II. TINJAUAN PUSTAKA
2.1. Industri Manufaktur Manufaktur berasal dari kata Manufacture yang berarti membuat dari tangan (manual) atau dengan mesin sehingga menghasilkan sesuatu barang (Prawirosentono, 2007). Secara umum, manufaktur menurut Prawirosentono (2007) adalah kegiatan memproses suatu barang atau beberapa bahan menjadi barang lain yang mempunyai nilai tambah yang lebih besar atau kegiatankegiatan memproses pengolahan input menjadi output. Contoh industri manufaktur adalah industri semen, industri obat, industri tekstil, industri perkayuan dan industri makanan. Proses manufaktur dapat digambarkan dalam kerangka masukanmasukan seperti terlihat pada Gambar 2. Masukannya berupa bahan baku yang selanjutnya bahan baku dikonversi (dengan bantuan peralatan, waktu, keahlian, uang, manajemen dan lain sebagainya) menjadi keluaran yang disebut sebagai produk akhir. Pengendalian produksi berkepentingan dengan peramalan atau perkiraan keluaran, penentuan input yang dibutuhkan, perencanaan dan pengolahan bahan baku berdasarkan urutan produksi atau konversi yang dibutuhkan
Perencanaan dan Pengendalian Produksi
Masukan
Proses Operasi
Keluaran
Bahan Baku
Manufaktur
Produk Jadi
Gambar 2. Manufaktur sebagai proses input-output (Biegel dalam Kusuma, 2004)
7
2.2. Teori Peramalan Menurut
Mulyono
(2000),
peramalan
adalah
suatu
proses
memperkirakan secara sistematik tentang apa yang mungkin terjadi di masa depan berdasarkan informasi masa lalu dan sekarang yang dimiliki, agar kesalahannya dapat diperkecil. Menurut Handoko (1994), peramalan adalah suatu penafsiran terhadap permintaan akan produk dan jasa di masa mendatang
dan bagian-bagiannya adalah sangat penting didalam
perencanaan dan pengawasan produksi. Peramalan yang baik adalah esensial untuk efisiensi operasi operasi manufacturing dan produksi jasa, hasil-hasil peramalan
digunaka
dalam
pembuatan
keputusan-keputusan
yang
menyangkut pemilihan proses, perencanaan kapasitas, dan tata letak fasilitas serta berbagai keputusan bersifat terus menerus dan berkenaan dengan perencanaan, penjadwalan dan persediaan. Menurut Heizer dan Render (2005), peramalan adalah seni dan ilmu untuk memperkirakan kejadian di masa depan yang dapat dilakukan dengan melibatkan
pengambilan data masa lalu dan menempatkannya ke masa
mendatang dengan suatu bentuk model matematik. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan, karena adanya perbedaan waktu antara kesadaran akan dibutuhkannya suatu kebijakan baru dengan waktu pelaksanaan kebijakan tersebut dan untuk memperkirakan peluang, serta kesempatan yang ada dan ancaman yang mungkin terjadi di masa mendatang. Terkait dengan penelitian ini, aktivitas peramalan dimaksudkan agar perusahaan PT ITP Tbk sebagai pembuat keputusan dalam proses produksi menyiasati pola kemungkinan permintaan semen di masa mendatang, maka perlu dilakukan maksimalisasi
produktivitas perusahaan dan untuk
meningkatkan keuntungan. Makridarkis, et al (1999) menyatakan bahwa komitmen telah tumbuh karena beberapa faktor, yaitu : 1. Meningkatnya kompleksitas organisasi dan lingkungannya. 2. Meningkatnya ukuran organisasi. 3. Lingkungan organisasi yang berubah dengan cepat.
8
4. Pengambilan keputusan yang semakin sistematis. 5. Metode peramalan dan pengetahuan semakin berkembang. Beberapa
faktor
penting yang harus dipertimbangkan dalam
peramalan mencakup : 1. Jarak ke masa depan yang harus diramal. 2. Tenggang waktu yang tersedia untuk mengambil keputusan. 3. Tingkat akurasi yang diperlukan. 4. Mutu data yang tersedia untuk analisis. 5. Sifat hubungan yang tercakup dalam masalah peramalan. 6. Biaya dan keuntungan yang berkaitan dengan masalah peramalan 2.3. Jenis–Jenis Peramalan Menurut Assauri (1999), pada umumnya peramalan dapat dibedakan dari beberapa segi tergantung dari cara melihatnya. Apabila dilihat dari sifat penyusunannya, maka peramalan dapat dibedakan atas dua macam, yaitu : 1. Peramalan subyektif, yaitu peramalan yang didasarkan atas perasaan atau intuisi dari orang yang menyusunnya. Dalam hal ini pandangan atau judgement dari orang yang menyusunnya sangat menentukan baik, tidaknya hasil ramalan tersebut. 2. Peramalan obyektif, yaitu peramalan yang didasarkan atas data yang relevan pada masa lalu, dengan menggunakan teknik–teknik dan metodemetode dalam penganalisaan data tersebut. Menurut Heizer dan Render (2005), peramalan berdasarkan horizon waktu dibedakan atas beberapa kategori, yaitu : 1. Peramalan jangka pendek, yaitu peramalan yang mencakup jangka waktu hingga satu tahun, tetapi umumnya kurang dari 3 (tiga) bulan. Peramalan ini digunakan untuk merencanakan pembelian, penjadwalan kerja, jumlah tenaga kerja, penugasan kerja dan tingkat produksi. 2. Peramalan jangka menengah, yaitu peramalan yang mencakup hitungan bulanan
hingga 3 (tiga) tahun. Peramalan
ini berguna untuk
9
merencanakan penjualan, perencanaan dan anggaran produksi, anggaran kas dan menganalisis bermacam-macam rencana operasi. 3.
Peramalan jangka panjang, yaitu peramalan yang mencakup perencanaan masa 3 tahun atau lebih. Peramalan ni digunakan untuk merencanakan produk baru, pembelanjaan modal, atau pengembangan fasilitas, serta penelitian dan pengembangan. Menurut Assauri (1999), peramalan berdasarkan sifat ramalan yang
telah disusun peramalan dibedakan atas dua macam, yaitu : 1.
