1
1.1 Zobrazovací metody v optické mikroskopii 1.1.1 Světlé pole Původní metoda optické mikroskopie. Světelný kužel prochází (v procházejícím světle) nebo se odráží (v odrážejícím světle) a vstupuje do objektivu. 1.1.2
Temné pole
Při pozorování v temném poli je z obrazu vyloučeno světlo, které by dopadalo přímo do objektivu. Prázdné zorné pole je při tomto postupu tmavé. Teprve to světlo, které se rozptýlí při dopadu na preparát, prochází částečně objektivem a vytváří obraz objektu, složený ze zářících bodů. Pro suché objektivy s numerickou aperturou do 0,65 není třeba zvláštních kondenzorů pro temné pole, stačí zastínit výstupní čočku kondenzoru clonou pro tmavé pole, která je ve volitelné výbavě mikroskopu. Protože se při tomto pozorování využívá jen zlomku světlené intenzity zdroje, musí mít tento zdroj dostatečný výkon. Z hlediska světelné optiky je důležité, že při pozorování v temném poli září na tmavém podkladě ty části objektu, na kterých dochází ve vlastnostech světla k dostatečnému rozdílu při průchodu pozorovaným objektem, jako např. na hranách. Při tvorbě obrazu v temném poli nemají význam rozdíly v indexu lomu, které jsou podstatné při pozorování ve fázovém kontrastu.
Obr. 1: Srovnání obrazu pořízeného ve světlém poli (a), temném poli (b) a temném poli se zařazeným červeným filtrem (c) [B]
2 1.1.3
Fázový kontrast
Metoda slouží ke zvýraznění kontrastu malých fázových objektů, u nichž detaily se absorpcí neliší od okolí, ale způsobují změnu fáze. Metoda převádí rozdíly fází na rozdíly intenzit. Fyzikální principy fázového kontrastu nejsou snadno přístupné. Naopak praktické používání fázového kontrastu ve světlené mikroskopii nečiní žádné potíže. Obr. 2: Srovnání obrazu pořízeného ve světlém poli (a) a Stručně můžeme říci, že po fázovým kontrastem (b) [A] průchodu preparátem se světlo mění dvěma způsoby: změna amplitudy procházejícího světla nám zprostředkuje vnímání detailů kontrastů jak intenzity, tak i barev. Výsledný vjem je běžný kontrastní barevný obraz. Změna fáze světla, která nastává při průchodu objektem, není zrakem přímo viditelná. Nemá-li tedy objekt detaily, lišící se kontrastem, je pro lidský zrak průhledný, čirý. U řady biologických objektů tyto vlastnosti převažují a proto je zrakem obtížně identifikujeme (viz Obr. 2(a)). Mikroskop, vybavený pro pozorování ve fázovém kontrastu, nám umožňuje pozorovat i takové objekty, které způsobují jen fázový posun světla. Hlubší poznatky o tomto principu jsou součástí fyzikální optiky. Rovnici fázového kontrastu můžeme odvodit pomocí Fourierovy transformace. 1.1.4
Ultrafialová mikroskopie
Zkracováním vlnové délky λ0 (viz vzorec pro mezní rozlišovací schopnost) se zvyšuje rozlišovací schopnost. Požadavky na ultrafialovou mikroskopii: Zdroj: lampa s emisí UV oblasti (Hg, Cd, D – výbojky) Optika: z UV propustného materiálu (křemen, kazivec aj.) nebo zrcadlová optika Detekce: fotografická nebo fluorescenční stínítko Preparáty: Složky buněk specificky absorbující UV (nukleové kyseliny s absorpčním pásem ≈ 260 nm, bílkoviny aj.) 1.1.5
Infračervená mikroskopie
IR mikroskopie pracuje v oblasti λ ≈ 750 – 1100 nm (blízká IR). Požadavky na infračervenou mikroskopii: Zdroj: běžné žárovky, halogenové žárovnky Optika: běžná skleněná nebo zrcadla Detekce: fotografický materiál (fotomateriál senzibilovaný pro IR – např. kryptocyanin) Preparáty: může být i silnější (IR penetruje snadněji než viditelné světlo), lze ho kontrastně barvit (kryptocyanin)
3 1.1.6
