IMPLEMENTASI ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM(ANFIS) UNTUK PERAMALAN PEMAKAIAN AIR DI PERUSAHAAN DAERAH AIR MINUM TIRTA MOEDAL SEMARANG
SKRIPSI Diajukan dalam Rangka Menyelesaikan Studi Strata 1 untuk Memperoleh GelarSarjana Sains Program Studi Matematika
Oleh Ulfatun Hani’ah 4111411055
JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI SEMARANG 2015
i
PERNYATAAN KEASLIAN TULISAN
Dengan ini saya menyatakan bahwa isi skripsi ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu Perguruan Tinggi, dan sepanjang pengetahuan saya tidak terdapat karya yang diterbitkan oleh orang lain, kecuali yang secara tertulis dirujuk dalam skripsi ini dan disebutkan dalam daftar pustaka.
Semarang, 11 Mei 2015
Ulfatun Hani’ah NIM. 4111411055
ii
PENGESAHAN
Skripsi yang berjudul Implementasi Adaptive Neuro-Fuzzy Inference System(Anfis) Untuk Peramalan Pemakaian Air Di Perusahaan Daerah Air Minum Tirta Moedal Semarang Disusun oleh Nama : Ulfatun Hani’ah NIM
: 4111411055
Telah dipertahankan dihadapan sidang Panitia Ujian Skripsi FMIPA Unnes pada tanggal 11 Mei 2015
Panitia, Ketua
Sekretaris
Prof. Dr. Wiyanto. M.Si NIP. 196310121988031001
Drs. Arief Agoestanto, M.Si NIP. 196807221993031005
Ketua Penguji
Alamsyah, S.Si., M.Kom NIP. 197405172006041001 Anggota Penguji
Anggota Penguji
Pembimbing Utama
Pembimbing Pendamping
Riza Arifudin S.Pd., M.Cs NIP. 198005252005011001
Endang Sugiharti S.Si., M.Kom NIP. 197401071999032001
iii
MOTTO DAN PERSEMBAHAN Motto Katakanlah:
“Wahai
Tuhan
yang
mempunyai kerajaan, Engkau berikan kerajaan kepada orang yangEn gkau kehendaki dan Engkau cabut kerajaan dari orang yang Engkau
kehendaki. Engkau muliakan orang yang Engkau kehendaki dan Engk au hinakan orang yang Engkau kehendaki. di tangan Engkaulah sega la kebajikan. Sesungguhnya Engkau Maha Kuasa atas segala sesuatu.” (QS.Ali-Imran:26) Sesuatu yang belum dikerjakan, seringkali tampak mustahil, kita baru yakin kalau kita telah berhasil melakukannya dengan baik.
(Evelyn
Underhill) Jangan lihat masa lampau dengan penyesalan, jangan pula lihat masa depan dengan ketakutan, tapi lihatlah sekitar anda dengan penuh kesadaran. (James Thurber) Persembahan Skripsi ini saya persembahkan untuk : Tuhan Yang Maha Esa atas segala Rahmat dan Hidayah-Nya Ayah dan Ibu tercinta Saudara-saudara saya Kakakku tersayang
iv
KATA PENGANTAR
Alhamdulillah, puji syukur penulis panjatkan kehadirat Allah SWT atas limpahan rahmat serta karunia-Nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul “Implementasi Adaptive Neuro-Fuzzy Inference System(ANFIS) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang”. Skripsi ini dapat tersusun dengan baik berkat bantuan dan bimbingan banyak pihak . Oleh karena itu, penulis menyampaikan terimakasih kepada: 1.
Prof. Dr. Fathur Rokhman, M.Hum., Rektor Universitas Negeri Semarang, yang telah memberikan kesempatan kepada penulis untuk menyelesaikan studi strata 1 di Jurusan Matematika FMIPA UNNES.
2.
Prof. Dr. Wiyanto, M.Si., Dekan FMIPA Universitas Negeri Semarang, yang telah memberikan izin untuk melakukan penelitian.
3.
Drs. Arief Agoestanto, M.Si., Ketua Jurusan Matematika Universitas Negeri Semarang, yang telah memberikan izin untuk melakukan penelitian.
4.
Riza Arifudin, S.Pd., M.Cs selaku pembimbing I, yang telah menuntun, memberikan arahan dan bimbingan dalam penyelesaian skripsi ini.
5.
Endang Sugiharti, S.Si., M.Kom selaku pembimbing II, yang telah menuntun, memberikan arahan dan bimbingan dalam penyelesaian skripsi ini.
6.
Pimpinan PDAM Tirta Moedal Semarang yang telah memberikan izin untuk melakukan penelitian.
v
vi
7.
Keluarga besarku yang selalu mendoakan dan menjadi motivasku dalam menyelesaikan skripsi ini.
8.
Teman-teman Jurusan Matematika ’11 dan teman-teman kos yang telah memberikan motivasinya.
9.
Semua pihak yang tidak dapat penulis sebutkan satu persatu yang telah membantu dalam penyelesaian skripsi ini. Hanya ucapan terima kasih dan doa, semoga apa yang telah diberikan
tercatat sebagai amal baik dan mendapatkan balasan dari Allah SWT. Semoga Tugas Akhir ini bisa membawa manfaat bagi penulis sendirikhususnya dan bagi para pembaca pada umumnya.
Semarang, 11 Mei 2015
Penulis
vi
ABSTRAK
Ulfatun Hani’ah. 2015.Implementasi Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang. Skripsi. Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang. Pembimbing Utama Riza Arifudin, S.Pd., M.Cs dan Pembimbing Pendamping Endang Sugiharti, S.Si., M.Kom Kata Kunci: Adaptive Neuro-Fuzzy Inference System, peramalan, error. PDAM Kota Semarang merupakan sebuah perusahaan daerah yang bertugas untuk memberikan supply air bersih dengan tepat. Permasalahan yang diangkat dalam penelitian ini adalah (1) Bagaimana mengimplementasikan metode Adaptive Neuro-Fuzzy InferenceSystem dalam peramalan pemakaian air? (2) Bagaimana hasil peramalan pemakaian air pada bulan Januari 2015 sampai April 2015?. Tujuan penelitian ini adalah (1) Untuk mengimplementasikan metode Adaptive Neuro-Fuzzy InferenceSystem dalam peramalan pemakaian air. (2) Untuk mengetahui hasil peramalan pemakaian air pada bulan Januari 2015 sampai April 2015. Dalam penelitian ini metode yang digunakan adalah ANFIS dengan bantuan software MATLAB. Pengujian program, dilakukan percobaan dengan memasukkan variabel klas = 2, maksimum epoh = 100, error = 10-6, rentang nilai learning rate = 0.6 sampai 0.9, dan rentang nilai momentum = 0.6 sampai 0.9. Simpulan yang diperoleh adalah (1) Pengimplementasian metode Adaptive Neuro-Fuzzy InferenceSystem dalam peramalan pemakaian air yang pertama adalah membuat rancangan flowchart, melakukan clustering data menggunakan fuzzy C-Mean, menentukan neuron tiap-tiap lapisan, mencari nilai parameter dengan menggunakan LSE rekursif, lalu penentuan perhitungan error menggunakan sum square error (SSE) dan membuat sistem peramalan pemakaian air dengan software MATLAB. (2) Setelah dilakukan percobaan dengan memasukkan variabel klas = 2, maksimum epoh = 100, error = 10-6, rentang nilai learning rate = 0.6 sampai 0.9, dan rentang nilai momentum = 0.6 sampai 0.9. Hasil yang menunjukkan SSE paling kecil adalah nilai learning rate 0.9 dan momentum 0.6 dengan SSE 0.0079163.Hasilperamalan pemakaian air dengan metode ANFIS untuk bulan Januari adalah 3.768.083m3 dengan error sebesar 0.00176, lalu Februari adalah 3.623.421m3 dengan error -0.00659, Maret adalah 3.624.532m3 dengan error -0.01467, dan April adalah 3.735.794 m3 dengan error 0.00834. Hasil peramalan pemakaian air dengan metode ANFIS menunjukkan bahwa error yang dihasilkan relatif kecil, sehingga pihak PDAM dapat menggunakan metode ANFIS untuk meramalkan pemakaian air kedepannya.
vii
DAFTAR ISI
HALAMAN JUDUL ....................................................................................... i PERNYATAAN .............................................................................................. ii PENGESAHAN .............................................................................................. iii MOTTO DAN PERSEMBAHAN .................................................................. iv KATA PENGANTAR .................................................................................... v ABSTRAK ...................................................................................................... vii DAFTAR ISI ................................................................................................... viii DAFTAR TABEL ........................................................................................... xi DAFTAR GAMBAR ...................................................................................... xii DAFTAR LAMPIRAN ................................................................................... xiii BAB I PENDAHULUAN ............................................................................... 1 1.1 Latar Belakang ............................................................................ 1 1.2 Rumusan Masalah ....................................................................... 5 1.3 Tujuan Penelitian ........................................................................ 5 1.4 Manfaat Penelitian ...................................................................... 6 1.5 Batasan Masalah ......................................................................... 6 BAB II LANDASAN TEORI ......................................................................... 7 2.1 Pengertian Analisis Runtun Waktu dan Peramalan .................... 7 2.2 Jaringan Syaraf Tiruan (Neural Network) ................................... 8 2.3 Logika Fuzzy (Fuzzy Logic) ....................................................... 14 2.3.1 Teori Himpunan Fuzzy ..................................................... 15
viii
ix
2.3.2 Fungsi Keanggotaan Fuzzy ............................................... 15 2.3.3 Fuzzy C-Means (FCM) ..................................................... 18 2.3.4 Sistem Inferensi Fuzzy ...................................................... 20 2.3.5 FIS Model Sugeno (TSK) ................................................. 21 2.4 Adaptive Neuro Fuzzy Inference System (ANFIS) ...................... 22 2.4.1 Gambaran Umum ANFIS ................................................. 22 2.4.2 Arsitektur ANFIS .............................................................. 23 2.4.3 Jaringan ANFIS ................................................................ 24 2.4.4 Algoritma Pembelajaran Hybird ........................................ 27 2.4.5 LSE Rekursif ..................................................................... 28 2.4.6 Model Propagasi Error ..................................................... 29 2.4.7 Sum Square Error (SSE) ................................................... 35 BAB III METODE PENELITIAN................................................................... 36 3.1 Ruang Lingkup Penelitian ........................................................... 36 3.2 Metode Pengambilan Data .......................................................... 36 3.2.1 Metode Observasi ............................................................. 36 3.2.2 Metode Interview .............................................................. 37 3.3 Metode Kegiatan ......................................................................... 37 3.4 Analisis Data ............................................................................... 37 BAB IV ANALISIS DAN PEMBAHASAN .................................................. 39 4.1 Analisis Data Runtun Waktu dengan ANFIS ............................. 39 4.1.1 Tahap Pengambilan Data .................................................. 39 4.1.2 Perancangan Sistem Pelatihan .......................................... 40
ix
x
4.1.3 Clustering Data dengan C-Mean ....................................... 41 4.1.4 Lapisan 1 ........................................................................... 41 4.1.5 Lapisan 2 ........................................................................... 42 4.1.6 Lapisan 3 ........................................................................... 43 4.1.7 Lapisan 4 ........................................................................... 44 4.2 Algoritma Pembelajaran Hybrid .................................................. 46 4.2.1 LSE Rekursif ..................................................................... 46 4.3 Perancangan Desain Sistem ........................................................ 47 4.4 Tahap Implementasi Sistem ........................................................ 52 4.4.1 Implementasi Form Pelatihan ........................................... 52 4.4.2 Implementasi Form Hasil Pelatihan ................................. 56 4.5 Pengujian Sistem ......................................................................... 57 4.6 Hasil Analisis Peramalan ANFIS ................................................ 60 4.7 Kelebihan dan Kekurangan Program .......................................... 64 4.7.1 Kelebihan Program ........................................................... 65 4.7.2 Kekurangan Program ........................................................ 66 BAB V SIMPULAN DAN SARAN ............................................................... 67 5.1 SIMPULAN ................................................................................ 67 5.2 SARAN ....................................................................................... 68 DAFTAR PUSTAKA ..................................................................................... 69