Peramalan kualitatif, yaitu peramalan yang didasarkan atas data kualitatif pada masa lalu. Hasil peramalan yang dibuat sangat tergantung pada orang yang menyusunnya. Hal ini penting karena hasil peramalan tersebut ditentukan berdasarkan pemikiran bersifat intuitif, judgement, atau pendapat dan pengetahuan, serta pengalaman dari penyusunnya. Biasanya peramalan secara kualitatif didasarkan atas hasil penyelidikan.
2.
Peramalan kuantitatif, yaitu peramalan yang didasarkan atas data kuantitatif masa lalu. Hasil peramalan yang dibuat sangat tergantung pada metode yang digunakan dalam peramalan tersebut. Dengan metode yang berbeda akan dihasilkan data hasil peramalan berbeda. Baik tidaknya metode yang digunakan dalam peramalan ditentukan oleh penyimpangan antara hasil ramalan dengan kenyataan yang terjadi. Metode yang baik adalah metode yang memberikan nilai-nilai perbedaan atau penyimpangan yang mungkin. Peramalan kuantitatif
hanya
digunakan apabila terdapat tiga kondisi sebagai berikut : a. Adanya informasi tentang keadaan yang lain b. Informasi tersebut dapat dikuantifikasi dalam bentuk data c. Dapat diasumsikan bahwa pola yang lalu akan berkelanjutan pada masa mendatang. 2.4. Tahapan Peramalan Peramalan adalah suatu usaha untuk meramalkan keadaan di masa mendatang melalui pengujian keadaan di masa lalu. Esensi peramalan adalah perkiraan peristiwa-peristiwa di waktu mendatang atas dasar pola-pola di
10
waktu yang lalu dan penggunaan kebijakan
terhadap proyeksi-proyeksi
dengan pola-pola di waktu yang lalu. Peramalan memerlukan kebijakan, sedangkan proyeksi-proyeksi adalah fungsi mekanikal. Menurut Handoko (1994), proses peramalan terdiri dari beberapa langkah, yaitu : 1. Penentuan Tujuan. Langkah pertama terdiri atas penentuan macam estimasi yang diinginkan. Sebaliknya, tujuan tergantung pada kebutuhan informasi para manajer. Analis membicarakannya dengan para pembuat keputusan untuk mengetahui apa kebutuhan-kebutuhan dan menentukan : a. Peubah-peubah apa yang akan diestimasi. b. Siapa yang akan menggunakan hasil peramalan. c. Untuk tujuan-tujuan apa hasil peramalan akan digunakan. d. Estimasi jangka panjang atau jangka pendek yang diinginkan. e. Derajat kepentingan estimasi yang diinginkan. f. Kapan estimasi dibutuhkan. g. Bagian-bagian peramalan yang diinginkan, seperti peramalan untuk kelompok pembeli, kelompok produk atau daerah geografis. 2. Pengembangan Model. Setelah tujuan ditetapkan, langkah berikutnya adalah mengembangkan suatu model, yang merupakan penyajian secara lebih sederhana dari sistem yang dipelajari. Model adalah suatu kerangka analitik yang bila dimasukkan data masukan menghasilkan estimasi penjualan di masa mendatang. Pemilihan suatu model yang tepat adalah krusial, karena setiap model mempunyai asumsi-asumsi yang harus dipenuhi sebagai persyaratan penggunaannya. Validitas dan realiabilitas estimasi sangat tergantung pada model yang dipakai. 3. Pengujian Model. Sebelum diterapkan, model biasanya diuji untuk menentukan tingkat akurasi, validitas dan reliabilitas yang diharapkan. Hal ini sering mencakup penerapannya pada data historik dan penyiapan estimasi untuk tahun-tahun sekarang dengan data nyata yang tersedia. Nilai suatu model ditentukan oleh derajat ketetapan hasil peramalan dengan kenyataan. Dengan kata lain, pengujian model bermaksud untuk mengetahui validitas atau kemampuan prediksi secara logik suatu model.
11
4. Penerapan Model. Setelah pengujian, analis menerapkan model dan dalam tahap ini data historik dimasukkan ke dalam model untuk menghasilkan suatu ramalan. 5. Revisi dan evaluasi. Ramalan–ramalan yang telah dibuat harus senantiasa diperbaiki dan ditinjau kembali. Perbaikan mungkin perlu dilakukan, karena
adanya
perubahan-perubahan
dalam
perusahaan
atau
lingkungannya seperti tingkat harga produk perusahaan, karakteristikkarakteristik produk, pengeluaran-pengeluaran periklanan, kebijaksanaan moneter dan kemajuan teknologi. Evaluasi merupakan perbandingan hasil ramalan dengan hasil nyata untuk menilai ketetapan penggunaan suatu metodologi atau teknik peramalan. Langkah ini diperlukan untuk menjaga mutu estimasi-estimasi di waktu mendatang. 2.5. Metode Peramalan Terdapat dua pendekatan umum peramalan, sebagaimana ada dua cara mengatasi semua model keputusan, yaitu analisis kualitatif dan kuantitatif. Peramalan kuantitatif menggunakan model matematik yang beragam dengan data masa lalu dan peubah sebab akibat untuk meramalkan permintaan. Peramalan subyektif atau kualitatif, yaitu peramalan yang menggabungkan faktor seperti intuisi, emosi, pengalaman pribadi dan sistem nilai pengambilan keputusan untuk meramal (Handoko,1994). 2.5.1. Peramalan Kualitatif Teknik peramalan kualitatif adalah subyektif atau judgmental atau berdasarkan pada estimasi-estimasi dan pendapat-pendapat. Empat teknik peramalan kualitatif adalah : a. Keputusan dari pendapat juri eksekutif. Dalam metode ini, pendapat sekumpulan
kecil
manajer
atau
pakar
tingkat
tinggi,
sering
dikombinasikan dengan model statistik, lalu dikumpulkan untuk mendapatkan prediksi permintaan kelompok (Heizer dan Render, 2005). b. Metode
Delphi.
