan adalah pengantri yang tak sabar dan memutuskan untuk meninggalkan sistem sebelum dilayani yang dikenal dengan nama reneging.
4
Sistem Antri Steady State dan Transient
• Steady State : Panjang antrian dan rata-rata waktu menunggu akan memiliki nilai konstan setelah sistem berjalan selama suatu periode waktu. • Transient : Sistem antrian yang tidak dapat diharapkan berjalan cukup lama dalam keadaan steady state. Sistem transient solusinya tergantung pada waktu yang telah dilewati sejak sistem mulai beroperasi.
5
Tingkat Kedatangan dan Tingkat Pelayanan
• Asumsi bahwa tingkat pelayanan (μ) > (l) tingkat kedatangan pengantri. Jika tidak antrian akan semakin panjang sehingga tidak ada solusi keseimbangan. • Hubungan antara tingkat kedatangan (λ) dan tingkat pelayanan (μ) dan panjang antrian yang diharapkan pada gambar dibawah ini,
Jika λ < dari μ , maka traffic intensity atau utilization faktor R=λ/μ , < 1 Jika Rasio ini mendekati 1 maka panjang antrian yang diharapkan akan mendekati tak terbatas
Hubungan antara Panjang Antrian dengan traffic Intensity
6
Proses Kelahiran Murni dan kematian murni
• Para pelanggan tiba dan tidak pernah kembali lagi atau disebut kelahiran murni (pure birth) • Proses kedatangan dan penarikan terjadi dengan cara yang sepenuhnya random ini disebut kematian murni (pure death)
7
Model kelahiran Murni
• Kasus pengeluaran akte kelahiran untuk bayi yang baru lahir. • Pengeluaran akte kelahiran merupakan proses yang sepenuhnya acak dapat dijabarkan dengan distribusi poisson. • Asumsi bahwa λ adalah laju pengeluaran akte kelahiran, proses kelahiran murni memilik n kedatangan (akta kelahiran) selama periode t dapat dijabarkan dengan distribusi poisson berikut :
Dimana λ adalah laju kedatangan per unit waktu dengan jumlah kedatangan yang diperkirakan selama t sebesar λt
• CONTOH KASUS
8
Model Kematian Murni
• Pertimbangkan situasi penyimpanan N unit barang diawal minggu untuk memenuhi permintaan pelanggan selama minggu tersebut. • Asumsi bahwa permintaan pelanggan terjadi dengan laju unit per hari dan bahwa proses permintaan acak maka, • Probabilitas untuk memperoleh n unit yang tersisa dalam sediaan setelah waktu t diketahui dengan distribusi truncated poisson berikut:
Contoh Kasus
Facing Uncertainty…