x
DAFTAR TABEL
Tabel 2.1 Perbedaan antara jaringan syaraf dan sistem fuzzy........................ 10 Tabel 2.2 Prosedur Pembelajaran Hybrid Metode ANFIS ........................... 27 Tabel 4.1 Data Pemakaian Air (m3) ............................................................. 39 Tabel 4.2 Output Lapisan Pertama ............................................................... 42 Tabel 4.3 Output Lapisan Ketiga ................................................................. 43 Tabel 4.4 Output Lapisan Keempat .............................................................. 44 Tabel 4.5 Koefisien Parameter ..................................................................... 45 Tabel 4.6 Keterangan Form 1 ....................................................................... 48 Tabel 4.7 Keterangan Form Pelatihan .......................................................... 49 Tabel 4.8 Keterangan Form hasil pelatihan ................................................. 51 Tabel 4.9 Keterangan Form Hasil Peramalan Pemakaian Air ..................... 52 Tabel 4.10 Perbandingan nilai learning rate .................................................. 60 Tabel 4.11 Perbandingan nilai Momentum .................................................... 60 Tabel 4.12 Error pada epoh terakhir .............................................................. 61 Tabel 4.13 Hasil Peramalan Pada Tahun 2015................................................ 63 Tabel 4.14 Perbandingan Peramalan Pada Tahun 2015 .................................. 63
xi
DAFTAR GAMBAR
Gambar 2.1
Arsitektur System Neuro Fuzzy ................................................ 11
Gambar 2.2
Struktur Jaringan Syaraf Tiruan .............................................. 13
Gambar 2.3
Kurva Fungsi Keanggotaan Triangular.................................... 16
Gambar 2.4
Kurva Fungsi Keanggotaan Trapezoidal ................................. 16
Gambar 2.5
Fungsi Keanggotaan Gaussian ................................................. 17
Gambar 2.6
Kurva Fungsi Keanggotaan Generalized Bell ......................... 17
Gambar 2.7
Diagram Blok Sistem Inferensi Fuzzy ...................................... 20
Gambar 2.8
ANFIS dengan Model Sugeno ................................................. 24
Gambar 2.9
Arsitektur Jaringan ANFIS ...................................................... 25
Gambar 4.1
Flow Chart ANFIS .................................................................. 40
Gambar 4.2
Clustering Data Menggunakan Fuzzy C-Means ..................... 41
Gambar 4.3
Desain Tampilan Form Halaman Depan ................................. 48
Gambar 4.4
Desain Tampilan Form Pelatihan ............................................ 49
Gambar 4.5
Desain Tampilan Form Hasil Pelatihan .................................. 50
Gambar 4.6
Desain Tampilan Form Hasil Peramalan Pemakaian Air ........ 51
Gambar 4.7
Form Pelatihan Sistem ............................................................ 53
Gambar 4.8
Form HasilPelatihan Sistem .................................................... 56
Gambar 4.9
Form Hasil Peramalan Pemakaian Air .................................... 57
Gambar 4.10 Form Pelatihan ........................................................................ 58 Gambar 4.11 Hasil Pelatihan ......................................................................... 59 Gambar 4.12 Hasil Peramalan Pemakaian Air .............................................. 59
xii
DAFTAR LAMPIRAN
Lampiran 1 Source Code MATLAB Mean, Deviasi dan LSE Rekursif ........ 72 Lampiran 2 Source Code MATLAB Pada Pembelajaran Hybrid .................. 73 Lampiran 3 Source Code MATLAB Pada Layer 2 dan 3 ............................. 76 Lampiran 4 Source Code MATLAB Pada Layer 4 ....................................... 77 Lampiran 5 Hasil PelatihanANFIS Pada Learning Rate 0.6, Momentum 0.9 dan Hasil SSEANFIS ........................................................................ 78 Lampiran 6 Hasil PelatihanANFIS Pada Learning Rate 0.7, Momentum 0.9 dan Hasil SSEANFIS ........................................................................ 80 Lampiran 7 Hasil PelatihanANFIS Pada Learning Rate 0.8, Momentum 0.9 dan Hasil SSEANFIS ........................................................................ 82 Lampiran 8 Hasil PelatihanANFIS Pada Learning Rate 0.9, Momentum 0.9 dan Hasil SSEANFIS ........................................................................ 84 Lampiran 9 Hasil PelatihanANFIS Pada Learning Rate 0.9, Momentum 0.7 dan Hasil SSEANFIS ........................................................................ 85 Lampiran 10 Hasil PelatihanANFIS Pada Learning Rate 0.9, Momentum 0.8 dan Hasil SSEANFIS ......................................................................... 88
xiii
BAB I PENDAHULUAN
1.1
Latar Belakang Matematika adalah cabang ilmu pengetahuan yang sangat penting dan
sangat berperan dalam perkembangan dunia. Matematika dibandingkan dengan disiplin-disiplin ilmu yang lain mempunyai karakteristik tersendiri. Pentingnya matematika tidak lepas dari perannya dalam segala jenis dimensi kehidupan. Selain itu, matematika juga seringkali dibutuhkan untuk menunjang eksistensi ilmu-ilmu lain seperti fisika, kimia, astronomi, biologi, ekonomi dan lain sebagainya.Matematika dikatakan sebagai ratu ilmu karena matematika dapat tumbuh dan berkembang untuk dirinya sendiri sebagai suatu ilmu tanpa adanya bantuan dari ilmu lain. Selanjutnya matematika dikatakan sebagai pelayan ilmu lain karena ilmu lain tidak dapat tumbuh dan berkembang tanpa adanya bantuan matematika(Bell, 1952: 1). Di masa lalu, cabang-cabang matematika yang mempelajari fenomena fisik mendominasi cabang-cabang matematika yang bisa diterapkan pada berbagai fenomena fisik, seperti yang biasa dipelajari dalam fisika dan kimia. Akibatnya, cabang-cabang matematika ini digolongkan dalam kelompok matematika terapan atau matematika fisika. Tetapi sejak berkembangnya ilmu-ilmu komputer, penerapan cabang matematika yang mempelajari fenomena-fenomena yang bukan sekedar diskrit, bahkan berhingga, berkembang dengan cepat khususnya berbagai fenomena alam yang teramati agar pola struktur, perubahan ruang dan sifat-sifat
1
2
fenomena tersebut dapat dinyatakan dalam sebuah bentuk perumusan yang sistematis. Hasil perumusan yang menggambarkan perilaku dari proses fenomena fisik ini disebut model matematika (Widowati & Sutimin, 2007: 1). Matematika mempunyai banyak fungsi yang digunakan dalam perhitungan sehari-hari, misalnya saja dalam perhitungan statistik, dalam ilmu kedokteran dan masih banyak banyak lainnya. Begitu pula dalam penanganan pemakaian air di Perusahaan Daerah Air Minum (PDAM) yang berada disemarang Matematika mempunya fungsi yang sangat penting yaitu untuk menghitung ketepatan dalam pembagian air minum di PDAM. PDAM Kota Semarang merupakan sebuah perusahaan daerah yang bertugas untuk memberikan supply air bersih pada masyarakat dan badan usaha yang berada di daerah kota Semarang dan sekitarnya. Dalam melayani pelanggannya PDAM Kota Semarang selalu mengedepankan pelayanan prima sebagai perwujudan sikap profesionalitas. Tidak hanya perbaikan dalam bidang struktural saja yang diperhatikan tetapi juga harus selalu memperhatikan kebutuhan pelanggannya dalam hal ini adalah kebutuhan akan pasokan air bersih. Oleh karena itu PDAM dituntut untuk melayani pelanggan dengan tepat (https://humaspdamsmg.com,2014). Menurut Bapak Nuryono yang menjabat sebagai sekretaris bagian pemasaran PDAM Tirta Moedal Semarang, masih banyak kekurangan dalam hal pendistribusian air bersih, misalnya saja pada wilayah semarang selatan yaitu di Jatingaleh, Ngesrep, Banyumanik dan masih banyak wilayah lain yang aliran airnya masih kurang baik. Aliran air yang kurang baik terjadi karena beberapa
3
faktor. Faktor yang pertama adalah karena produksi Instalasi Pengolahan Air (IPA) yang terbatas. Faktor yang kedua adalah karena faktor cuaca, di saat cuaca kemarau aliran air menjadi terhambat karena produksi air yang kurang mencukupi dalam pendistribusian air bersih. Faktor yang ketiga adalah karena kehilangan air, kehilangan air ini bisa terjadi karena kebocoran pada pipa-pipa air atau pencurian air. Untuk membantu agar pemakaian air di PDAM Tirta Moedal Semarang lebih baik lagi penulis ingin meramalkan jumlah pemakaian air perbulan, supaya PDAM Tirta Moedal dapat memperkirakan kebutuhan pemakaian air bersih dan dapat memperbaiki IPA yang masih terbatas. Menurut Pakaja dkk (2012: 23) peramalan adalah proses untuk memperkirakan berapakebutuhan dimasa yang akan datang yang meliputi kebutuhan dalam ukuran kuantitas, kualitas, waktu dan lokasi yang dibutuhkan dalam rangka memenuhi permintaan barang atau jasa. Peramalan di sini menggunakan metode adaptive neuro fuzzy inference system. Neuro fuzzy adalah gabungan dari dua sistem yaitu sistem logika fuzzy dan jaringan syaraf tiruan. Sistem neuro fuzzy berdasar pada sistem inferensi fuzzy yang dilatih menggunakan algoritma pembelajaran yang diturunkan dari sistem jaringan syaraf tiruan. Dengan demikian, sistem neuro fuzzy memiliki semua kelebihan yang dimiliki oleh sistem inferensi fuzzy dan sistem jaringan syaraf tiruan. Dari kemampuannya untuk belajar maka sistem neuro fuzzy sering disebut sebagai ANFIS (adaptive neuro fuzzy inference sistems) (Fatkhurrozi, dkk,2012: 113). Pada sistem yang semakin kompleks, fuzzy logic biasanya sulit dan membutuhkan waktu lama untuk menentukan aturan dan fungsi keanggotaan yang
4
tepat. Pada neural network, tahapan proses sangat panjang dan rumit sehingga tidak efektif pada jaringan yang cukup besar. Fuzzy logic tidak memiliki kemampuan untuk belajar dan beradaptasi. Sebaliknya neural network memiliki kemampuan untuk belajar dan beradaptasi namun tidak memiliki kemampuan penalaran seperti yang dimiliki pada fuzzy logic. Oleh karena itu dikembangkan metode yang mengkombinasikan kedua teknik itu yaitu biasa disebut sistem hybrid, salah satunya adalah Adaptive Neuro Fuzzy Inference System atau ANFIS (Jang, 1993: 665). Pada pemodelan statistika, ANFIS diterapkan pada masalah klasifikasi, clustering, regresi, dan peramalan pada data runtun waktu. ANFIS telah banyak diterapkan pada masalah peramalan data runtun waktu. Atsalakis et al (2007) menggunakan ANFIS untuk prediksi peluang tren pada nilai tukar mata uang (kurs) diperoleh bahwa metode ini handal untuk memprediksi naik turunnya fluktuasi nilai tukar. Wei (2011) menerapkan ANFIS untuk peramalan saham TAIEX. Mordjaoi dan Boudjema (2011) melakukan peramalan dan pemodelan permintaan listrik dengan ANFIS. Aldrian dan Yudha (2008) mengaplikasikan ANFIS untuk prediksi curah hujan. Penelitian-penelitian yang dilakukan menunjukkan bahwa pendekatan metode ANFIS cukup handal dan akurat dalam peramalan data runtun waktu. Analisis ANFIS dalam penelitian ini menggunakan model Sugeno orde satu. Proses pengklasteran dilakukan dengan menggunakan metode Fuzzy Cmeans (FCM). Algoritma pembelajaran yang digunakan adalah metode optimasi Hybrid. Perangkat lunak yang digunakan adalah MATLAB.
5
Berdasarkan uraian di atas yang mengacu pada kondisi saat ini pembagian wilayah di PDAM dirasakan sudah efektif untuk masalah pendistribusian air bersih ke pelanggan akantetapi kekurangan air bersih tetap menjadi masalah bagi pelanggan. Sehingga penulis ingin mengangkat judul tentang “Implementasi Adaptive
Neuro-Fuzzy
Inference
System(ANFIS)
untuk
Peramalan
Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang”. 1.2
Rumusan Masalah Adapun rumusan masalah dari penelitian ini adalah sebagai berikut. 1) Bagaimana mengimplementasikan metode Adaptive Neuro-Fuzzy InferenceSystem dalam peramalan pemakaian air? 2) Bagaimana hasil peramalan pemakaian air pada bulan Januari 2015 sampai April 2015?