Metode
Delphi
merupakan
teknik
yang
mempergunakan suatu prosedur sistematik untuk mendapatkan suatu
12
proses konsensus-konsensus pendapat-pendapat dari suatu kelompok ahli. Teknik ini dilakukan dengan meminta kepada para anggota kelompok untuk memberikan serangkaian ramalan-ramalan melalui tanggapannya terhadap daftar pertanyaan, kemudian seorang moderator mengumpulkan data dan memformulasikan daftar pertanyaan baru, serta dibagikan lagi kepada kelompok (Handoko, 1994). c. Gabungan dari tenaga penjualan. Dalam pendekatan, setiap tenaga penjualan memperkirakan berapa penjualan yang dilakukan didalam wilayahnya. Peramalan ini kemudian dikaji untuk memastikan apakah peramalan cukup realistis. Kemudian peramalan dikombinasikan pada tingkat wilayah nasional untuk mendapatkan peramalan secara keseluruhan. d. Survei pasar konsumen. Metode ini meminta input dari konsumen mengenai rencana pembelian di masa mendatang. Hal ini tidak hanya membantu dalam hal menyiapkan peramalan, tetapi juga memperbaiki desain produk dan perencanaan produk baru (Heizer dan Hender, 2005). 2.5.2. Metode Peramalan Kuantitatif Peramalan kuantitatif menggunakan model matematik yang beragam dengan data masa lalu dan peubah sebab akibat untuk meramalkan permintaan. Metode peramalan kuantitatif memerlukan data historis atau data empiris, mutu data dan pemilihan
metode yang cocok
akan
menentukan hasil mutu peramalan. Peramalan kuantitatif dapat diterapkan bila terdapat tiga kondisi (Makridarkis, et al., 1999) berikut : a. Terdapat informasi masa lalu. b. Informasi tersebut bisa dikuantitatifkan dalam bentuk data numerik. c. Dapat diasumsikan bahwa pola masa lalu akan terus berlanjut di masa mendatang. Dua asumsi pertama pertama merupakan syarat keharusan bagi penerapan metode peramalan kuantitatif, sedangkan asusmsi ketiga merupakan syarat kecukupan, artinya walaupun asumsi ketiga dilanggar model yang dirumuskan masih dapat digunakan. Hanya hal ini akan
13
memberikan kesalahan peramalan yang relatif besar, bila perubahan pola data ataupun bentuk hubungan fungsional tersebut terjadi secara sistematis. Berdasarkan data masa lalu, metode peramalan kuantitatif
dibagi
menjadi dua bagian, yaitu metode deret waktu (time series), yaitu model yang membuat prediksi dengan asumsi bahwa masa depan merupakan fungsi masa lalu, dengan menggunakan data masa lalu dapat melakukan peramalan. Dalam metode deret waktu peramal hanya berusaha mencari pola-pola dari data suatu data, tanpa berusaha mencari apa penyebab dan mengapa polanya demikian. Bisa jadi pola data masa lalu tidak sama lagi dengan masa depan, karena faktor-faktor yang mempengaruhinya sudah berubah. Metode peramalan yang kedua adalah metode peramalan asosiatif atau metode peramalan kausal (metode peramalan eksplanatori), yaitu metode peramalan yang menggabungkan peubah atau faktor yang mungkin mempengaruhi permintaan atas suatu produk (peubah bebas) terhadap permintaan suatu produk (peubah tidak bebas). Peramalan kuantitatif juga memiliki keterbatasan, jika terjadi perubahan pola data atau hubungan sebab akibat, maka hasil ramalan menjadi kurang akurat (Heizer dan Render, 2005). 2.6. Metode Peramalan Deret Waktu Metode peramalan deret waktu merupakan suatu teknik peramalan yang menggunakan sekumpulan data yang dicatat selama periode tertentu yang digunakan untuk memprediksi atau meramalkan keadaan masa depan. Komponen pola data deret berkala (time series) menurut Heizer dan Render (2005), yaitu : 1.
Trend Sekuler yaitu arah data deret berkala jangka panjang yang cukup rata (smooth), atau pergerakan data sedikit demi sedikit meningkat atau menurun.
2.
Siklus adalah pola data yang terjadi setiap beberapa tahun, atau naik turunnya suatu deret waktu selama periode yang lebih panjang dari satu tahun.
14
3.
Musim adalah pola data yang berulang
pada kurun waktu tertentu
seperti hari, minggu, bulan , atau kuartal. 4.
Variasi acak adalah suatu titik khusus dalam data, yang disebabkan oleh peluang dan situasi yang tidak biasa. Variasi acak tidak memiliki pola khusus, jadi tidak dapat diprediksi. Pola data permintaan diidentifikasi dengan mengamati secara visual
plot data penjualan yang diperoleh dari program Microsoft Excel dan plot autokorelasinya.
Dari hasil plot data akan diketahui pola datanya untuk
sementara, apakah data tersebut memiliki unsur trend, siklus maupun musiman. Pola data ini akan membantu dalam penggunaan metode yang paling cocok yang akan digunakan dalam proses peramalan. Langkahlangkah yang dilakukan pada identifikasi pola data penjualan Semen adalah menentukan apakah serial data yang digunakan bersifat stasioner atau tidak. Data stasioner dapat diketahui dengan melihat nilai-nilai autokorelasinya sesuai rumus berikut ;
=
∑
– ∑
(
(
) )
……………….
(1)
Keterangan :
rk : koefisien autokorelasi pada waktu lampau k Yt
:
penjualan semen pada periode ke t
Yt-k : penjualan semen periode t-k Y1 : rataan nilai dari deret waktu Apabila nilainya turun dengan cepat atau mendekati nol sesudah nilai autokorelasi kedua atau ketiga, maka data tersebut bersifat stasioner. Sedangkan apabila data tidak bersifat stasioner yang ditunjukkan oleh nilainilai autokorelasi yang tidak turun ke nol dan bernilai positif. Autokorelasi adalah istilah yang digunakan untuk menjelaskan ketergantungan bersama antara nilai-nilai suatu deret berkala yang sama pada periode berlainan (Hanke et al., 2003).