Mikrospektrofotometrie (cytofotometrie)
Metoda je založena na kombinaci mikroskopu a jednopaprskového absorpčního spektrofotometru. Proměřuje se kvantitativně absorpce světla o různých λ v různých místech preparátu. Používá se ke stanovení koncentrace určité látky v daném místě preparátu. Vlnová délka je vymezována optickými filtry nebo monochromátorem. 1.1.7
Fluorescenční mikroskopie
Fluorescenční mikroskopie se dělí na dvě metody: pozorování v odraženém světle (epifluorescence) a pozorování v procházejícím světle (diafluorescence). Fluorescenční pozorování v procházejícím světle se v současné době téměř nepoužívá, pod pojmem fluorescence budeme rozumět výhradně pozorování odraženého fluorescenčního světla, tj. epifluorescenci. Podstatou fluorescence je buzení viditelného záření v objektech, které obsahují chemické sloučeniny (fluorochromy), schopné specificky měnit dopadající ultrafialové záření na následně vyzářené (barevné) viditelné záření. Některé biologické objekty již takové sloučeniny samy obsahují (např. chlorofyl), jiným je musíme dodávat specifickým barvením. Takové preparáty jsou často zdrojem viditelného záření pouze dočasně. Pro fluorescenci potřebujeme samostatnou osvětlovací soustavu. Jednak musí světlo dopadat na objekt (podstata epifluorescence) a dále musí mít určitou vlnovou délku, často z oblasti ultrafialového záření. Výbava mikroskopu pro fluorescenci se skládá ze zdroje záření, nástavce pro osvětlení dopadajícím světlem, držáku s výměnnými fluorescenčními filtry a ochranného oranžového štítu. Zdrojem záření je téměř vždy vysokotlaká rtuťová výbojka, méně často halogenová žárovka. Důležitou součástí fluorescenční výbavy jsou fluorescenční filtry. Fluorescenční filtr je obvykle vyroben jako „kostka“, která se skládá z excitačního filtru, závěrného filtru a dichroického zrcadla. Filtry se od sebe liší vlnovými délkami, které vymezují pásma propustnosti excitačního a závěrného filtru. Dichroické zrcadlo odráží přednostně krátkovlnné záření na preparát a propouští dlouhovlnné („fluorescenční“) záření do okuláru. Metodiky práce předepisují určitá barviva a k ním specifické filtry, takže uživatel má ušetřenou namáhavou a finančně náročnou práci s jejich zkoušením. Běžné filtry jsou označeny písmenem, určujícím barevnou oblast světla (B = modrá, G = zelená), ve které pracují. Čísla v označení pak charakterizují pásma vlnových délek pro závěrný a excitační filtr, případně pro dichriocké zrcadlo. Kombinace episkopické fluorescence a DIC (diferenciálního interferenčního kontrastu) nebo fázového kontrastu (Ph). U rychle hasnoucích vzorků je při fluorescenčním pozorování velký problém s nalezením objektu ve vzorku. V takovém případě je velmi výhodné kombinovat fluorescenční pozorování s DIC nebo Ph. Nejdříve pomocí DIC nebo Ph nalezneme objekt, který chcete pozorovat a pak přepneme na fluorescenční pozorování. Tento způsob je velmi rychlý, což usnadňuje pozorování rychle hasnoucích vzorků. Pomocí DIC nebo Ph lze navíc studovat celý vzorek a ověřit tak polohu objektu.
4 Současné pozorování pomocí episkopické fluorescence a DIC. Výše zmíněná metoda využívá střídání obou metod. Zde uvedená metoda využívá jejich současné použití. Je tedy pozorován složený obraz. Pokud použijeme pouze fluorescenční pozorování, je obtížné určit, která oblast nebo struktura ve vzorku tkáně emituje fluorescenční světlo. Pokud použijeme současně k morfologickému pozorování vzorku metodu DIC nebo Ph, lze najít zdroj fluorescenčního světla snadněji.