1.3
Tujuan Penelitian Adapun tujuan dari penelitian ini adalah sebagai berikut. 1) Untuk
mengimplementasikan
metode
Adaptive
Neuro-Fuzzy
InferenceSystem dalam peramalan pemakaian air. 2) Untuk mengetahui hasil peramalan pemakaian air pada bulan Januari 2015 sampai April 2015. 1.4
Manfaat Penelitian Manfaat dari penelitian ini adalah sebagai berikut. 1) Bagi Mahasiswa, menambah wawasan dan kemampuan dalam mengaplikasikan ilmu-ilmu matematika, khususnya untuk peramalan
6
menggunakan
metode
Adaptive
Neuro-Fuzzy
InferenceSystem
(ANFIS). 2) Bagi Peneliti, memberikan informasi kepada para praktisi, sebagai masukan berupa data peramalan pemakaian air kepada PDAM Tirta Moedal Semarang. 3) Bagi Universitas, menambah koleksi buku referensi yang ada di Perpustakaan Universitas Negeri Semarang. 1.5
Batasan Masalah Agar pembahasan dalam penelitian ini tidak meluas, maka penulis perlu
memberikan batasan-batasan sebagai berikut. 1) Data yang diambil untuk meramalakan pemakaian air pelanggan PDAM Tirta Moedal Semarang adalah berjumlah 60 data yaitu dimulai dari pemakaian air pada bulan Januari tahun 2010 sampai Desember 2014. 2) Penilitian ini menggunakan metode adaptive neuro fuzzy inference system. 3) Penelitian ini diimplementasikan dengan menggunakan bahasa pemrograman MATLAB.
BAB II LANDASAN TEORI 2.1
Pengertian Analisis Runtun Waktu dan Peramalan Data runtun waktu (time series) adalah jenis data yang dikumpulkan
menurut urutan waktu dalam suatu rentang waktu tertentu. Jika waktu dipandang bersifat diskrit (waktu dapat dimodelkan bersifat kontinu), frekuensi pengumpulan selalu sama. Dalam kasus diskrit, frekuensi dapat berupa detik, menit, jam, hari, minggu, bulan atau tahun(Makridakis, dkk, 1999: 3). Analisis time series dan forecasting adalahbidang penelitian yang aktif. Artinya,keakuratan
dalam
time
seriesforecasting
menjadi
pokok
dari
prosespengambilan keputusan. Beberapapenelitianyang melakukan riset pada time series adalahstatistik, jaringan syaraf, wavelet, dan systemfuzzy.Metode-metode tersebut memilikikekurangan dan keunggulan yang berbeda.Terlebih lagi, masalah dalam dunia nyataseringkalimerupakan masalah yang kompleksdan satu model mungkin tidak mampumengatasi masalah tersebut dengan baik (Wiyanti& Pulungan, 2012: 176) Menurut Pakaja dkk (2012: 23) Peramalan adalah proses untuk memperkirakan berapa kebutuhan dimasa yang akan datang yang meliputi kebutuhan dalam ukuran kuantitas, kualitas, waktu dan lokasi yang dibutuhkan dalam rangka memenuhi permintaan barang atau jasa, untuk memprediksikan hal tersebut diperlukan data yang akurat di masa lalu, untuk dapat melihat situasi di masa yang akan datang.
7
8
2.2
Jaringan Syaraf Tiruan (Neural Network) Menurut Sinaga (2012: 2)Jaringan Syaraf Tiruan adalah merupakan salah
satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran otak manusia tersebut. Jaringan syaraf tiruan (JST) atau yang biasa disebut Artificial Neural Network (ANN) atau Neural Network (NN) saja, merupakan sistem pemrosesinformasi yang memiliki karakteristik mirip dengan jaringan syaraf pada makhlukhidup. Neural network berupa suatu model sederhana dari suatu syaraf nyatadalam otak manusia seperti suatu unit threshold yang biner.Jaringan Syaraf Tiruan tercipta sebagai suatu generalisasi model matematis dari pemahaman manusia (human cognition) yang didasarkan atas asumsi sebagai berikut. 1. Pemrosesan informasi terjadi pada elemen sederhana yang disebut neuron. 2. Isyarat mengalir di antara sel syaraf atau neuron melalui penghubung. 3. Setiap sambungan penghubung memiliki bobot yang bersesuaian. 4. Setiap sel syaraf akan merupakan fungsi aktivasi terhadap isyarat hasil penjumlahan berbobot yang masuk kepadanya untuk menentukan isyarat keluarannya. Suatu jaringan saraf tiruan memproses sejumlah besar informasi secara paralel dan terdistribusi, hal ini terinspirasi oleh model kerja otak biologis. Sistem syaraf buatan adalah suatu struktur pemroses informasi yang terdistribusi dan bekerja secara paralel, yang terdiri atas elemen pemroses (yang memiliki memori lokal dan beroperasi dengan informasi lokal) yang diinterkoneksi bersama dengan alur sinyal searah yang disebut koneksi. Setiap elemen pemroses memiliki
9
koneksi keluaran tunggalyang bercabang (fan out) ke sejumlah koneksi kolateral yang diinginkan (setiap koneksi membawa sinyal yang sama dari keluaran elemen pemroses tersebut). Keluaran dari elemen pemroses tersebut dapat merupakan sebarang jenis persamaan matematis yang diinginkan. Seluruh proses yang berlangsung pada setiap elemen pemroses harus benar-benar dilakukan secara lokal, yaitu keluaran hanya bergantung pada nilai masukan pada saat itu yang diperoleh melalui koneksi dan nilai yang tersimpan dalam memori lokal (Pakaja, dkk, 2012: 23). Menurut Buckley dkk(1995: 265) jaringan syaraf dan sistem fuzzy memiliki beberapa kesamaan. Jika sudah tidak ada model matematika dari masalah yang diberikan, maka keduanya dapat digunakan untuk memecahkan masalah (misalnya pattern recognition, regression atau density estimation). Jaringan syaraf hanya dapat ikut berperan jika masalah yang ada diungkapkan oleh contoh yang diamati (dengan jumlah yang cukup). Observasi ini digunakan untuk pelatihan secara black box. Di satu sisi tidak ada pengetahuan tentang masalah ini perlu diberikan. Di sisi lain, bagaimanapun, adalah tidak mudah untuk mengekstrak aturan yang mudah dipahami dari struktur jaringan syaraf tersebut. Sebaliknya, sistem kabur menuntut aturan linguistik sebagai pengganti contoh pembelajaran sebagai pengetahuan sebelumnya. Selanjutnya variabel input dan output harus dijelaskan secara linguistic atau bahasa (Nauck,et al., 1996: 295). Jika pengetahuan tidak lengkap, salah atau bertentangan, maka sistem fuzzy harus disetel (tuned). Karena tidak ada pendekatan formal untuk itu, tuning dilakukan dengan cara heuristik. Hal ini biasanya sangat memakan waktu dan rawan
10
kesalahan. Pada Tabel 2.1 ditunjukkan beberapa perbedaan antara jaringan syaraf dan sistem fuzzy. (http://www.scholarpedia.org/article/Fuzzy_neural_network, 2014) Tabel 2.1 Perbedaan Antara Jaringan Syaraf dan Sistem Fuzzy Neural Network Fuzzy System Tidak memerlukan model matematika Memerlukan model matematika Pengetahuan apriori merupakan hal yang Proses learning dari awal penting Terdapat beberapa algoritma Tidak mampu untuk belajar Pembelajaran Perilaku black-box Interpretasi dan implementasi sederhana Dibandingkan dengan jaringan syaraf umum, bobot koneksi dan propagasi dan fungsi aktivasi jaringan syaraf fuzzy mempunyai banyak perbedaan. Meskipun ada banyak pendekatan yang berbeda untuk model jaringan syaraf fuzzy, sebagian besar menyetujui karakteristik tertentu seperti berikut. 1. Sebuah sistem neuro-fuzzy berbasis dasar sistem fuzzy dilatih dengan menggunakan metode pembelajaran berbasis-data yang berasal dari teori jaringan syaraf. Heuristik ini hanya memperhitungkan informasi lokal akun untuk menyebabkan perubahan lokal dalam sistem fuzzy mendasar. 2. Hal ini dapat direpresentasikan sebagai seperangkat aturan fuzzy setiap saat proses pembelajaran, yaitu, sebelum, selama dan sesudah. Dengan demikian sistem dapat diinisialisasi dengan atau tanpa pengetahuan sebelumnya dalam hal aturan fuzzy. 3. Prosedur pembelajaran dengan terpaksa untuk memastikan sifat semantik sistem fuzzy yang mendasarinya.
11
4. Sebuah sistem neuro-fuzzy mendekati n-dimensi suatu fungsi yang tidak diketahui yang sebagian diwakili oleh contoh-contoh pelatihan. Aturan fuzzy sehingga dapat diartikan sebagai prototipe yang jelas dari data pelatihan. 5. Sebuah sistem neuro-fuzzy direpresentasikan sebagai jaringan syaraf feedforward tiga lapis khusus seperti yang ditunjukkan pada Gambar 2.1. a. Lapisan pertama sesuai dengan variabel input. b. Lapisan kedua melambangkan aturan fuzzy. c. Lapisan ketiga merupakan variabel output. d. Set-setfuzzy dikonversi sebagai (fuzzy) bobot koneksi. e. Beberapa pendekatan juga menggunakan lima lapisan dimana set-set fuzzy dikodekan dalam masing-masing unit lapisan kedua dan keempat. Namun, model ini dapat diubah ke dalam sebuah arsitektur tiga lapis.
Gambar 2.1 Arsitektur System Neuro Fuzzy
12
6. Pada dasarnya seseorang dapat membedakan antara tiga jenis jaringan syaraf fuzzy, yaitu, koperasi, bersamaan dan hibrida FNNs (Nauck, et al., 1997: 160). (http://www.scholarpedia.org/article/Fuzzy_neural_network, 2014) Neural network merupakan sebuah mesin pembelajaran yang dibangundari sejumlah elemen pemrosesan sederhana yang disebut neuron atau node.Setiap neuron dihubungkan dengan neuron yang lain dengan hubungankomunikasi langsung melalui pola hubungan yang disebut arsitektur jaringan.Bobot-bobot pada koneksi mewakili besarnya informasi yang digunakan jaringan.Metode yang digunakan untuk menentukan bobot koneksi tersebut dinamakandengan algoritma pembelajaran. Setiap neuron mempunyai tingkat aktivasi yangmerupakan fungsi dari input yang masuk padanya(Warsito, 2009: 29). Menurut Warsito (2009: 30) aktivasi yang dikirim suatuneuron ke neuron lain berupa sinyal dan hanya dapat mengirim sekali dalam satuwaktu, meskipun sinyal tersebut disebarkan pada beberapa neuron yang lain. Seperti Gambar 2.2 yaitu struktur jaringan syaraf tiruan,misalkan input
yang
bersesuaian dengan sinyal danmasuk ke dalam saluran penghubung. Setiap sinyal yang masuk dikalikan denganbobot koneksinya yaitu
sebelum
masuk ke blok penjumlahan yangberlabel . Kemudian blok penjumlahan akan menjumlahkan semua inputterbobot dan menghasilkan sebuah nilai yaitu
∑
.
13
Aktifasi dengan
ditentukan oleh fungsi input jaringannya,
(
)
merupakan fungsi aktifasi yang digunakan.
Gambar 2.2 Struktur Jaringan Syaraf Tiruan
Secara garis besar neural network mempunyai dua tahap pemrosesan informasi, yaitu tahap pelatihan dan tahap pengujian. 1. Tahap Pelatihan Tahap pelatihan dimulai dengan memasukkan pola-pola pelatihan (data latih) ke dalam jaringan. Dengan menggunakan pola-pola ini jaringan akan mengubah-ubah bobot yang menjadi penghubung antar node. Pada setiap iterasi (epoch) dilakukan evaluasi terhadap output jaringan. Tahap ini berlangsung pada beberapa iterasi dan berhenti setelah jaringan menemukan bobot yang sesuai dan nilai eror yang diinginkan telah tercapai atau jumlah iterasi telah mencapai nilai yang ditetapkan. Selanjutnya bobot ini menjadi dasar pengetahuan pada tahap pengujian.
14
2. Tahap Pengujian Pada tahap ini dilakukan pengujian terhadap suatu pola masukan yang belum pernah dilatihkan sebelumnya (data uji) menggunakan bobot-bobot yang telah dihasilkan pada tahap pelatihan. Diharapkan bobot-bobot hasil pelatihan yang sudah menghasilkan eror minimal juga akan memberikan eror yang kecil pada tahap pengujian. 2.3
Logika Fuzzy (Fuzzy Logic) Berbagai masalah dalam kehidupansehari-hari khususnya dalam produksi
erathubungannya
dengan
ketidakpastian.