15
2.6.1. Metode Trend Metode ini menggambarkan hubungan antara periode dan peubah yang diramalkan dengan menggunakan analisis trend. Apabila pola data yang digunakan memiliki unsur musiman, maka komponen musiman dapat juga dicoba dalam metode ini (Heizer dan Render, 2005). Persamaan proyeksi trend adalah : Model trend linear Keterangan: Ŷ
: Ŷ = a + bx ………………….. (2) : nilai terhitung dari peubah yang akan diramalkan
a
: persilangan sumbu y
b
: kemiringan garis
x
: peubah bebas (waktu)
t
: periode waktu
2.6.2. Metode Rataan Bergerak (Moving Average) Metode rataan menggunakan rataan semua data untuk meramal, jika tersedia data baru, maka data tersebut dihitung dengan menambahkan nilai terkini dan mengeluarkan nilai terlama. Jumlah periode pada metode rataan bergerak sederhana adalah sama tetapi akan selalu bergerak ke depan dan menghilangkan periode yang sebelumnya sesuai dengan pergerakannya. Metode ini tidak menangani trend atau musiman dengan baik, walaupun metode ini lebih baik daripada rataan sederhana. Istilah rataan bergerak digunakan karena setiap diperoleh data aktual baru, maka rataan yang baru dapat dihitung dengan meninggalkan data periode yang terlama dan memasukkan data periode terbaru. Metode rataan bergerak menggunakan nilai terakhir untuk membuat peramalan.Trend ini melicinkan Metode rataan bergerak yang akan digunakan sebagai peramalan untuk periode mendatang, dan seterusnya, secara matematik bentuk umum metode rataan bergerak dapat dirumuskan sebagai (Makridakis et al. (1995) berikut :
Yt + 1
:
(
)
……………. (3)
16
Y t +1
∑
:
………………………. (4)
Rataan bergerak
:
Keterangan : Yt +1
:
∑
…. (5)
Nilai peramalan untuk periode t+1
Yi : data permintaan ke-i k
: jumlah deret waktu yang digunakan
t
: periode waktu
2.6.3. Metode Pemulusan (Smoothing) Eksponensial Metode peramalan
merupakan metode rataan bergerak yang
memberikan bobot yang lebih kuat pada data terakhir daripada data awal. Hal ini menjadi sangat berguna jika perubahan terakhir pada data terlebih dahulu yang merupakan akibat dari perubahan aktual (seperti, pola musiman) daripada hanya fluktuasi acak (dimana suatu ramalan rataan bergerak sederhana sudah cukup). Metode ini juga menerangkan bahwa metode ini melakukan pembobotan menurun secara eksponensial terhadap nilai peubah atau observasi yang lalu. Setiap data pengamatan mempunyai kontribusi
dalam
penentuan
nilai
peramalan
periode
sebelumnya
(Makridakis et al., 1999). Rumusan penghalusan eksponensial secara umum dapat ditunjukkan sebagai berikut : Yt+1 = ∝
+ (1− ∝ )Y …………………… (6)
Peramalan baru = peramalan periode baru + ∝
( permintaan aktual
periode lalu – peramalan periode baru) Keterangan :
Yt + 1
= nilai peramalan periode t + 1
Yt
= data permintaan ke – t
∝
= konstanta penghalus ( 0 ≤∝ ≤ 1 )
Yt
= nilai peramalan periode ke-t
17
2.6.4. Metode Dekomposisi Makridakis et al, 1999, menjelaskan bahwa metode dekomposisi didasarkan pada asumsi bahwa data historis merupakan gabungan atau komposisi dari faktor musiman, komponen trend dan komponen siklus. Secara
matematik
bentuk
umum
pendekatan
dekomposisi
dapat
digambarkan sebagai berikut : Yt = f(Trt, CIt, Snt, €t) …………………….. (7) Keterangan : f
: fungsi peramalan
Trt
: komponen trend pada waktu t
CIt
: komponen siklus pada waktu t
Snt
: komponen musiman pada waktu t
€t
: komponen kesalahan pada waktu t
2.6.5. Metode Winter’s Multiplikatif Metode ini cocok untuk deret data dengan pola stationer, pola trend konsisten dan pola musiman. Metode Winter memiliki tiga komponen dasar, yaitu faktor acak atau random (at), faktor trend (bt) dan faktor musiman (Snt). Dalam menginisialisasi metode ini diperlukan minimal satu data musiman lengkap (L periode). Namun untuk mendapatkan α, β dan γ yang optimal diperlukan banyak percobaan pada berbagai kombinasi, sehingga memerlukan banyak parameter. Secara matematik metode ini dapat dirumuskan sebagai berikut : Yt
: a – (Yt / St-L) + ( 1-α) ( at-1 + bt-1) …………. (8)
bt
: β (at – at-1) + ( 1- β) bt-1 ………………………(9)
Snt
:γ
Yt+m
: ( at – mbt ) Snt-L+m ……………………………(11)
Keterangan :
(Yt/ at ) + ( 1- γ ) St-L ……………………… (10)
Yt = data aktual pada periode t at
= pemulusan terhadap deseasonalized data periode t
bt
= pemulusan terhadap dugaan trend pada periode t
Snt = pemulusan terhadap dugaan musim pada periode t
18
Yt+m = ramalan m periode ke depan setelah periode t pada msing-masing produk αβγ = pembobotan pemusulan L
= banyaknya periode dalam satu tahun
2.7. Metode Peramalan Kausal (Regresi) Dalam metode kausal nilai suatu peubah yang akan diramalkan dipengaruhi oleh peubah lain. Makridakis et al. (1999) menyatakan bahwa permalan metode kausal mengasumsikan adanya hubungan sebab akibat antara variabel independen dengan variabel dependen dari suatu model. Metode kausal sering juga disebut sebagai metode regresi. Metode regresi terdiri dari metode regresi sederhana yang terdiri dari satu variabel independen dan regresi berganda yang terdiri dari lebih dari satu variabel independen. 2.8 . Pemilihan Metode Peramalan Terbaik Pengunaan peramalan dalam pengambilan keputusan oleh setiap pimpinan, baik pimpinan perusahaan maupun pimpinan organisasi merupakan hal sangat penting. Dengan demikian seorang peneliti atau analis