Obr. 3: Fázový kontrast (a), fluorescenční zobrazení (b) a kombinace obou metod (c) [B] 1.1.8
Interferenční mikroskopie
Je založena na stejném principu jako fázový kontrast, je však dokonalejší a složitější. Využívá nepolarizovaného světla, jehož každý paprsek se dělí na dva, z nichž jeden prochází objektem, kde se mění jeho fáze; druhý paprsek prochází beze změny. Oba paprsky se setkávají v objektivu, kde spolu interferují. V mikroskopu pak pozorujeme obraz preparátu, který se jeví jako barevný. Při použití monochromatického světla vznikají světlé a tmavé interferenční pruhy, při použití celého spektra jsou pruhy barevné. 1.1.9
Ultramikroskopie
Speciální metoda temného pole, kdy na objekt soustředíme paprsky ze strany, kolmo k optické ose mikroskopu. Můžeme pozorovat i objekty menší, než je teoretická rozlišovací hodnota mikroskopu (makromolekuly). 1.1.10 Polarizační mikroskopie Kombinace světelného mikroskopu a polarimetru. Vzorky: opticky aktivní oblasti nebo anizotropní oblasti (viz Obr. 4). Doplňky – prvky, které se zasouvají do optické osy polarizačního mikroskopu oproti klasickému světelnému mikroskopu: Amici-Bertrandova čočka (spolu s okulárem vytváří pomocný mikroskop, zaostřený na obrazovou rovinu objektivu) Analyzátor (otočný, pracovní poloha = zkřížený s polarizátorem)
Obr. 4: Snímek pořízený metodou polarizační mikroskopie (dinosauří kost)
5 Kompenzátor (například destička λ/4) Otočný stolek (přesně nastavitelný) Polarizátor 1.1.11 Nomarského diferenciální interferenční kontrast Uspořádání optických prvků – rozdíl oproti klasickému světelnému mikroskopu: vložení páru Wollastonových hranolů a páru zkřížených polarizátorů. Přednosti: Kolem detailů předmětu není v obraze rušivá „aura“ (tzv. halo) jako u fázového kontrastu (viz Obr. 5) Dosahuje větší hloubky ostrosti
Obr. 5: Srovnání diferenciálního interferenčního kontrastu (a, c, e) a fázového kontrastu u barveného vzorku [B] 1.1.12 Hoffmanův modulační kontrast (HMF) Výhody oproti Nomarského DIC: podobné zobrazení při nižší ceně doplňkových komponent možnost pozorovat objekty i na dvojlomných podložkách (např. buněčné kultury v plastových kultivačních kyvetách) HMC je dokonalou verzí šikmého osvětlení. Virtuálním zdrojem světla, zajišťujícím šikmé osvětlení je při HMC obdélníková štěrbina umístěná v přední ohniskové rovině objektivu. 1.1.13 Konfokální mikroskopie Rozdělení: LSCM (Konfokální skenovací laserová mikroskopie) TSM (Tandemová skenovací mikroskopie) Odlišnosti konfokálního způsobu od klasického světelného mikroskopu:
6 osvětlen je jen jeden bod, signály od okolních bodů (vedle, pod a nad) jsou omezeny otvorem režim: epi (reflexní) nebo fluo (fluorescenční) konfokální: kondenzor = objektiv (méně odrazů) skenování: rozmítání laserového svazku, příčné posouvání vzorku před objektivem, případně posouvání objektivu nad vzorkem konfokální obrazy jsou vždy zaostřené a představují optické řezy vzorkem (pro λ = 488 nm je tloušťka l = 0,4 µm) Počítačová rekonstrukce obrazu: zvýšení hloubky ostrosti skládáním obrazů skládání obrazů (otáčení obrazů), pronikání do hloubky vzorku stereoskopické obrázky, korekce pozadí atd. 1.1.14 Mikroskopie blízkého pole (Near–field Scanning Optical Microscopy) Oblast blízkého pole je definovaná jako oblast v okolí vzorku menším než je vlnová délka dopadajícího světla. V NSOM je tato vzdálenost v řádu několika nanometrů. Detekce světla z blízké oblasti se provádí za účelem dosažení optického rozlišení lepšího než je difrakční limit (cca 250 nm). Pokud se provádí detekce prostřednictvím malého otvoru (cca 10 nm) hovoříme o reflexním módu (collection mode). V případě užití vlnovodu registrujícího evanescentní vlny z blízké oblasti potom mluvíme o transmisním módu. Používaný