Gunamenggambarkan
keadaan
kehidupan sehari-hariyang tidak pasti maka muncul istilah fuzzy, yangpertama kali dikemukakan
oleh
Zadeh
pada
tahun
1962.Atas
dasar
inilah
Zadehberusahamemodifikasi teori himpunan, di mana setiapanggotanya memiliki derajat keanggotaan yangbernilai kontinu antara 0 sampai 1. Himpunaninilah yang disebut sebagai himpunan fuzzy (Wayan, dkk, 2012: 2). Menurut
Nasution
(2012:
4)
Logika
fuzzydigunakan
untuk
menterjemahkan suatu besaran yang diekspresikan menggunakan bahasa (linguistic), misalkan besaran kecepatan laju kendaraan yang diekspresikan dengan pelan, agak cepat, cepat, dan sangat cepat. Dan logikafuzzymenunjukan sejauh mana suatu nilai itu benar dan sejauh mana suatu nilai itu salah. Tidak seperti logikaklasikatau tegas, suatu nilai hanya mempunyai 2 kemungkinan yaitu merupakan suatu anggota himpunan atau tidak. Derajat keanggotaan 0 (nol) artinya nilai bukan merupakan anggota himpunan dan 1 (satu) berarti nilai tersebut adalah anggota himpunan (Nasution, 2012: 4).
15
2.3.1
Teori Himpunan Fuzzy Berbeda dengan teori himpunan klasik yang menyatakan suatu objek
adalah anggota (ditandai dengan angka 1) atau bukan anggota (ditandai dengan angka 0) dari suatu himpunan dengan batas keanggotaan yang jelas/tegas (crips), teori himpunan fuzzymemungkinkan derajat keanggotaan suatu objek dalam himpunan untuk menyatakan peralihan keanggotaan secara bertahap dalam rentang antara 0 sampai 1 atau ditulis [0,1] (Nasution, 2012: 4). Menurut Kusumadewi, dkk (2006: 18) definisi himpunan fuzzy(fuzzy set) adalah sekumpulan obyek x dengan masing-masing obyek memiliki nilai keanggotaan (membership function) “μ” atau disebut juga dengan nilai kebenaran. Jika
(
adalah sekumpulan obyek,
) dan anggotanya
dinyatakan dengan Z maka himpunan fuzzydari A di dalam Z adalah himpunan dengan sepasang anggota atau dapat dinyatakan sebagai berikut. {(
( ))
Dengan F adalah notasi himpunan fuzzy,
} ( ) adalah derajat
keanggotaan dari Z (nilai antara 0 sampai 1). 2.3.2
Fungsi Keanggotaan Fuzzy Fungsi keanggotaan (membership function) adalah suatu fungsi yang
menunjukkan pemetaan titik-titik input data ke dalam nilai keanggotaannya. Ada beberapa fungsi yang dapat digunakan melalui pendekatan fungsi untuk mendapatkan nilai keanggotaan, seperti Triangular, Trapezoidal, Gaussian, danGeneralized Bell(Widodo & Handayanto, 2012:61).
16
1. Fungsi Keanggotaan Triangular
Gambar 2.3 Kurva Fungsi Keanggotaan Triangular Fungsi
keanggotaan
triangularyang
ditunjukkan
pada
Gambar
2.3terbentuk oleh tiga parameter: a, b dan c sebagaiberikut.
( )
( ( ( {(
) ) ) )
2. Fungsi keanggotaan Trapezoidal
Gambar 2.4 Kurva Fungsi Keanggotaan Trapezoidal Fungsi
keanggotaan
trapezoidalyang
ditunjukkan
2.4terbentuk oleh empat parameter: a, b, c, dan d, sebagai berikut.
pada
Gambar
17
( )
( (
) )
( {(
) )
3. Fungsi Keanggotaan Gaussian
Gambar 2.5 Kurva Fungsi Keanggotaan Gaussian Fungsi keanggotaan gaussianyang ditunjukkan pada Gambar 2.5terbentuk oleh dua parameter: σ dan c, sebagai berikut.
( )
.
/
4. Fungsi Keanggotaan Generalized Bell
Gambar 2.6 Kurva Fungsi Keanggotaan Generalized Bell
18
Fungsi keanggotaan generalized bell yang ditunjukkan pada Gambar 2.6terbentuk oleh tiga parameter: a, b,dan c, sebagai berikut. ( ) |
2.3.3
|
Fuzzy C-Means (FCM) Fuzzy C-Means (FCM) adalah suatu teknik pengklasteran data yang mana
keberadaan tiap data dalam suatu cluster ditentukan oleh nilai keanggotaan. Konsep FCM pertama kali adalah menentukan pusat cluster yang akan menandai lokasi rata-rata untuk tiap cluster. Pada kondisi awal pusat cluster ini masih belum akurat. Tiap-tiap data memiliki derajat keanggotaan untuk tiap cluster. Dengan cara memperbaiki pusat cluster dan nilai keanggotaan tiap-tiap data secara berulang maka akan dapat dilihat bahwa pusat cluster akan bergerak menuju lokasi yang tepat(Kusumadewi, dkk, 2006: 23). Algoritma Fuzzy C-Means diberikan sebagai berikut. 1) Tentukan: a. matriks
berukuran
diklaster dan
, dengan
jumlah data yang akan
jumlah variabel (kriteria), (
b. jumlah cluster yang dibentuk c. pangkat (pembobot)
(
),
),
d. maksimum iterasi, e. kriteria penghentian f. iterasi awal,
dan
(nilai positif yang sangat kecil), .
19
2) Bentuk matriks partisi awal
[
adalah sebagai berikut.
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)]
(matrik partisi awal biasanya dipilih secara acak) 3) Hitung pusat cluster V untuk setiap cluster. (
) (
)
4) Perbaikan derajat keanggotaan setiap data pada setiap cluster (perbaiki matrik partisi) sebagai berikut. ⁄(
[∑ (
)
)
]
dengan ⁄
(
)
[∑(
)]
5) Tentukan kriteria berhenti yaitu perubahan matriks partisi pada iterasi sekarang dengan iterasi sebelumnya sebagai berikut. ‖ Apabila naikkan iterasi (
‖
maka iterasi dihentikan, namun apabila ) dan kembalikan ke langkah 3.
maka
20
2.3.4 Sistem Inferensi Fuzzy Sistem Sistem Inferensi Fuzzy(Fuzzy Inference System atau FIS) merupakan suatu kerangka komputasi yang didasarkan pada teori himpunan fuzzy, aturan fuzzy berbentuk if-then, dan penalaran fuzzy. Sistem inferensi fuzzy dijelaskan pada Gambar 2.7. FISmenerima inputcrisp. Input ini kemudian dikirim ke basis pengetahuan yang berisi n aturan fuzzy dalam bentuk if-then. Fire strength (bobot) akan dicari pada setiap aturan. Apabila jumlah aturan lebih dari satu, maka akan dilakukan agregasi dari semua aturan. Selanjutnya, pada hasil agregasi akan dilakukan defuzzy untuk mendapatkan nilai crisp sebagai keluaran sistem(Kusumadewi, dkk, 2006: 27). aturan -1 fuzzy crisp
If-then Agregasi
Input
fuzzy aturan -n If-then
Defuzzy fuzzy
crisp Agregasi
Gambar 2.7. Diagram Blok Sistem Inferensi Fuzzy Menurut
Jang (1993: 665)sistem inferensi fuzzy terdiri dari 5 (lima)
bagian sebagai berikut. 1. Basis aturan (rule base), terdiri dari sejumlah aturan fuzzy if-then. 2. Basis data (database) yang mendefinisikan fungsi keanggotaan dari himpunan fuzzy yang digunakan dalam aturan fuzzy, biasanya basis
21
aturan dan basis data digabung dan disebut basis pengetahuan (knowledge base). 3. Satuan
pengambilan
keputusan
(decision-making
unit)
yang
membentuk operasi inferensi pada aturan (rule). 4. Antarmuka fuzzifikasi (fuzzification interface) yang mengubah input ke dalam derajat yang sesuai dengan nilai linguistik (linguistik value). 5. Antarmuka defuzzifikasi (defuzzification interface) yang mengubah hasil fuzzy inferensi ke bentuk output yang kompak. 2.3.5
FIS Model Sugeno (TSK) Sistem
inferensi
fuzzymenggunakan
metode
Sugeno
memiliki
karakteristik yaitu konsekuen tidak merupakan himpunan fuzzy, namun merupakan suatu persamaan linier dengan variabel-variabel sesuai dengan variabel inputnya. Metode ini diperkenalkan oleh Takagi Sugeno Kang(TSK) pada 1985. Aturan fuzzymetode Sugeno adalah sebagai berikut(Kusumadewi, dkk, 2006: 33). (
)
Ada dua model untuk sistem inferensi fuzzydengan menggunakan metode Sugeno, yaitu model Sugeno orde
dan model Sugeno orde , sebagai berikut.
1. Model FuzzySugeno Orde 0 Secara umum bentuk model fuzzySugeno orde 0 adalah: (
)(
)(
)
(
)
22
dengan
adalah himpunan fuzzyke-m sebagai anteseden, ° adalah
operator fuzzy(seperti AND atau OR), dan k adalah suatu konstanta (tegas) sebagai konsekuen. 2. Model fuzzySugeno Orde 1 Secara umum bentuk fuzzysugeno orde 1 adalah: (
)(
)
(
)
dengan Am adalah himpunan fuzzyke-m sebagai anteseden, ° adalah operator fuzzy (seperti AND atau OR), pm adalah suatu konstanta (tegas) ke-m dan q juga merupakan konstanta dalam konsekuen. 2.4
Adaptive Neuro Fuzzy Infererence System (ANFIS)
2.4.1
Gambaran Umum ANFIS Model fuzzydapat digunakan sebagai pengganti dari banyak lapisan.
Dalam hal ini sistem dapat dibagi menjadi dua grup, yaitu satu grup berupa jaringan syaraf dengan bobot-bobot fuzzydan fungsi aktivasi fuzzy, dan grup kedua berupa jaringan syaraf dengan input yang di-fuzzy-kan pada lapisan pertama atau kedua, namun bobot-bobot pada jaringan syaraf tersebut tidak di-fuzzy-kan. Menurut Kusumadewi dkk (2006: 23), Neuro Fuzzy termasuk kelompok kedua. ANFIS (Adaptive Neuro Fuzzy Inference System atau Adaptive Networkbased Fuzzy Inference System) adalah arsitektur yang secara fungsional samadengan fuzzy rule base model Sugeno. Arsitektur ANFIS juga sama denganjaringan syaraf dengan fungsi radial dengan sedikit batasan tertentu. Bisadikatakan bahwa ANFIS adalah suatu metode yang mana dalam
23
melakukanpenyetelan aturan digunakan
algoritma pembelajaran terhadap
sekumpulan data.Pada ANFIS juga memungkinkan aturan-aturan untuk beradaptasi(Kusumadewi, dkk, 2006: 42). Agar jaringan dengan fungsi basis radial ekuivalen dengan fuzzy berbasis aturan model Sugeno orde 1 ini, diperlukan batasan sebagai berikut. a. Keduanya harus memiliki metode agregasi yang sama (rata-rata terbobot atau penjumlahan terbobot) untuk menurunkan semua output. b. Jumlah fungsi aktivasi harus sama dengan jumlah aturan fuzzy(if-then). c. Jika ada beberapa input pada basis aturannya, maka tiap fungsi aktivasi harus sama dengan fungsi keanggotaan tiap-tiap inputnya. d. Fungsi aktivasi dan aturan-aturan fuzzyharus memiliki fungsi yang sama untuk neuron-neuron dan aturan-aturan yang ada di sisi output. 2.4.2
Arsitektur ANFIS Menurut Jang et al(1997: 56)Misalkaninput terdiri atas
sebuah output
dan
dan
dengan aturan model Sugeno orde 1 dapat dilihat pada Gambar
2.8. Orde satu dipilih dengan pertimbangan kesederhanaan dan kemudahan perhitungan. Model Sugeno orde satu dengan dua aturan fuzzy if-then adalah sebagai berikut. Aturan 1 :
Premis
Konsekuen
Aturan 2 :
Premis
Konsekuen
24
dengan
dan
adalah nilai-nilai keanggotaan merupakan label linguistik (seperti
“kecil” atau “besar”),
,
, dan adalah parameter konsekuen. 𝐵
𝐴
𝑓
𝑝 𝑍
𝑤
𝑓 𝐴
𝑡
𝑞 𝑍
𝑡
𝑤 𝑓 +𝑤 𝑓 𝑤 +𝑤
𝑟
d
𝐵 𝑤 𝑓
𝑤 𝑓
𝑝 𝑍
𝑡
𝑞 𝑍
𝑤 𝑓 𝑡
𝑟
Gambar 2.8 ANFIS dengan Model Sugeno 2.4.3
Jaringan ANFIS ANFIS (Adaptif Neuro Fuzzy Inference System) adalah metode jaringan
neural yang fungsinya sama dengan sistem inferensi fuzzy. Pada ANFIS, proses belajar pada jaringan neural dengan sejumlah pasangan data berguna untuk memperbaharui parameter-parameter sistem inferensi fuzzy (Fariza, dkk, 2007: 77).Jaringan ANFIS yang ditunjukkan pada Gambar 2.9 terdiri dari lapisanlapisan sebagai berikut (Jang, Sun & Mizutani, 1997: 70).