sering
menggunakan
peramalan dalam penelitiannya,
dapat
menentukan teknik dan metode peramalan yang tepat. Dalam pemilihan teknik dan metode peramalan yang tepat perlu diketahui beberapa ciri-ciri penting yang sangat berpengaruh terhadap analisa dan pengambilan keputusan dalam mempersiapkan peramalan (Assauri, 1999). Ciri utama yang perlu diperhatikan adalah : 1. Horison waktu. Periode waktu selama suatu keputusan atau analisa akan mempunyai pengaruh dan untuk ini manajer atau analis harus merencanakan dan pengaruh-pengruh pemilihan teknik dan metode peramalan yang tepat 2. Tingkat Perincian. Tugas-tugas dalam pengambilan keputusan dan analisa umumnya dibagi-bagi (untuk mempermudah penanganannya menurut tingkat perincian yang dibutuhkan). Dalam pemilihan teknik atau metode peramalan untuk suatu keadaan tertentu haruslah hati-hati,
19
karena harus disesuaikan dengan tingkat perincian yang dibutuhkan dari peramalan tersebut untuk digunakan bagi pengambilan keputusan dan analisa. 3. Jumlah Produk. Dalam keadaan di mana keputusan atau analisa yang dibuat mengenai berbagai produk perusahaan, maka hendaklah ada usaha pengembangan secara efektif atas aturan-aturan pengambilan keputusan yang dapat diaplikasikan secara mekanis untuk masingmasing produk. Dalam keadaan ini hanya ada satu produk yang diramalkan, maka aturan-aturan yang digunakan dalam persiapan ramalan dapat lebih rinci dan lebih rumit dari keadaan di mana terdapat banyak ramalan yang harus dibuat. 4. Pengawasan Versus Perencanaan. Dalam metode peramalan yang dibutuhkan untuk pengawasan adalah metode peramalan yang mampu memperkirakan dan mengetahui sedini mungkin perubahan-perubahan yang terdapat dalam pola dasar. Sedangkan dalam bidang perencanaan umumnya dianggap bahwa pola yang ada akan berkelanjutan pada masa depan dan karena itu dasar-dasar utama yang penting adalah mengidentifikasi pola-pola tersebut, serta
mengekstrapolasikannya
untuk masa mendatang. 5. Stabilitas. Dalam keadaan stabil, metode peramalan dapat diterima dan diperiksa secara periodik untuk menentukan apakah hal tersebut masih berlaku. Sedangkan dalam keadaan yang tidak pasti, metode peramalan yang dibutuhkan adalah metode yang dapat sesuai dengan hasil-hasil yang terbaru secara terus menerus dan informasi-informasi terakhir. 6. Prosedur Perencanaan yang Ada. Suatu metode peramalan umumnya memasukkan proses perubahan-perubahan rencana perusahaan dan prosedur-prosedur pengambilan keputusan. Setiap prosedur-prosedur pengambilan keputusan membutuhkan metode peramalan yang berbeda dengan memilih metode yang berlaku pada saat dimulainya Faktor-faktor utama yang dapat diidentifikasi sebagai teknik dan metode peramalan adalah :
20
1.
Horison Waktu. Ada dua aspek dari horison waktu yang berhubungan dengan masing-masing metode peramalan. Pertama adalah cakupan waktu di masa mendatang. Aspek kedua adalah jumlah periode yang dibutuhkan untuk ramalan. Beberapa teknik dan metode hanya dapat sesuai untuk peramalan satu atau dua periode ke depan, sedangkan teknik dan metode yang lain dapat digunakan untuk peramalan periode di masa depan.
2.
Pola dari Data. Dasar utama dari peramalan adalah anggapan bahwa macam dari pola data yang didapati di dalam data yang diramalkan akan berkelanjutan, maka perbedaan kemampuan metode peramalan dalam mengidentifikasi pola-pola data, memerlukan usaha penyesuaian antara pola data yang telah diperkirakan terlebih dahulu dengan teknik dan metode peramalan yang digunakan.
3.
Jenis dari Model. Banyak metode peramalan telah menganggap adanya beberapa model
dari keadaan yang diramalkan. Model-model ini
merupakan suatu deret di mana waktu digambarkan sebagai unsur yang penting untuk menentukan perubahan-perubahan dalam pola yang mungkin secara sistematik dapat dijelaskan dengan analisis regresi atau korelasi. Model yang lain adalah model sebab akibat atau “ causal model” yang menggambarkan bahwa ramalan yang dilakukan sangat tergantung pada terjadinya sejumlah peristiwa yang lain atau sifatnya merupakan campuran dari model-model yang telah disebutkan di atas. Model-model tersebut sangat penting diperhatikan, karena model-model tersebut mempunyai kemampuan yang berbeda dalam analisa keadaan untuk pengambilan keputusan. 4.
Biaya. Umumnya ada 4 (empat) unsur biaya yang tercakup dalam penggunaan suatu proses ramalan, yaitu biaya-biaya pengembangan, penyimpanan data, operasi pelaksanaan dan kesempatan dalam penggunaan teknik-teknik dan metode-metode lainnya.
5.