zdroj světla je v hrotu, průměr od 25 do 100 nm. 1.1.15 Videomikroskopie (Video Enhanced Microscopy) Oko dokáže objekty s nízkým kontrastem identifikovat, ne však kvantitativně hodnotit. Mikrofotografie, dlouho používaná ve světelné mikroskopii je nahrazována videomikroskopií rozvíjející se od 70. let s rozvojem CCD prvků a digitalizace obrazu. CCD – Charge Coupling Devices, nábojově vázané prvky od počtu 512 × 512 do 4000 × 4000). Kvalitní CCD kamery pracují s osvětlením od 0,1 lux. Spektrální citlivost je dána optickými vlastnostmi křemíku (400 – 1100 nm). Citlivost kamer se zvyšuje chlazením na teplotu -100° C (pokles tepelného šumu). Metody video–mikroskopie: Videově umocněný kontrast (VEC – Video Enhanced Contrast). Patří sem všechny metody, kdy zanikají detaily v jasu pozadí. Zesílení se provádí odečtením pozadí a vynásobení rozdílového signálu vhodným koeficientem. Tak je možné pozorovat objekty až o řád menší než je mezní rozlišovací schopnost SM, např. tubuly v cytoplasmě (20 – 30 nm v průměru), nebo částečky koloidního zlata (20 – 40 nm) užívané v mikroskopii jako značky. Zesílená fluorescenční mikroskopie (IFM – Intenzified Fluorescence Microscopy) – použití zesilovačů obrazu. Při zesílené fluorescenční mikroskopii lze snižovat intenzitu buzení oproti intenzitě potřebné k vizuálnímu pozorování, čímž se potlačuje „vybělování“ fluorescence. IFM se často kombinuje s počítačovým zpracováním obrazu, které umožňuje zlepšit poměr signál/šum integrací několika postupně snímaných obrázků.
7
1.2 Programové vybavení pro obrazovou analýzu V současné době existuje široké množství programů pro obrazovou analýzu. Většina z nich umožňuje přímé vložení obrazu (acquiring) do prostředí programu. Nejrozšířenější z nich jsou následující: IMAGE PRO PLUS® (Media Cybernetics [C]). Aplikace: automatizovaný posuv preparátu (stage control) a skládání obrazu (image stitching; „spojování“ mikroskopických obrazů do jednoho většího), rozšířené funkce pro zobrazení fluorescenčních preparátů, počítání a třídění objektů, měření objektů, multidimensional imaging, sledování objektu (object tracking). MCIDTM ELITE (Imaging Research Inc. [D]). Aplikace: skládání obrazu, kvantitativní radiografie, rozšířené funkce pro zobrazení fluorescenčních preparátů, analýza preparátů z gelové nebo tenkovrstevné chromatografie (analýza drah), počítání objektů, stereologická měření (získání 3D geometrických a topologických parametrů ze série 2D sekčních snímků), 3D rekonstrukce obrazu. OPTIMASTM (Optimas Inc. [E]). Aplikace: počítání a třídění objektů, radiografie, morfometrie a denzitometrie, bodová analýza, segmentace obrazu a analýza v různých barevných prostorech, měření malých rozměrů, analýza povrchů, analýza fluorescenčních obrazů, analýza gelů, analýza pohybu. CLEMEX VISION (Clemex Technologies Inc. [F]). Aplikace: měření objektů, počítání objektů, automatizovaný posun preparátu pod mikroskopem a skládání obrazu, segmantace obrazu, multi-dimensional imaging, 3D rendering. GLOBAL LAB IMAGE/2® (Data Translation Inc. [G]). Aplikace: měření a počítání objektů, liniový profil, aritmetické operace, filtry, morfologické operace. METAMORPH® (Universal Imaging Corp. [H]). Aplikace: multi-dimensional imaging, 3D rekonstrukce a dekonvoluce, segmentace, sledování částic a analýza pohybu, fluorescenční mikroskopie, morfometrie, počítání objektů. AXIOVISION (Carl Zeiss Corp. [I]). Aplikace: morfometrie, fluorescenční mikroskopie, transformace obrazu, skládání obrazu, 3D dekonvoluce, 3D vizualizace. GAIA (Mirero Inc. [J]). Aplikace: transformace obrazu, filtry, segmentace obrazu, měření objektů. HARFA – Harmonic and Fractal Analyser [K]. Aplikace: transformace obrazu (Fourierova, vlnková), fraktální analýza.