25
Gambar 2.9 Arsitektur Jaringan ANFIS Lapisan 1: Lapisan ini merupakan lapisan fuzzifikasi. Pada lapisan ini tiap neuron adaptif terhadap parameter suatu aktivasi. Output dari tiap neuron berupa derajat keanggotaan yang diberikan oleh fungsi keanggotaan input. Misalkan fungsi keanggotaan Generalized Belldiberikan sebagai.
( ) |
Dengan Z adalah input, dalam hal ini adalah parameter-parameter, biasanya
|
{
} dan *
+
. Jika nilai parameter-parameter ini
berubah, maka bentuk kurva yang terjadi akan ikut berubah. Parameter-parameter ini biasanya disebut dengan nama parameter premis. Lapisan 2: Lapisan ini berupa neuron tetap (diberi simbol П) merupakan hasil kali dari semua masukan, sebagai berikut.
26
Biasanya digunakan operator AND. Hasil perhitungan ini disebut firing strength dari sebuah aturan. Tiap neuron merepresentasikan aturan ke-i. Lapisan 3: Tiap neuron pada lapisan ini berupa neuron tetap (diberi simbol N) merupakan hasil perhitungan rasio dari firing strength ke-i (wi) terhadap jumlah dari keseluruhan firing strength pada lapisan kedua, sebagai berikut:
Hasil perhitungan ini disebut normalized firing strength. Lapisan 4: Lapisan ini berupa neuron yang merupakan neuron adaptif terhadap suatu output, sebagai berikut. ( dengan
)
adalah normalized firing strength pada lapisan ketiga dan
,
dan
adalah parameter-parameter pada neuron tersebut. Parameter-parameter ini biasadisebut parameter konsekuen. Lapisan 5: Lapisan ini berupa neuron tunggal (diberi simbol
) merupakan hasil
penjumlahan seluruh output dari lapisan keempat, sebagai berikut.
∑
27
2.4.4
Algoritma Pembelajaran Hybrid Pada saat parameter premis ditemukan keluaran keseluruhan akan
merupakan kombinasi linier dari konsekuen parameter, yaitu:
( (
) )
(
( (
)
adalah linier terhadap parameter
)
) (
) dan
(
)
(
)
.
Algoritma hibrida akan mengatur parameter-parameter konsekuen dan
secara maju (forward) dan akan mengatur parameter-parameter premis a, b,
dan c secara mundur (backward). Pada langkah maju, input jaringan akan merambat maju sampai pada lapisan keempat. Parameter-parameter konsekuen akan diidentifikasi dengan menggunakan least-square.Sedangkan pada langkah mundur, eror sinyal akan merambat mundur dan parameter-parameter premis akan diperbaiki dengan menggunakan metode gradient descent.Prosedur pembelajaran Hybrid metode ANFIS dapat dilihat pada Tabel 2.2 (Jang, Sun & Mizutani 1997: 78). Tabel 2.2 Prosedur Pembelajaran Hybrid Metode ANFIS
Parameter Premis Parameter Konsekuen Sinyal
Arah Maju Tetap Least-squares estimator Keluaran neuron
Arah Mundur Gradient descent Tetap Sinyal eror
28
2.4.5
LSE Rekursif Apabila dimiliki m elemen pada vektor
parameter
(
berukuran m x 1) dan n
), dengan baris ke-i pada matriks ,
berukuran
-dinotasikan sebagai ,
(
-, Least-squares estimator ditulis sebagai berikut
(Kusumadewi, dkk, 2006: 50). ̂ Jika
adalah nonsingular dan ̂ bersifat unik maka dapat diberikan: ̂
(
)
atau dengan membuang ^ dan diasumsikan jumlah baris dari pasangan
dan
adalah maka diperoleh: (
)
Pada LSE rekursif ditambahkan suatu pasangan data , terdapat sebanyak bantuan
pasangan data. Kemudian LSE
. Karena jumlah parameter ada sebanyak
+
- sehingga dihitung dengan
maka dengan metode
inversi, sebagai berikut. (
)
dan
( )
Selanjutnya iterasi dimulai dari data ke ( dihitung dengan persamaan
dan
, nilai
+
) , dengan
dan
+
dapat dihitung sebagai
berikut. (
+
+ +
dan
)
+ +
29
2.4.6
Model Propagasi Error Model propagasi eror digunakan untuk melakukan perbaikan terhadap
parameter premis (a dan c). Konsep yang digunakan adalah gradient descent. Apabila dimiliki jaringan adaptif seperti Gambar 9, dan
menyatakan eror pada
neuron ke-j pada lapisan ke-i maka perhitungan eror pada tiap neuron pada tiap lapisan dirumuskan sebagai berikut(Kusumadewi, dkk, 2006:53). a. Eror pada Lapisan 5 Pada lapisan 5 terdapat satu buah neuron. Propagasi eror yang menuju lapisan ini dirumuskan sebagai berikut:
( dengan
)
adalah output target, f adalah output jaringan, dan (
jumlah kuadrat eror (SSE) pada lapisan kelima
adalah
) .
b. Eror pada Lapisan 4 Pada lapisan 4 terdapat sebanyak dua buah neuron. Propagasi eror yang menuju lapisan ini dapat dirumuskan sebagai berikut:
( dengan
)(
)
adalah eror pada neuron ke-j (
),
lapisan 4 ke-j. Karena
adalah output neuron
, maka:
(
)
(
)
30
sehingga
(
)(
)
( )
(
)(
)
( )
c. Eror pada Lapisan 3 Pada lapisan 3 terdapat sebanyak dua buah neuron. Propagasi eror yang menuju lapisan ini dapat dirumuskan sebagai berikut: (
)(
)(
)
adalah eror pada neuron ke- (
dengan
neuron lapisan 3 ke-j. Karena ( (
),
dan
adalah output
maka:
) )
( (
) )
sehingga (
)(
)(
)
(
)(
)(
)
d. Eror pada Lapisan 2 Pada lapisan 2 terdapat sebanyak dua buah neuron. Propagasi eror yang menuju lapisan ini dapat dirumuskan sebagai berikut:
(
)(
)(
)(
)
(
)(
)(
)(
)
(
)(
)(
)(
)
(
)(
)(
)(
)
31
dengan
adalah output neuron ke-1 dan
pada lapisan 2. Karena
adalah output neuron ke-2
dan .
maka: /
+
( .
)
/
+
( .
)
/
+
( .
)
/
+
(
)
sehingga (
(
(
)
(
)
)
(
)
(
(
)
(
)
)
)
(
)
(
)
(
)
(
)
e. Eror pada Lapisan 1 Pada lapisan 1 terdapat sebanyak empat buah neuron. Propagasi eror yang menuju lapisan ini dapat dirumuskan sebagai berikut: (
)
( (
)
(
)
Karena ( )
( )
( ) dan
( )
, maka:
)
32
(
(
(
(
( )
(
( )) ( ))
( ( )
(
( )) ( ))
( ( )
(
( )) ( ))
( ( )
(
(
( )) ( ))
)
( )
)
( )
)
( )
)
( )
Eror tersebut digunakan untuk mencari informasi eror terhadap parameter a (a1dan a12untuk A1dan A2, b11dan b12untuk B1dan B2) dan c (c11dan c12untuk A1 dan A2, c11dan c12untuk B1 dan B2) sebagai berikut:
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
Karena fungsi keanggotaan yang digunakan adalah generalized bell : ( ) |
|
maka (
) +|
(
|
(
) .
/ )
33
dan
(
) +|
(
|
(
) .
/ )
serta
sehingga
( (
(
) .
( (
(
(
.
dan
(
/ )
)
) .
( (
)
)
( (
/ )
/ )
)
) .
/ )
)
34
( (
(
) .
( (
(
.
(
/ )
.
(
)
)
( (
)
)
( (
/ )
/ )
)
) .
/ )
)
Kemudian ditentukan perubahan nilai parameter aijdan cij(
dan
),
i,j=1,2, dihitung sebagai berikut:
dengan
adalah laju pembelajaran yang terletak pada interval ,
Sehingga nilai aijdan cijyang baru adalah: (lama) 2.4.7
Sum Square Error (SSE)
dan
(lama)
-.
35
Sum Square Error (SSE) adalah salah satu metode statistik yang dipergunakan untuk mengukur selisih total dari nilai sebenarnya terhadap nilai yang tercapai. Istilah SSE disebut juga sebagai Summed Square ofResiduals.
∑(
)
Dimana, X = nilai aktual atau sebenarnya Y = nilai yang tercapai Nilai X dalam penelitian ini adalah nilai yang tersimpan dalam database sedangkan nilai Y adalah komponen data uji. Nilai SSE yang mendekati 0 menandakan bahwa model tersebut mempunyai komponen kesalahan acak terkecil dan nilai tersebut akan lebih berguna untuk peramalan terhadap suatu model yang diamati. Sebagai catatan bahwa sebelumnya SSE didefinisikan dalam metode kelayakan kuadrat minimum (Oktavia, dkk, 2013: 94). Menurut Putu Eka IN (2003: 16)tidak ada kriteria mutlak untuk menyatakan berapakah nilai SSE yang dianggap baik dan SSE merupakan besaran yang sangat dipengaruhi oleh nilai yang digunakan untuk menghitungnya. Semakin kecil nilai SSE, semakin baik tingkat akurasi prediksinya.
BAB III METODE PENELITIAN 3.1
Ruang Lingkup Penelitian Penelitian ini dilakukan untuk mengetahui peramalan pemakaian air di
PDAM Tirta Moedal Semarang. Hal ini dapat membantu PDAM Tirta Moedal agar mudah mendapatkan informasi yang efektif dan efisien. Peramalan disini menggunakan metode adaptive neuro fuzzy inference system. Metode adaptive neuro fuzzy inference system (ANFIS) merupakan metode yang menggunakan jaringan
syaraf
tiruan
untuk
mengimplementasikan
system
inferensi
fuzzy.Analisis ANFIS dalam penelitian ini menggunakan model FISTakagiSugeno
orde-1
dan
diimplementasikan
dengan
menggunakan
bahasa
pemrograman MATLAB. 3.2
Metode Pengambilan Data Data studi kasus adalah diambil dari pemakaian air di PDAM Tirta
Moedal. Data yang diambil berjumlah 60 data yaitu dimulai dari pemakaian air pada bulan Januari tahun 2010 sampai Desember 2014. Metode pengambilan data yang digunakan dalam kegitan ini adalah metode observasi dan interview. 3.2.1
Metode Observasi Observasi adalah cara atau teknik yang dipergunakan dalam pengumpulan data berdasarkan pengamatan secara langsung terhadap obyek yang diteliti. Metode ini sangat menjamin kepastian dan kebenarannya. Dalam hal ini penulis melakukan observasi di PDAM Tirta
36
37
Moedal Semarang. Dengan observasi ini penulis dapat mengetahui data pemakaian air di PDAM Tirta Moedal Semarang secara menyeluruh. 3.2.2
Metode Interview Interview adalah teknik pengumpulan data yang dilakukan penulis dengan wawancara secara langsung dengan staf di PDAM Tirta Moedal Semarang. Metode ini dilakukan dengan mengadakan tatap muka secara langsung dengan key person yang terkait yaitu petugas sekertaris PDAM yang langsung berhubungan dengan pemakaian air di wilayah Semarang.
3.3
Metode Kegiatan Metode yang dilakukan dalam peramalan penggunaan air di PDAM Tirta
Moedal Semarang adalah metode ANFIS model FISTakagi-Sugeno orde-1 dan diimplementasikan dengan menggunakan bahasa pemrograman Matlab, dengan langkah-langkah sebagai berikut. 1. Melakukan observasi selama kurun waktu tertentu. 2. Membuat rancangan Flowchart. 3. Memasukkan Data. 4. Membangun Sistem Inferensi Fuzzy (Fuzzy Inference System). 5. Menentukan parameter Pelatihan. 6. Proses pelatihan. 7. Analisis hasil peramalan. 3.4
Analisis Data Hasil peramalan data pemakaian air di PDAM Tirta Moedal semarang
diuraikan dan dijelaskan secara deskriptif. Penaksiran dan penarikan simpulan
38
dilakukan berdasarkan tiap langkah proses Adaptive Neuro fuzzy Inference System. Simpulan akhir ditentukan berdasarkan hasil dari peramalan dengan menggunakan metode ANFIS. Pada tahap ini dapat dilakukan evaluasi dari hasil pelatihan, yang mana pelatihan terbaik ANFIS berdasarkan jumlah input, jumlah klaster, error dan momentum, yaitu yang menghasilkan nilai SSE terkecil.