Ketepatan. Tingkat ketepatan yang dibutuhkan sangat erat hubungannya dengan tingkat perincian yang dibutuhkan dalam suatu peramalan. Untuk beberapa pengambilan keputusan diharapkan variasi atau atas
21
ramalan yang dilakukan antara 10%-15% bagi maksud-maksud yang diharapkan, sedangkan untuk hal atau kasus lain mungkin menganggap bahwa adanya variasi atau penyimpangan atas ramalan 5% adalah cukup berbahaya . Ada beberapa tolak ukur yang dapat digunakan sebagai alat untuk mengukur kesalahan dalam peramalan (forecast error), yaitu : 1. Mean Absolute Error (MAE) MAE merupakan suatu ukuran perbedaan atau selisih antara ramalan dengan aktual. MAE diperoleh dengan mengambil nilai absolut dari tiap kesalahan peramalan dibagi dengan jumlah periode data. Umumnya, semakin kecil nilai MAE, semakin akuran suatu ramalan (Heizer dan Render, 2005). MAE dapat dihitung sebagai berikut : ∑|
MAE = MAE =
|
………………… (12)
∑|
|
……… (13)
Dimana : Dt-Ft : selisih antara nilai data aktual dan peramalan periode N
: periode data
2. Mean Square Error (MSE) MSE merupakan rataan selisih kuadrat antara nilai yang diramalkan dan yang diamati (Heizer dan Render, 2005). MSE dapat dihitung sebagai berikut : MSE =
MSE =
∑(
)
∑(
…………………………..(14) )
……….(15)
3. Mean Absolute Percentage Error (MAPE) Menghitung dalam unsur yang diramal ribuan yang dihitung sebagai rataan diferensiasi absolut antara nilai yang diramalkan dan aktual untuk n periode (Heizer dan Render, 2005). MAPE dapat dihitung sebagai berikut : MAPE =
∑|
| ……………………………….. (16)
22
MAPE =
∑
|
|/
……….(17)
2.9. Pengertian Produksi Produksi adalah serangkaian kegiatan yang menggunakan sejumlah sumber daya untuk menghasilkan barang dan jasa. Menurut Buffa dan Sarin (1996),
sistem produksi sebagai
alat yang digunakan untuk mengubah
masukan sumber daya (input) guna menciptakan barang dan jasa yang berguna sebagai keluaran (output). Rangkaian masukan konversi–keluaran merupakan cara yang berguna untuk mengkonseptualisasikan suatu sistem produksi, dimulai dengan unit terkecil dari kegiatan produksi yang disebut operasi. Tujuan utama suatu perusahaan dalam melakukan kegiatan produksi suatu barang atau jasa adalah untuk memperoleh keuntungan maksimum. Fungsi produksi merupakan hubungan fisik antara jumlah input dengan output. Hubungan antara input dan output ini dapat diformulasikan oleh sebuah fungsi produksi, yang dalam bentuk matematik dapat ditulis berikut : Q = f (K, T, M, n) ……………… (18) Dimana Q : output yang dihasilkan selama satu periode tertentu K : kapital T : tenaga kerja M : material n : faktor lainya. Dari input yang tersedia setiap perusahaan ingin memperoleh hasil maksimal sesuai dengan tingkat teknologi tertinggi (Nicholson, 2001). Sistem produksi dan operasi adalah suatu keterkaitan unsur-unsur yang berbeda secara terpadu, menyatu dan menyeluruh dalam pentransformasian masukan menjadi keluaran. Suatu sistem mempunyai banyak komponen yang terdapat dalam unsur, baik bahan maupun pentransformasiannya serta juga keluarannya. Sistem produksi mengkombinasikan atau menggabungkan dalam proses transformasi, komponen-komponen tersebut yang berupa bahan, tenaga kerja, modal dan lainnya (Assauri, 1999)
23
Masukan Bahan, Tenaga kerja, Mesin, Energi, Modal
Transformasi
Keluaran
Proses Konversi
Barang dan Jasa
dan Infromasi
Gambar 3. Sistem produksi dan operasi (Assauri, 1999)
2.10. Optimasi Produksi Persoalan optimasi adalah suatu persoalan untuk membuat nilai suatu fungsi (X) beberapa peubah menjadi maksimum atau minimum atau dengan memperhatikan pembatasan-pembatasan yang ada. Biasanya pembatasanpembatasan tersebut meliputi tenaga kerja (men), uang (money), material yang merupakan input, waktu dan ruang.
Program linear (Linear
Programing atau LP) adalah suatu metode yang digunakan didalam penentuan optimasi produksi suatu perusahaan. LP merupakan metode matematik dalam mengalokasikan sumber daya
langka untuk mencapai
suatu tujuan seperti maksimum keuntungan atau meminimumkan biaya (Mulyono, 1991). Menurut Siswanto (2007),
LP adalah sebuah metode matematik
berkarakteristik linear untuk menemukan suatu penyelesaian optimal dengan cara memaksimalkan atau meminimalkan fungsi tujuan terhadap satu susunan kendala. Soekartawi (1992) mengatakan bahwa optimasi adalah penggunaan faktor-faktor produksi seefisien mungkin. Faktor-faktor produksi tersebut adalah modal, mesin, bahan baku, bahan pembantu dan tenaga kerja. Optimasi yang dilakukan dapat ditempuh dengan dua cara, yaitu : 1. Maksimisasi, yaitu menggunakan atau mengalokasikan input yang sudah tertentu
untuk
mendapatkan
keuntungan
maksimal.