BAB V SIMPULAN DAN SARAN
5.1
SIMPULAN Dari hasil penelitian dan pembahasan tentang sistem peramalan pemakaian
air di PDAM Tirta Moedal Semarang menggunakan metode adaptive neuro-fuzzy inference systemdapat ditarik kesimpulan sebagai berikut. 8. Pengimplementasian metode Adaptive Neuro-Fuzzy InferenceSystem dalam peramalan pemakaian air yang pertama adalah membuat rancangan flowchart, melakukan clustering data menggunakan fuzzy C-Mean, menentukan neuron tiap-tiap lapisan, mencari nilai parameter dengan menggunakan
LSE
rekursif,
lalu
penentuan
perhitungan
error
menggunakan sum square error (SSE) dan membuat sistem peramalan pemakaian air dengan software MATLAB. 9. Setelah dilakukan percobaan dengan memasukkan variabel klas = 2, maksimum epoh = 100, error = 10-6, rentang nilai learning rate = 0.6 sampai 0.9, dan rentang nilai momentum = 0.6 sampai 0.9. Hasil yang menunjukkan SSE paling kecil adalah nilai learning rate 0.9 dan momentum 0.6 dengan SSE 0.0079163.Hasilperamalan pemakaian air dengan metode ANFIS untuk bulan Januari adalah 3.768.083m3 dengan error sebesar 0.00176, lalu Februari adalah 3.623.421m3 dengan error -0.00659, Maret adalah 3.624.532m3 dengan error -0.01467, dan April
67
68
adalah 3.735.794 m3 dengan error 0.00834. Hasil peramalan pemakaian air dengan metode ANFIS menunjukkan bahwa error yang dihasilkan relatif kecil. 5.2
SARAN 1. Dari hasil peramalan pemakaian air menggunakan metode ANFIS pada Tahun 2015 cenderung naik, maka pihak PDAM dianjurkanuntuk meningkatkan jumlah produksi air bersih agar tidak mengalami kekurangan dalam pendistribusian air bersih di kota Semarang. 2. Hasil dari peramalan pemakaian air di PDAM menggunakan metode adaptive neuro fuzzy inference system (ANFIS)ini mempunyai tingkat akurasi error yang relatif kecil, maka pihak PDAM dapat menggunakan metode ANFIS untuk meramalkan pemakaian air kedepannya. 3. Sistem ini memungkinkan untuk dikembangkan dengan menggunakan software lain selain software MATLAB agar lebih mudah dan bisa digunakan untuk masyarakat umum. 4. Untuk penelitian selanjutnya diharapkan adanya variabel input yang lebih detail, misalnya faktor cuaca dan jumlah keluarga, untuk digunakan sebagai data uji dan data target karena dapat membuat peramalan lebih akurat dan error yang relatif sedikit. 5. Perlunya penelitian dengan metode adaptive neuro fuzzy inference system terkait dengan peramalan yang lain misalnya digunakan untuk meramalkan harga emas, harga saham, penentuan listrik jangka pendek dan sebagainya.
69
DAFTAR PUSTAKA
Aldrian, E & Yudha, SD. 2008. Application of Multivariate Anfis for Daily Rainfall Prediction: Influences Of Training Data Size. Makara, Sains Volume 12 No 1. Hal 7-14.
Atsalakis, GS, et al,. Probability of trend prediction of exchange rate by ANFIS. Recent Advances in Stochastic Modeling and Data Analysis. Hal 414-422.
Bell, E. T. 1952. Mathematics: Queen and Servant of Science. London: G. Bell & Sons, Ltd. Buckley, J. J. & Hayashi, Y. (1995). Neural networks for fuzzy systems, Fuzzy Sets and Systems 71, pp. 265-276. Defit, S. 2013. Perkiraan Beban Listrik Jangka Pendek Dengan Metode Adaptive Neuro Fuzzy Inference System. Jurnal Ilmiah Sains dan Komputer (SAINTIKOM).Vol. 12. No.3.ISSN : 1978-6603. Hal 165-176 Fariza, A, Helen, A & Rasyid, A. 2007. Performansi Neuro Fuzzy Untuk Peramalan Data Time Series. Seminar Nasional Aplikasi Teknologi Informasi 2007 (SNATI 2007), 77-82
Fatkhurrozi, B, Muslim, MA& Didik RS. 2012. Penggunaan Artificial Neuro Fuzzy Inference Sistem (ANFIS) dalam Penentuan Status Aktivitas Gunung Merapi. Jurnal EECCIS Vol. 6, No. 2, 113-118. Http://www.scholarpedia.org/article/Fuzzy_neuro_network[accessed 12/3/2014]. Https://humaspdamsmg.wordpress.com/[accessed 12/11/2014].
Jang, JSR. 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on System, Man, and Cybernetics Volume 23. Hal 665685. Jang, JSR., CT Sun, & E Mizutani. 1997. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. London:Prentice-Hall, Inc.
70
Kusumadewi, S & Hartati S. 2006. Neuro Fuzzy: Integrasi Sistem Fuzzy & Jaringan Syaraf. Yogyakarta: Graha Ilmu. Kusumadewi, S. 2003. Artificial Intelligence Teknik dan Aplikasinya. Yogyakarta: Graha Ilmu. Makridakis, S. Steven, C & Victor, E. 1999. Metode dan Aplikasi Peramalan Edisi Kedua Jilid 1. Terjemahan oleh Untung S Andriyanto. Jakarta: Penerbit Erlangga. Mordjaoui, M & Boudjema B. 2011. Forecasting and Modelling Electricity Demand Using Anfis Predictor. Journal of Mathematics and Statistics Vol. 7 (4). Hal 275-281. Nasution, H. Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan. Pontianak. Jurnal ELKHA Vol.4, No 2,Oktober 2012. Hal 4-8. Nauck, D. & Kruse, R. (1996). Neuro-Fuzzy Classification with NEFCLASS, in P. Kleinschmidt, A. Bachem, U. Derigs, D. Fischer, U. LeopoldWildburger and R. Möhring (eds.), Operations Research Proceedings 1995, (Berlin), pp. 294-299. Nauck, D. & Kruse, R. (1997). Function Approximation by NEFPROX, in Proc. Second European Workshop on Fuzzy Decision Analysis and Neural Networks for Management, Planning, and Optimization (EFDAN'97), (Dortmund), pp. 160-169. Oktavia, SN. Mara, M & Satyahadewi, N. 2013. Pengelompokan kinerja Dosen Jurusan Matematika Fmipa Untan Berdasarkan Penilaian Mahasiswa Menggunakan Metode Ward. Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster). Volume 02, No. 2 (2013). Hal 93 – 100. Pakaja, F. Naba A. & Purwanto. 2012. Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan Dan Certainty Factor. Malang. Jurnal EECCIS Vol. 6, No. 1, Juni 2012, Hal 23-28. Eka PIN. 2003. Evaluasi kinerja jaringan syaraf Tiruan pada peramalan konsumsi Listrik kelompok tarif rumah Tangga. Jurnal Matematika Vol. 2 No. 1, Juni 2012. ISSN : 1693-1394, 9-18
Sinaga, RA. Aplikasi Jaringan Syaraf Tiruan Untuk Penentuan Konsentrasi Program Studi Bagi Calon Mahasiswa Baru Stmik Budidarma Medan.
71
Medan. Pelita Informatika Budi Darma 2012. Volume 11. ISSN : 23019425. Hal 1-4. Tjahjono, A. Martiana E&Ardhinata, TH. 2011. Penerapan AdaptiveNeuro Fuzzy Inference System (ANFIS) Untuk SistemPengambilan Keputusan DistribusiObat pada Sistem Informasi TerintegrasiPuskesmas dan Dinas Kesehatan. Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, Vol. 4 No. 1, Juni 2011. Hal 338-344 Warsito, B. 2009. Kapita Selekta Statistika Neural Network. Semarang: BP Undip. Wayan, YA. Suyitno, H & Mashuri. 2012. Aplikasi Fuzzy Linear Programming Produksi Dalam Optimalisasi. UNNES Journal of Mathematics Vol. 1. ISSN 2252-6943. Hal 1-7. Wei, LY. 2011. An Expanded Adaptive Neuro-Fuzzy Inference System (ANFIS) Model Based on AR and Causality of Multination Stock Market Volatility for TAIEX Forecasting. African Journal of Business Management Vol.5(15). Hal 6377-6387. Widodo, Prabowo P. & Handayanto, RT. 2012. Penerapan Soft Computing dengan Matlab. Bandung:Rekayasa Sains. Widowati & Sutimin. 2007. Buku Ajar Pemodelan Matematika. Semarang: Jurusan Matematika UNDIP.
Wiyanti, DT & Pulungan R. 2012 Peramalan Deret Waktu Menggunakan Model Fungsi Basis Radial (RBF) Dan Auto Regressive Integrated Moving Average (ARIMA). Jurnal MIPA. Vol. 35. ISSN 0215-9945. Hal 175-182.
72
Lampiran 1 Source Code MATLAB Mean, Deviasi dan LSE Rekursif function [a,c,U,obj_fcn] = findDevMean(A,klas); [center,U,obj_fcn] = fcm(A,klas); [n, m] = size(A); [Yy,Li] = max(U); for k=1 : klas, tY = []; for i=1:n, if Li(i) == k, tY = [tY;A(i,:)]; end; end; a(k,:) = std(tY); c(k,:) = mean(tY); end; function T = rekursif_LSE(A,y) [n, m] = size(A); n1 = m; n2 = n-n1; A1 = A(1:n1,:); y1 = y(1:n1,:); A2 = A(n1+1:end,:); y2 = y(n1+1:end,:); P = inv(A1'*A1); Az = (A1'*A1); T = Az\(A1'*y1); for i=1:n2, P = P ((P*A2(i,:)'*A2(i,:)*P)/(1+(A2(i,:)*P*A2(i,:)'))); T = T + (P*A2(i,:)'*(y2(i,:) - (A2(i,:)*T))); end; D = A*T; k = 1:n;
73
Lampiran 2 Source Code MATLAB Pada Pembelajaran Hybrid function [tC,sC,R,y, yr,coef,Et] = hybridAnfis(A,yTarget,klas,lr,mc, maxEpoch, Eps) [a,c,U,obj_fcn] = findDevMean(A,klas); tC = c; sC = a; E = 1; epoh = 0; [n,m] = size(A); y = yTarget; while (epoh <maxEpoch), epoh = epoh +1; E = 0; [coef,cc,We3,We2,We1,MMu,mu] = layer23(A,klas,tC,sC); w1 = We1; Mu = MMu; [We4,Youtput] = layer45(A,klas, coef,We3); X = coef; R = rekursif_LSE(X,y); yr = X*R; nn1 = fix(length(R)/klas); for i=1:n, for k=1:klas, yt(i,k) = X(i,(k-1)*nn1+1:k*nn1)*R((k1)*nn1+1:k*nn1); end; end; % hitung propagasi eror for i=1:n, %propagasi error lapisan ke-5 (E5) E5 = -2*(y(i)-yr(i)); %propagasi error lapisan ke-4 (E4) for k=1:klas, E4(i,k)=E5; end; %propagasi error lapisan ke-3 (E3) for k=1: klas E3(i,k) = yt(i,k)*E4(i,k); end; %propagasi error lapisan ke-2 (E2) for k=1 :klas, tt=0; for t=1:klas, for j=1 : m, if t~=k, tt=tt+w1(i,t,j); end; end
74
end; if m <2, E2(i,k)= tt/(sum(w1(i,:,1))^2)*E3(i,k); else E2(i,k)= tt/(sum(w1(i,:,k))^2)*E3(i,k); end; for t=1:klas, if t~=k, if m <2, E2(i,k)= E2(i,k)(tt/(sum(w1(i,:,1))^2))*E3(i,t); else E2(i,k)= E2(i,k)(tt/(sum(w1(i,:,k))^2))*E3(i,t); end end; end; end; for j=1:m, for k=1:klas, tt=1; if m>1, for t=1:m, if t~=j, tt=tt*Mu(i,k,t); end; end; else tt = tt*Mu(i,k,1); end; E1(j,k) = tt*E2(i,k); end; end; %hitung perubahan bobot a dan c (da & dc) if m>1, for j=1:m, for k=1 : klas, L= A(i,j)-tC(j,k); H= (1+(L/sC(j,k))^2)^2; da(j,k)=2*(L^2)/((sC(j,k)^3)*H)*E1(j,k)*lr*A(i,j); dc(j,k)=2*L/((sC(j,k)^2)*H)*E1(j,k)*lr*A(i,j); if epoh > 1, da(j,k) = mc*dalama(j,k) + (1-mc)*da(j,k); end; if epoh > 1, dc(j,k) = mc*dclama(j,k) + (1-mc)*dc(j,k); end; sC(j,k) = sC(j,k) + da(j,k); tC(j,k) = tC(j,k) + dc(j,k); dclama(j,k)=dc(j,k); dalama(j,k)=da(j,k); end;
75
end; else for j=1:m, for k=1 : klas, L= A(i,j)-tC(k,j); H= (1+(L/sC(k,j))^2)^2; da(k,j)=2*(L^2)/((sC(k,j)^3)*H)*E1(j,k)*lr*A(i,j); dc(k,j)= 2*L/((sC(k,j)^2)*H)*E1(j,k)*lr*A(i,j); if epoh > 1, da(k,j) = mc*dalama(k,j) + (1-mc)*da(k,j); end; if epoh > 1, dc(k,j) = mc*dclama(k,j) + (1-mc)*dc(k,j); end; sC(k,j) = sC(k,j) + da(k,j); tC(k,j) = tC(k,j) + dc(k,j); dclama(k,j)=dc(k,j); dalama(k,j)=da(k,j); end; end; end; %hitung SSE E = E + (y(i)-yr(i))^2; end; Et(epoh,1) = E; end; [y yr y-yr];
76
Lampiran 3 Source Code MATLAB Pada Layer 2 dan 3 function [coef,cc,We3,We2,We1,MMu,mu] = layer23(A,klas,c,a); coef = []; [n, m] = size(A); We1 = zeros(n,klas,m); Mu = zeros(n, klas,m); for i=1 : n, for k=1 : klas, w1(k) = 1; for j = 1 : m, mu (k,j) = 1/(1+((A(i,j)-c(k,j))/a(k,j))^2); We1(i,k,j) = w1(k)*mu(k,j); MMu(i,k,j) = mu (k,j); end; if m>1, We2(i,k) = We1(i,k,1)*We1(i,k,2); else We2 = We1; end; end; for k=1 : klas, We3(i,k) = We2(i,k)/sum(We2(i,:)); end; cc=[]; for k=1 : klas, cc = [cc We3(i,k)*A(i,:) We3(i,k)]; end; coef = [coef; cc]; end;
77
Lampiran 4 Source Code MATLAB Pada Layer 4 function [We4,Youtput] = layer45(A,klas, coef,We3);
[n,m] = size(A); Youtput=[]; for i=1 :n, for k= 1: klas, for j = 1 :m, We4(i,k) = ((We3(i,k)*A(i,j))*coef(i,k+0)) + coef(i,k+1); end; end; for j= 1:m, Youtput(i,j) = sum(We4(i,:))/A(i,j); end;
end
78
Lampiran 5 Hasil PelatihanANFIS PadaLearning Rate 0.6, Momentum 0.9 dan Hasil SSEANFIS No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Target Output 3.144543999999999 3.067104000000000 3.059288000000000 3.304190000000000 3.303421999999999 3.453822000000000 3.290379000000000 3.566273000000000 3.618284000000000 3.226684000000000 3.602617000000000 3.209201000000000 3.573662000000000 3.354486000000000 3.231039000000000 3.692030000000000 3.340866000000000 3.697875000000000 3.338178000000000 3.595348000000000 3.712062000000000 3.345547000000000 3.765259000000000 3.412801000000000 3.577273000000000 3.582495000000000 3.268994000000000 3.707174000000000 3.619453000000000 3.740184000000000 3.422852000000000 3.849307000000000 3.528953000000000 3.609874000000000 3.720595000000000 3.535390000000000 3.785714000000000 3.480641000000000 3.482469000000000
Output Jaringan 3.339685187241725 3.218325704911751 3.195480371148673 3.340777782638770 3.292391275162105 3.343848065831246 3.264376329822342 3.274953250693810 3.351464643578148 3.294731887531573 3.341333116653912 3.282649572271386 3.392575256699212 3.330781670903313 3.324415646250815 3.510958657364619 3.510424297935531 3.606786812970677 3.501290993216836 3.666154925580230 3.690080309824908 3.455204541345906 3.683041717126236 3.442155915746715 3.669664844895130 3.545079057346722 3.458429518227524 3.723601121063076 3.536014577980699 3.726521925003675 3.534209852763347 3.679734420145916 3.734010009717259 3.539145067334123 3.771901080473070 3.582290408823000 3.671364788113989 3.673806037219492 3.486084913958246
Error -0.195141187241725 -0.151221704911751 -0.136192371148673 -0.036587782638770 0.011030724837894 0.109973934168754 0.026002670177658 0.291319749306190 0.266819356421852 -0.068047887531574 0.261283883346088 -0.073448572271386 0.181086743300788 0.023704329096687 -0.093376646250815 0.181071342635381 -0.169558297935531 0.091088187029324 -0.163112993216836 -0.070806925580231 0.021981690175092 -0.109657541345906 0.082217282873764 -0.029354915746715 -0.092391844895130 0.037415942653278 -0.189435518227524 -0.016427121063077 0.083438422019301 0.013662074996324 -0.111357852763347 0.169572579854084 -0.205057009717259 0.070728932665877 -0.051306080473070 -0.046900408823000 0.114349211886011 -0.193165037219492 -0.003615913958247
79
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
3.717676000000000 3.703519000000000 3.741736000000000 3.523584000000000 3.966401000000000 3.681234000000000 3.942853000000000 3.787325000000000 3.675384000000000 3.785671000000000 3.557521000000000 3.477826000000000 3.819222000000000 3.739103000000000 3.872621000000000 3.580751000000000 4.078840000000000 3.820916000000000 3.889462000000000 3.944786000000000 3.701655000000000
3.731357227794799 3.690601574349566 3.751422105549639 3.588426442539119 3.948201575755512 3.647725951208557 3.686315490542514 3.738863963229953 3.650992097126721 3.794579045611176 3.621996227960884 3.623009029314688 3.737168720138811 3.759803851874797 3.784792093106666 3.643119338016000 4.036632318480383 3.745391740435373 3.979628583943953 3.815686464450222 3.741617346291411
-0.013681227794799 0.012917425650433 -0.009686105549639 -0.064842442539120 0.018199424244488 0.033508048791443 0.256537509457486 0.048461036770047 0.024391902873279 -0.008908045611176 -0.064475227960884 -0.145183029314688 0.082053279861188 -0.002070085187479 0.008782890689334 -0.006236833801601 0.004220768151962 0.007552425956463 -0.009016658394395 0.012909953554978 -0.003996234629141
80
Lampiran 6 Hasil PelatihanANFIS PadaLearning Rate 0.7, Momentum 0.9 dan Hasil SSEANFIS No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Target Output 3.144543999999999 3.067104000000000 3.059288000000000 3.304190000000000 3.303421999999999 3.453822000000000 3.290379000000000 3.566273000000000 3.618284000000000 3.226684000000000 3.602617000000000 3.209201000000000 3.573662000000000 3.354486000000000 3.231039000000000 3.692030000000000 3.340866000000000 3.697875000000000 3.338178000000000 3.595348000000000 3.712062000000000 3.345547000000000 3.765259000000000 3.412801000000000 3.577273000000000 3.582495000000000 3.268994000000000 3.707174000000000 3.619453000000000 3.740184000000000 3.422852000000000 3.849307000000000 3.528953000000000 3.609874000000000 3.720595000000000 3.535390000000000 3.785714000000000 3.480641000000000 3.482469000000000
Output Jaringan 3.380861067755577 3.173366109905440 3.093799878798019 3.381871886515027 3.327374132463117 3.384670788702729 3.282734283265337 3.301078332406938 3.391364988260903 3.330577363774106 3.382382639894927 3.313241619097462 3.422839033432588 3.372314265536990 3.365835966489061 3.499885742739059 3.499515913918349 3.579421923557722 3.493275444215631 3.651238150166678 3.688087107372561 3.463433066726483 3.676751799422533 3.455214053388024 3.656335813008617 3.524821400580470 3.465467829166356 3.744074358700843 3.517915935117575 3.748691769698606 3.516567505303718 3.671561015561637 3.760005504950394 3.520275309703474 3.803733440688229 3.555915598426251 3.658843739395950 3.662489870788675 3.483180740571946
Error -0.236317067755578 -0.106262109905439 -0.034511878798019 -0.077681886515027 -0.023952132463118 0.069151211297271 0.007644716734663 0.265194667593061 0.226919011739097 -0.103893363774107 0.220234360105073 -0.104040619097462 0.150822966567412 -0.017828265536990 -0.134796966489060 0.192144257260941 -0.158649913918348 0.118453076442278 -0.155097444215631 -0.055890150166677 0.023974892627439 -0.117886066726483 0.088507200577467 -0.042413053388024 -0.079062813008617 0.057673599419530 -0.196473829166356 -0.036900358700843 0.101537064882425 -0.008507769698606 -0.093715505303718 0.177745984438362 -0.231052504950394 0.089598690296525 -0.083138440688229 -0.020525598426250 0.126870260604050 -0.181848870788675 -0.000711740571946
81
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
3.717676000000000 3.703519000000000 3.741736000000000 3.523584000000000 3.966401000000000 3.681234000000000 3.942853000000000 3.787325000000000 3.675384000000000 3.785671000000000 3.557521000000000 3.477826000000000 3.819222000000000 3.739103000000000 3.872621000000000 3.580751000000000 4.078840000000000 3.820916000000000 3.889462000000000 3.944786000000000 3.701655000000000
3.756090548555608 3.688940923161402 3.782869280759071 3.561545402987996 3.876775546552926 3.626199104291885 3.681977389365385 3.766882111603089 3.630432988815987 3.821077308404782 3.595561431338930 3.596684020999163 3.764523714605963 3.760528333824323 3.795068741190640 3.620744697918458 4.025804942250646 3.741121156486686 3.999688630595205 3.838242828200044 3.736119078875985
-0.038414548555609 0.014578076838598 -0.041133280759071 -0.037961402987996 0.089625453447074 0.055034895708115 0.260875610634615 0.020442888396911 0.044951011184013 -0.035406308404782 -0.038040431338931 -0.118858020999162 0.054698285394037 -0.002142533382432 0.007755225880936 -0.003999369791845 0.005303505774936 0.007979484351332 -0.011022663059520 0.010654317179996 -0.003446407887598
82
Lampiran 7 Hasil PelatihanANFIS PadaLearning Rate 0.8, Momentum 0.9 dan Hasil SSEANFIS
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Target Output 3.144543999999999 3.067104000000000 3.059288000000000 3.304190000000000 3.303421999999999 3.453822000000000 3.290379000000000 3.566273000000000 3.618284000000000 3.226684000000000 3.602617000000000 3.209201000000000 3.573662000000000 3.354486000000000 3.231039000000000 3.692030000000000 3.340866000000000 3.697875000000000 3.338178000000000 3.595348000000000 3.712062000000000 3.345547000000000 3.765259000000000 3.412801000000000 3.577273000000000 3.582495000000000 3.268994000000000 3.707174000000000 3.619453000000000 3.740184000000000 3.422852000000000 3.849307000000000 3.528953000000000 3.609874000000000 3.720595000000000 3.535390000000000
Output Jaringan 3.340748278836552 3.215922130829046 3.192197412195667 3.341861722510684 3.292363906235016 3.344989495064704 3.263540281164811 3.274435994036162 3.352741639448518 3.294766805475565 3.342427574779907 3.282354090126423 3.394402700327099 3.331667321978383 3.325166294775991 3.512413158987835 3.511887755248969 3.605603413891574 3.502896796645030 3.663296409473338 3.687551398878591 3.457225329769064 3.680287879857663 3.444205439169005 3.666787270980018 3.545818451329921 3.460437327936932 3.724186803315897 3.536971257813950 3.727522774791242 3.535207462365869 3.676916572489202 3.736120044238513 3.540028905284486 3.778802981519552 3.581947198565263