Maksimisasi
keuntungan ini dapat dilihat baik dari segi laba, sistem kerja yang efektif (rancangan penugasan), maksimisasi pangsa pasar dan lokasi perusahaan
24
2. Minimisasi, yaitu untuk menghasilkan tingkat output tertentu dengan menggunakan input atau biaya paling minimal. Minimalisasi dapat berupa minimalisasi penggunaan sumber daya, biaya distribusi, biaya persediaan, biaya pengendalian mutu, jumlah tenaga kerja, waktu proses pelayanan dan fasilitas perusahaan. 2.10.1. Konsep Dasar Linear Programing Mulyono (1991), mendefenisikan program linear sebagai suatu metode matematik dalam mengalokasikan sumber daya langka untuk mencapai suatu tujuan seperti memaksimumkan keuntungan atau meminimumkan biaya. Persoalan dalam program linear berusaha untuk mencari pemecahan optimal di dalam batasan sumber daya perusahaan. Agar program linear dapat diterapkan, maka asumsi-asumsi dasar yang dapat digunakan adalah : a. Linearity. Kata linear secara tidak langsung dapat diartikan sebagai hubungan proporsional yang berarti bahwa tingkat perubahan atau kemiringan hubungan fungsional itu adalah konstan dan karena itu perubahan nilai peubah mengakibatkan perubahan relatif nilai fungsi dalam jumlah yang sama. b. Additivity. Hal ini dapat diartikan sebagai tak ada penyesuaian pada perhitungan peubah kriteria karena terjadinya interaksi. Additivitas mengharuskan bahwa fungsi tujuan adalah jumlah langsung dari kontribusi individual dari peubah-peubah yang berbeda. Dengan cara yang sama, dari sisi kiri dari setiap batasan hanya merupakan jumlah penggunaan individual dari setiap peubah dari sumber daya yang bersesuaian. c. Divisibility. Suatu asumsi yang menyatakan bahwa nilai solusi yang diperoleh tidak harus merupakan bilangan bulat. Solusi dari hasil perhitungan dapat terjadi pada nilai pecahan manapun. Dalam hal ini peubah keputusan merupakan peubah
kontinu, sebagai lawan dari
peubah diskrit atau bilangan bulat. d. Deterministic. Dalam LP semua parameter model diketahui konstan, maka secara tak langsung mengasumsikan bahwa suatu masalah
25
keputusan dalam suatu kerangka statis, dimana semua parameter diketahui dengan kepastian. Program linear memiliki beberapa keuntungan dan kelebihan, yaitu sebagai alat kuantitatif untuk melakukan pemrograman kelebihan program linear antara lain mudah dilaksanakan, terutama jika menggunakan alat bantu komputer dan dapat menggunakan banyak peubah,
sehingga
berbagai
pemanfaatan sumber daya
kemungkinan
untuk
memperoleh
optimum yang dapat dicapai, fungsi tujuan
dapat difleksibelkan sesuai dengan tujuan penelitian atau berdasarkan data yang tersedia. Kekurangan dari pemrograman linear adalah jika komputer
tidak
tersedia,
maka
pemrograman
linear
menggunakan banyak peubah akan menyulitkan dalam
dengan
analisanya
bahkan tidak dapat dikerjakan secara manual. 2.10.2. Model Linear Programing Model merupakan suatu representasi dari suatu sistem yang sedang dipelajari dan digunakan sebagai alat untuk meramalkan dan mengontrol. Fungsi utama dari suatu model adalah kemampuan untuk menjelaskan dan bukan hanya secara deskriptif. Selain itu, model merupakan suatu sistem dan model juga merupakan suatu kesatuan yang terdiri dari bagian-bagian atau komponen-komponen yang saling berkaitan. Teknik di dalam program linear menggambarkan bahwa fungsi linear dalam model matematik adalah linear dan teknik pemecahan masalah terdiri dari langkah-langkah matematik yang telah ditetapkan disebut program. Dalam hal ini, terdapat tiga tahapan dalam penggunaan program linear (Taylor III, 2001), yaitu ; a. Masalah harus dapat diidentifikasikan sebagai sesuatu yang dapat diselesaikan dengan program linear. b. Masalah yang tidak terstruktur harus dapat dirumuskan dalam model matematik, sehingga menjadi terstruktur. c. Model harus diselesaikan dengan teknik matematik yang telah dibuat.
26
Model adalah sebuah tiruan terhadap realita. Langkah untuk membuat peralihan dari realita ke model kuantitatif dinamakan perumusan model yang merupakan salah satu teknik dasar didalam penentuan teknik optimasi produksi. Model pemrograman linear mempunyai tiga unsur utama (Siswanto, 2007) yaitu: a. Peubah Keputusan. Peubah keputusan adalah peubah persoalan yang akan mempengaruhi nilai tujuan yang hendak dicapai. Didalam proses pemodelan, penemuan peubah keputusan tersebut harus dilakukan terlebih dahulu sebelum merumuskan fungsi tujuan dan kendala-kendalanya. b. Fungsi Tujuan. Dalam model pemrograman linear, tujuan yang hendak dicapai harus diwujudkan kedalam sebuah fungsi matematik linear dan selanjutnya dimaksimumkan atau diminimumkan terhadap kendalakendala yang ada. c. Fungsi Kendala.
Kendala dapat didefinisikan sebagai suatu pembatas
terhadap kumpulan keputusan yang mungkin dibuat dan harus dituangkan kedalam fungsi matematik linear. Secara umum model dari program linear adalah sebagai berikut : Maksimumkan/Minimumkan : Z = ∑
, dengan J = 1,2,…, n
Z = C1X1 + C2X2 + …+ CnXn …………(19) Fungsi Kendala
:
∑
(≤, =, ≥)
, dengan i = 1,2,..,m ;
Xj ≥ 0 atau
a11X1 + a12X2 + A1nXn (≤, =, ≥)b1 …………(20) a12X2 + a22X2 + A2nXn (≤, =, ≥)b2 ………...(22) am1X1 + am2X2 + AmnXn (≤, =, ≥)bm ……….(23) X1≥ 0, X2≥ 0, ….,Xn ≥
…………………(24)
Keterangan Z
: nilai fungsi tujuan
Cj
: parameter yang dijadikan kriteria optimasi atau koefisien peubah pengambilan keputusan
Xj
: peubah pengambil keputusan atau aktivitas ke-j
27
aij
: sumber daya yang tersedia dari kendala ke-i
2.10.3. Analisis Sensitivitas Menurut Soekartiwi (1992), analisis sensitivitas ini penting karena dalam kegiatan sehari-hari faktor ketidakpastian itu selalu ada. Faktor ketidakpastian ini sering terjadi pada perubahan harga dan produktivitas. Pengertian sensitivitas adalah memberlakukannya parameter sumberdaya yang tersedia pada batas yang paling kecil (lower limit) dan batas yang paling besar (upper limit). Analisis sensitivitas digunakan untuk mengetahui sejauhmana jawaban optimal dapat diterapkan apabila terjadi perubahan parameter yang membangun model. Perubahan yang dapat terjadi adalah perubahan terhadap koefisien tujuan, perubahan koefisien fungsi kendala, perubahan nilai sebelah kanan model dan adanya tambahan peubah keputusan. Analisis ini bertujuan untuk memperoleh informasi mengenai pemecahan optimum baru yang memungkinkan sesuai dengan parameter perhitungan tambahan minimal. Analisis sensitivas sangat berguna untuk mengetahui seberapa jauh solusi optimal tidak akan berubah jika terjadi perubahan pada harga jual setiap produk, biaya persatuan produk, dan ketersediaan sumber daya yang dimiliki. Apabila perubahan-perubahan yang terjadi masih dalam selang yang diperbolehkan, maka solusi optimal awal tidak akan berubah. Selang dalam program linear terdiri atas batas penurunan (allowable decrease) dan batas peningkatan (allowable increase). Batas penurunan memperlihatkan nilai peningkatan yang tidak akan mengubah solusi optimal awal. Pada fungsi kendala, analisis sensitivitas dapat menilai ruas sebelah kanan kendala yang digunakan untuk menggunakan status kendala pembatas dan bukan pembatas pada optimasi produksi. Suatu kendala dikatakan pembatas apabila terdapat nilai batas penurunan dan peningkatan sebesar nilai tertentu. Sedangkan kendala dikatakan bukan pembatas, apabila tidak terdapat nilai sebesar nilai tertentu pada nilai batas penurunan
dan
peningkatan.