Error -0.196204278836552 -0.148818130829046 -0.132909412195667 -0.037671722510684 0.011058093764984 0.108832504935295 0.026838718835189 0.291837005963838 0.265542360551483 -0.068082805475566 0.260189425220092 -0.073153090126424 0.179259299672901 0.022818678021617 -0.094127294775991 0.179616841012165 -0.171021755248969 0.092271586108426 -0.164718796645030 -0.067948409473338 0.024510601121409 -0.111678329769064 0.084971120142336 -0.031404439169005 -0.089514270980018 0.036676548670079 -0.191443327936932 -0.017012803315897 0.082481742186050 0.012661225208757 -0.112355462365869 0.172390427510798 -0.207167044238514 0.069845094715513 -0.058207981519552 -0.046557198565263
83
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
3.785714000000000 3.480641000000000 3.482469000000000 3.717676000000000 3.703519000000000 3.741736000000000 3.523584000000000 3.966401000000000 3.681234000000000 3.942853000000000 3.787325000000000 3.675384000000000 3.785671000000000 3.557521000000000 3.477826000000000 3.819222000000000 3.739103000000000 3.872621000000000 3.580751000000000 4.078840000000000 3.820916000000000 3.889462000000000 3.944786000000000 3.701655000000000
3.668484696382818 3.670930698884951 3.487883029014181 3.733069533718779 3.688094570952072 3.756060151664369 3.587879484961499 3.938169705700190 3.645198948304192 3.683650396653265 3.741703653798128 3.648384321732400 3.802711841781448 3.620276866852663 3.621254540891028 3.739754081809267 3.763841718300066 3.797624747316833 3.621370922889069 4.014414368853913 3.744649991269716 3.990468920436136 3.839256532104234 3.739677012213871
0.117229303617182 -0.190289698884950 -0.005414029014181 -0.015393533718779 0.015424429047928 -0.014324151664369 -0.064295484961499 0.028231294299810 0.036035051695808 0.259202603346735 0.045621346201872 0.026999678267600 -0.017040841781448 -0.062755866852663 -0.143428540891028 0.079467918190733 -0.002473871830006 0.007499625268317 -0.004061992288906 0.006442563114609 0.007626600873029 -0.010100692043613 0.010552946789577 -0.003802201221387
84
Lampiran 8 Hasil PelatihanANFIS PadaLearning Rate 0.9, Momentum 0.9 dan SSEANFIS No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Target Output 3.144543999999999 3.067104000000000 3.059288000000000 3.304190000000000 3.303421999999999 3.453822000000000 3.290379000000000 3.566273000000000 3.618284000000000 3.226684000000000 3.602617000000000 3.209201000000000 3.573662000000000 3.354486000000000 3.231039000000000 3.692030000000000 3.340866000000000 3.697875000000000 3.338178000000000 3.595348000000000 3.712062000000000 3.345547000000000 3.765259000000000 3.412801000000000 3.577273000000000 3.582495000000000 3.268994000000000 3.707174000000000 3.619453000000000 3.740184000000000 3.422852000000000 3.849307000000000 3.528953000000000 3.609874000000000 3.720595000000000 3.535390000000000 3.785714000000000 3.480641000000000 3.482469000000000
Output Jaringan 3.377584922188666 3.142719691314247 3.047241978413625 3.378653692271118 3.319732218785911 3.381608030680635 3.269768421822253 3.290460976482723 3.388643966089956 3.323263696671841 3.379193361548643 3.304060915931524 3.421176646475583 3.368509851970694 3.361586104901558 3.498680250949052 3.498309407902940 3.578673098285697 3.492053446874494 3.651043415924252 3.688142106681427 3.462153767524429 3.676734027198300 3.453907222011379 3.656177771268861 3.523711934750820 3.464193597279555 3.744427373845342 3.516774387371187 3.749064515043911 3.515420173833189 3.671508657698206 3.760423366607768 3.519144264477854 3.804282257623280 3.554993805173839 3.658703519211021 3.662375278081869 3.481938967756050
Error -0.233040922188667 -0.075615691314247 0.012046021586375 -0.074463692271119 -0.016310218785912 0.072213969319365 0.020610578177747 0.275812023517278 0.229640033910044 -0.096579696671841 0.223423638451356 -0.094859915931524 0.152485353524416 -0.014023851970694 -0.130547104901558 0.193349749050948 -0.157443407902940 0.119201901714304 -0.153875446874494 -0.055695415924252 0.023919893318573 -0.116606767524429 0.088524972801700 -0.041106222011379 -0.078904771268862 0.058783065249180 -0.195199597279556 -0.037253373845342 0.102678612628812 -0.008880515043912 -0.092568173833189 0.177798342301794 -0.231470366607768 0.090729735522145 -0.083687257623280 -0.019603805173839 0.127010480788979 -0.181734278081869 0.000530032243950
Hasil
85
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
3.717676000000000 3.703519000000000 3.741736000000000 3.523584000000000 3.966401000000000 3.681234000000000 3.942853000000000 3.787325000000000 3.675384000000000 3.785671000000000 3.557521000000000 3.477826000000000 3.819222000000000 3.739103000000000 3.872621000000000 3.580751000000000 4.078840000000000 3.820916000000000 3.889462000000000 3.944786000000000 3.701655000000000
3.756493318451927 3.689001245709931 3.783364233860555 3.560663340292966 3.877390844084995 3.625816347602760 3.681993644134991 3.767325145179682 3.630082796617042 3.821658977130777 3.594938380455305 3.596069808273492 3.764958307396988 3.766585709458278 3.798168496119289 3.627602590748378 3.994517649361531 3.748465386510811 3.973211690430545 3.836621611614929 3.743746564505265
-0.038817318451928 0.014517754290069 -0.041628233860555 -0.037079340292966 0.089010155915005 0.055417652397240 0.260859355865009 0.019999854820318 0.045301203382958 -0.035987977130777 -0.037417380455305 -0.118243808273492 0.054263692603012 -0.002748270945827 0.007445250388072 -0.004685159074837 0.008432235063847 0.007245061348919 -0.008374969043054 0.010816438838508 -0.004209156450526
86
Lampiran 9 Hasil PelatihanANFIS PadaLearning Rate 0.9, Momentum 0.7 dan Hasil SSEANFIS No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Target Output 3.144543999999999 3.067104000000000 3.059288000000000 3.304190000000000 3.303421999999999 3.453822000000000 3.290379000000000 3.566273000000000 3.618284000000000 3.226684000000000 3.602617000000000 3.209201000000000 3.573662000000000 3.354486000000000 3.231039000000000 3.692030000000000 3.340866000000000 3.697875000000000 3.338178000000000 3.595348000000000 3.712062000000000 3.345547000000000 3.765259000000000 3.412801000000000 3.577273000000000 3.582495000000000 3.268994000000000 3.707174000000000 3.619453000000000 3.740184000000000 3.422852000000000 3.849307000000000 3.528953000000000 3.609874000000000 3.720595000000000 3.535390000000000 3.785714000000000
Output Jaringan 3.339129500699747 3.220341377001549 3.198115648031776 3.340205296833997 3.292679499742001 3.343229060567214 3.265263999562363 3.275606458266659 3.350734671764638 3.294973229220565 3.340752141398658 3.283138322626036 3.391361882009143 3.330367604745959 3.324107909889685 3.509672515562832 3.509133252112854 3.607275949871867 3.499924312097341 3.668216185840802 3.692229925219251 3.453679542569504 3.685249986712169 3.440649073346377 3.671781899744556 3.544219624500952 3.456904114988142 3.723841175777551 3.535019579608070 3.726457945151197 3.533189808080994 3.681941685529278 3.733097058707957 3.538195041836203 3.766614940221819 3.582159145957969 3.673504893255911
Error -0.194585500699748 -0.153237377001549 -0.138827648031776 -0.036015296833997 0.010742500257998 0.110592939432786 0.025115000437637 0.290666541733341 0.267549328235362 -0.068289229220565 0.261864858601342 -0.073937322626036 0.182300117990857 0.024118395254042 -0.093068909889685 0.182357484437168 -0.168267252112854 0.090599050128134 -0.161746312097340 -0.072868185840802 0.019832074780749 -0.108132542569504 0.080009013287831 -0.027848073346377 -0.094508899744557 0.038275375499048 -0.187910114988142 -0.016667175777551 0.084433420391930 0.013726054848803 -0.110337808080994 0.167365314470722 -0.204144058707957 0.071678958163796 -0.046019940221819 -0.046769145957969 0.112209106744089
87
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
3.480641000000000 3.482469000000000 3.717676000000000 3.703519000000000 3.741736000000000 3.523584000000000 3.966401000000000 3.681234000000000 3.942853000000000 3.787325000000000 3.675384000000000 3.785671000000000 3.557521000000000 3.477826000000000 3.819222000000000 3.739103000000000 3.872621000000000 3.580751000000000 4.078840000000000 3.820916000000000 3.889462000000000 3.944786000000000 3.701655000000000
3.675974158041223 3.484625813926377 3.730754689030691 3.692743130953379 3.748374662397349 3.588441031501896 3.954208503857750 3.649368626550728 3.688507566293409 3.737364276089337 3.652719816436847 3.787649383332509 3.622911856379943 3.623953705659804 3.735876098140518 3.764846267913646 3.797491236004204 3.624794401095434 4.005390582279679 3.746238546638208 3.982483342144131 3.837575050941686 3.741408133407171
-0.195333158041223 -0.002156813926378 -0.013078689030692 0.010775869046621 -0.006638662397349 -0.064857031501896 0.012192496142250 0.031865373449272 0.254345433706591 0.049960723910662 0.022664183563153 -0.001978383332510 -0.065390856379943 -0.146127705659803 0.083345901859482 -0.002574326791364 0.007512976399580 -0.004404340109543 0.007344941772033 0.007467745336180 -0.009302134214413 0.010721094905832 -0.003975313340717
88
Lampiran 10 Hasil PelatihanANFIS PadaLearning Rate 0.9, Momentum 0.8 dan Hasil SSEANFIS No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Target Output 3.144543999999999 3.067104000000000 3.059288000000000 3.304190000000000 3.303421999999999 3.453822000000000 3.290379000000000 3.566273000000000 3.618284000000000 3.226684000000000 3.602617000000000 3.209201000000000 3.573662000000000 3.354486000000000 3.231039000000000 3.692030000000000 3.340866000000000 3.697875000000000 3.338178000000000 3.595348000000000 3.712062000000000 3.345547000000000 3.765259000000000 3.412801000000000 3.577273000000000 3.582495000000000 3.268994000000000 3.707174000000000 3.619453000000000 3.740184000000000 3.422852000000000 3.849307000000000 3.528953000000000 3.609874000000000 3.720595000000000 3.535390000000000 3.785714000000000
Output Jaringan 3.339551429594078 3.218764378028316 3.196061288410605 3.340640456864628 3.292440828662229 3.343700882010324 3.264559357790074 3.275083830816583 3.351294090177551 3.294771094769213 3.341193989357022 3.282743542455071 3.392306570230683 3.330678150746317 3.324334995578569 3.510713971943306 3.510178346734088 3.606942066620256 3.501025140321068 3.666592733961521 3.690489204047427 3.454886822386531 3.683477978634758 3.441837589813237 3.670108286367624 3.544938583583444 3.458112876513221 3.723571868757123 3.535841929589477 3.726432480445172 3.534031184505724 3.680177364958753 3.733759038274970 3.538983165870891 3.770944181175928 3.582314306897680 3.671809985461725
Error -0.195007429594079 -0.151660378028316 -0.136773288410605 -0.036450456864628 0.010981171337771 0.110121117989676 0.025819642209926 0.291189169183417 0.266989909822449 -0.068087094769214 0.261423010642977 -0.073542542455071 0.181355429769316 0.023807849253683 -0.093295995578569 0.181316028056694 -0.169312346734087 0.090932933379744 -0.162847140321068 -0.071244733961521 0.021572795952573 -0.109339822386531 0.081781021365242 -0.029036589813237 -0.092835286367624 0.037556416416557 -0.189118876513221 -0.016397868757123 0.083611070410522 0.013751519554827 -0.111179184505724 0.169129635041247 -0.204806038274970 0.070890834129109 -0.050349181175928 -0.046924306897679 0.113904014538275
89
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
3.480641000000000 3.482469000000000 3.717676000000000 3.703519000000000 3.741736000000000 3.523584000000000 3.966401000000000 3.681234000000000 3.942853000000000 3.787325000000000 3.675384000000000 3.785671000000000 3.557521000000000 3.477826000000000 3.819222000000000 3.739103000000000 3.872621000000000 3.580751000000000 4.078840000000000 3.820916000000000 3.889462000000000 3.944786000000000 3.701655000000000
3.674252538344424 3.485793113861705 3.731164279007969 3.691007660529286 3.750800394391331 3.588481897816972 3.949233239836654 3.648101165289389 3.686741381373244 3.738506302508549 3.651381492916138 3.793433018936816 3.622237187370365 3.623255672288129 3.736848279860224 3.760863181118268 3.785431852256006 3.643185523296919 4.044863585564848 3.746507184931747 3.969380462359323 3.814975170435565 3.742730849560488
-0.193611538344424 -0.003324113861705 -0.013488279007970 0.012511339470713 -0.009064394391330 -0.064897897816973 0.017167760163346 0.033132834710611 0.256111618626756 0.048818697491451 0.024002507083862 -0.007762018936817 -0.064716187370365 -0.145429672288129 0.082373720139776 -0.002176018111826 0.008718914774400 -0.006243452329691 0.003397641443516 0.007440881506826 -0.007991846235932 0.012981082956444 -0.004107584956048
90
91