Biasanya
kendala
bukan
pembatas
28
ditunjukkan oleh adanya nilai tak terhingga pada nilai batas peningkatan (Taha, 1996). 2.10.4. Analisis Dual Analisis dual digunakan untuk mengetahui penilaian terhadap sumber daya dengan melihat kekurangan (slack) atau kelebihan (surplus) dan nilai dualnya. Slack atau surplus digunakan untuk menandai sisa atau kelebihan kapasitas yang akan terjadi pada peubah optimal. Peubah slack (≤) akan berkaitan dengan batasan dan mewakili jumlah kelebihan sisi kanan dari batasan tersebut dibandingkan sisi kiri. Peubah surplus diidentifikasikan dengan batasan (≥) dan mewakili kelebihan sisi kiri dibandingkan sisi kanan. Nilai dual price menunjukkan perubahan yang akan terjadi pada fungsi tujuan apabila sumber daya berubah sebesar satu satuan. Jika sumber daya yang digunakan memiliki nilai slack atau surplus yang sama dengan nol dan nilai dualnya lebih besar dari nol dapat menunjukkan bahwa seluruh aktivitas pada kendala dipergunakan semua data sumber daya tersebut tersebut merupakan sumber daya langka atau kendala yang aktif membatasi nilai tujuan. Jika sumber daya yang digunakan memiliki nilai slack atau surplus lebih besar nol dan nilai dualnya sama dengan nol, berarti sumber daya tersebut merupakan sumber daya yang lebih. Kendala tersebut kendala tidak aktif, yaitu kendala yang tidah habis terpakai dalam proses produksi dan tidak akan mempengaruhi fungsi tujuan, jika terjadi penambahan sebesar satu satuan (Taha, 1996) 2.11. Hasil Penelitian Terdahulu yang Relevan Mukti (1997) melakukan penelitian mengenai strategi perencanaan produksi agregat industri kayu lapis. Metode perencanaan produksi dimulai dengan
melakukan
peramalan
terhadap
permintaan
kayu
dengan
menggunakan metode peramalan ARIMA (Autoregressive Integrated Moving Avarage Model) dan hasil penelitian mengenai optimasi dilakukan dengan menggunakan program linear dengan bantuan program komputer Linear Interactive of Discrete Optimize (LINDO), dengan total biaya minimum yang dihasilkan dari hasil optimasi Rp 335.405.790.000,00.
29
Faktor – faktor yang menjadi kendala dalam perumusan model program linear adalah jam tenaga kerja reguler, jam tenaga kerja lembur, kapasitas gudang, pemintaan produk dan persediaan produk jadi. Zameg (2006) melakukan penelitian mengenai peramalan volume ekspor komoditas kopi dan kakao Indonesia. Metode peramalan yang digunakan dalam penelitian tersebut adalah metode peramalan time series, yaitu metode dengan proyeksi trend, metode rataan bergerak, metode penghalusan eksponensial, metode winter, metode dekomposisi dan metode ARIMA. Berdasarkan metode peramalan time series yang diuji dan sesuai dengan pola data yang ada, maka metode peramalan kuantitatif terbaik untuk meramalkan volume ekspor kopi indonesia adalah metode Double Eksponential Smoothing (DES)
dengan nilai (MAPE) 13,18%, Metode
terbaik untuk meramalkan volume ekspor kakao Indonesia adalah metode Trend Analysis dengan nilai MAPE 24,71%. Andinova (2009) melakukan penelitian mengenai kajian optimasi untuk
meningkatkan keuntungan profitabilitas pada PT. Pismatex,
Pekalongan. Peubah keputusan di dalam proses penelitian tersebut adalah tingkat produksi sarung selama satu periode produksi (12 bulan), yang dikelompokkan menjadi 5 kelompok jenis produk. Hasil penelitian mengidentifikasi bahwa PT. Pismatex mengalami kendala dalam upayanya memaksimalkan keuntungan, berupa proses produksi dalam bentuk keterbatasan sumber daya yang dimilikinya, yaitu meliputi ketersediaan bahan baku, jam kerja tenaga kerja langsung, jam mesin dan jumlah permintaan. Penelitian dilakukan dengan menggunakan model LP dengan bantuan program komputer LINDO. Menurut hasil pengolahan melalui model LP, tingkat keuntungan yang dihasilkan proses optimasi Rp 47.701.230.000. Nilai ini jauh lebih besar dari tingkat keuntungan yang di peroleh PT. Pismatex pada kondisi aktual (Rp 42.946.352.240).
Hal tersebut
memberikan tingkat keuntungan Rp 4.754.877.760 setelah optimasi.